XClose

Institute of Communications and Connected Systems

Home
Menu

2048-QAM transmission at 15 GBd over 100 km using geometric constellation shaping

Optics Express | Wakayama Y, Gerard T, Sillekens E, Galdino L, Lavery, et al. | We experimentally investigated a pilot-aided digital signal processing (DSP) chain in combination with high-order geo...

7 June 2021

2048-QAM transmission at 15 GBd over 100 km using geometric constellation shaping

Abstract

 

We experimentally investigated a pilot-aided digital signal processing (DSP) chain in combination with high-order geometric constellation shaping to increase the achievable information rates (AIRs) in standard intradyne coherent transmission systems.
We show that the AIR of our system at 15 GBd was maximised using geometrically-shaped (GS) 2048 quadrature amplitude modulation (QAM), reaching 18.0 b/4D-symbol in back-to-back transmission and 16.9 b/4D-symbol after transmission through 100 km of a single-mode fibre after subtracting the pilot overhead (OH).
This represents the highest-order GS format demonstrated to date, supporting the highest AIR of any standard intradyne system using conventional optics and 8-bit electronics. Detailed characterisation of the DSP, transceiver performance, and transmission modelling has also been carried out to provide insight into sources of impairments and directions for further improvement.

Publication Type:Journal Article
Publication Sub Type:Article
Authors:Wakayama Y, Gerard T, Sillekens E, Galdino L, Lavery D, Killey RI, Bayvel P
Publisher:IEEE
Publication date:07/06/2021
Pagination:18743, 18759
Journal:Optics Express
Volume:29
Issue:12
Status:Published 
DOI:http://dx.doi.org/10.1364/OE.423361

Explore how UCL research is advancing the future technologies of a connected world: