XClose

UCL Queen Square Institute of Neurology

Home
Menu

Prof. B. Day Whole-body Sensorimotor Lab

Lab Head: Professor Brian Day

 

Step

Dots

About us

The laboratory focuses on neural processes that control human movement and balance, and their disorders resulting from damage to the central nervous system.
Our main lines of investigation are aimed at understanding the mechanisms that control and integrate whole-body actions, in particular standing, walking, and reaching. We are interested in how the neural processes combine sensory information from vestibular organs, eyes, muscles and skin to compute motor instructions. The brain regions in which we are currently interested include the cerebellum, basal ganglia, and parietal cortex.

Skeleton

The labs are housed on the 5th floor of 33 Queen Square.

The main research tools consist of non-invasive sensory stimulation techniques coupled with 3D movement measurement technology.

The recording equipment includes eight CODA sensor units each of which can determine the 3D coordinates of up to 56 infrared emitting body markers.

This kinematic information is combined with force data from up to five Kistler force plates and two JR3 6-axis force handles, electromyographic activity transmitted wirelessly from up to 32 muscles using a Delsys Trigno system, as well as gaze data from SMI Eye Tracking Glasses.


Trunk control projects

Sit-to-stand

Cacciatore, T.W., Mian, O.S., Peters, A., Day, B.L. (2014).  Neuro-mechanical interference of posture on movement: evidence from Alexander technique teachers rising from a chair. Journal of Neurophysiology 112(3), 719-729

Cacciatore, T.W., Gurfinkel, V.S., Horak, F.B., Day, B.L. (2011).  Prolonged weight-shift and altered spinal coordination during sit-to-stand in practitioners of the Alexander Technique.  Gait and Posture 34(4), 496-501

Use of vestibular information for trunk movement

Day, B. L., Reynolds, R. F. (2005). Vestibular reafference shapes voluntary movementCurrent Biology 15(15), 1390-1394

Cauquil, A. S., Day, B. L. (1998). Galvanic vestibular stimulation modulates voluntary movement of the human upper body. The Journal of Physiology 513(2), 611-619

Trunk control after stroke: Method for evaluating multidirectional trunk force control

Mockova, M., Greenwood, R., Day, B. L. (2006). A method for quantifying directional strength and motor control of the trunkJournal of Neuroscience Methods 156(1-2), 211-217


Standing projects

Cerebellar ataxia

Bunn, L.M., Marsden J.F., Voyce, D.C., Giunti, P., Day, B.L. (2015). Sensorimotor processing for balance in spinocerebellar ataxia type 6. Movement Disorders. DOI: 10.1002/mds.26227

Bunn, L.M., Marsden J.F., Giunti, P., Day, B.L. (2015). Training balance with opto-kinetic stimuli in the home: a randomized controlled feasibility study in people with pure cerebellar disease. Clinical Rehabilitation 29(2), 143-53

Bunn, L.M., Marsden, J.F., Giunti, P., Day, B.L. (2013).  Stance instability in spinocerebellar ataxia type 6.  Movement Disorders 28(4), 510-516

Vestibular control of standing

  • Vestibular processes

Mian, O.S., Day, B.L., (2014). Violation of the craniocentricity principle for vestibular-evoked balance responses under conditions of anisotropic stability. The Journal of Neuroscience 34(22), 7696-7703

Day, B. L., Marsden, J. F., Ramsay, E., Mian, O. S., Fitzpatrick, R. C. (2010). Non-linear vector summation of left and right vestibular signals for human balance.. J Physiol 588(Pt 4), 671-682

Cathers, I., Day, B. L., Fitzpatrick, R. C. (2005). Otolith and canal reflexes in human standingThe Journal of Physiology 563(1), 229-234

  • Cognitive inputs

Guerraz, M., Day, B. L. (2005). Expectation and the vestibular control of balanceJournal of Cognitive Neuroscience 17(3), 463-469

  • Interaction with load

Marsden, J. F., Blakey, G., Day, B. L. (2003). Modulation of human vestibular-evoked postural responses by alterations in loadThe Journal of Physiology 548(3), 949-953

Marsden, J. F., Castellote, J., Day, B. L. (2002). Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing. The Journal of Physiology 542(1), 323-331

  • Interaction with vision

Day, B. L., Guerraz, M. (2007). Feedforward versus feedback modulation of human vestibular-evoked balance responses by visual self-motion informationThe Journal of Physiology 582(1), 153-161

  • Interaction with proprioception

Day, B. L., Cole, J. (2002). Vestibular-evoked postural responses in the absence of somatosensory informationBrain 125(9), 2081-2088

  • Impact of stroke

Marsden, J. F., Playford, E. D., Day, B. L. (2005). The vestibular control of balance after strokeJournal of Neurology, Neurosurgery and Psychiatry 76(5), 670-678

  • Parkinson's disease

Pastor, M. A., Day, B. L., Marsden, C. D. (1993). Vestibular induced postural responses in Parkinson's diseaseBrain 116, 1177-1190

Orthostatic tremor

Fung, V. S., Sauner, D., Day, B. L. (2001). A dissociation between subjective and objective unsteadiness in primary orthostatic tremorBrain 124(2), 322-330

Other diseases

Abdel-Aziz, K., Schneider, T., Solanky, B.S., Yiannakas, M.C., Altmann, D.R., Wheeler-Kingshott, C.A.M., Peters, A.L., Day, B.L., Thompson, A.J., Ciccarelli, O. (2015). Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain pii: awv086

Welgampola, M.S., Ramsay, E., Gleeson, M.J., Day, B.L. (2013). Asymmetry of balance responses to monaural galvanic vestibular stimulation in subjects with vestibular schwannoma. Clinical Neurophysiology 124, 1835-1839


Upper limb projects

Parkinson's disease

Ling, H., Massey, L.A., Lees, A.J., Brown, P., Day, B.L. (2012).  Hypokiesia without decrement distinguishes progressive supranuclear palsy from Parkinson's disease.  Brain 135(4), 1141-1153

Ling, H., Petrovic, I., Day, B.L., Lees, A.J. (2012).  Smoking-induced transient motor deterioration in a levodopa-treated patient with Parkinson's disease.  Journal of Neurology 259(11), 2419-2423

Coordination

Roberts, R.E., Bain, P.G., Day, B.L., Husain, M. (2013). Individual differences in expert motor coordination associated with white matter microstructure in the cerebellum. Cerebral Cortex 23, 2282-2292

Perception

Luu, B.L., Day, B.L., Cole, J.D., Fitzpatrick, R.C. (2011).  The fusimotor and reafferent origin of the sense of force and weight.  Journal of Physiology 589(13), 3135-3147

Visual control of reaching

  • Subcortical and cortical routes

Day, B.L. (2014).  Subcortical visuomotor control of human limb movement. Advances in Experimental Medicine and Biology 826, 55-68

Reynolds, R.F., Day, B.L. (2012).  Direct visuomotor mapping for fast visually-evoked arm movements.  Neuropsychologia 50, 3169-3173

Day, B. L., Brown, P. (2001). Evidence for subcortical involvement in the visual control of human reachingBrain 124, 1832-1840

Day, B. L., Lyon, I. N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual targetExperimental Brain Research 130(2), 159-168

  • Cerebellar ataxia

Day, B. L., Thompson, P. D., Harding, A. E., Marsden, C. D. (1998). Influence of vision on upper limb reaching movements in patients with cerebellar ataxiaBrain 121, 357-372


Past group members:

  • Mr. Matthew Bancroft
  • Ms Amy Peters