A A A

News

Clover leaf by Scott Robinson on Flickr

Quantum mechanics explains efficiency of photosynthesis

Light-gathering macromolecules in plant cells transfer energy by taking advantage of molecular vibrations whose physical descriptions have no equivalents in classical physics, according to the first unambiguous theoretical evidence of quantum effects in photosynthesis published today in the journal Nature Communications. More...

Published: Jan 9, 2014 3:48:33 PM

Free Electron Lasers and Attosecond Light Sources Conference

UCL is hosting a conference on Free Electron Laser and Attosecond-Strong Field Science from June 30 to July 2 2014 at UCL. The preliminary  web-page for the conference is now live at
http://www.ucl.ac.uk/phys/amopp/atto-fel-conference More...

Published: Oct 1, 2013 2:24:13 PM

Macroscopic and microscopic work.

Quantum engines must break down


Our present understanding of thermodynamics is fundamentally incorrect if applied to small systems and needs to be modified, according to new research from University College London (UCL) and the University of Gdańsk. The work establishes new laws in the rapidly emerging field of quantum thermodynamics. More...

Published: Jun 27, 2013 9:40:58 AM

Dr Alessio Serafini

email: serale@theory.phys.ucl.ac.uk

Hello there,

I work in the quantum information group, with other decent chaps like Sougato Bose and Dan Browne.

My main research activity is centred on the sub-field of "continuous variable" quantum information; that is, essentially, on the study of quantum information in systems with infinite-dimensional Hilbert spaces. As you may guess, such an infinity has a way of making theoretical questions rather messy pretty soon.
Yet, fortunately, questions about continuous variable systems can be tackled for a restricted set of states ("Gaussian states"), which retains considerable interest.
The reason why we care about Gaussian states is that they are relatively easy to generate and manipulate in the lab, while still allowing for the realisation of several non-trivial quantum protocols (such as quantum teleportation, dense coding and key distribution) in a variety of physical systems (quantum light, atomic clouds, cold atoms and Josephson junctions to mention a few).
For Gaussian states, many questions which are extremely difficult in the general setting become treatable analytically (even if, as a cave at, one should stress that when entanglement is involved such questions are seldom trivial, even restricting to Gaussian states).
This is all good, as there are many problems still there to be tackled with reasonable means, with the added value that, every now and again, one might even manage to make statements about more general settings, beyond the Gaussian restriction.

Ah, I also co-lecture, with Prof. Jonathan Tennyson, the Maths III course (PHAS2246) for undergraduate students.

Starting from next year, you should find the course material on this webpage (currently on Prof. Tennyson's page at http://www.tampa.phys.ucl.ac.uk/jonny/2246/index.html). 

Page last modified on 11 feb 08 20:22