XClose

UCL Ear Institute

Home
Menu

Publications

  • Lu C and Linden JF (2023). Auditory evoked-potential abnormalities in a mouse model of 22q11.2 Deletion Syndrome and their interactions with hearing impairment. bioRxiv, doi: 10.1101/2023.10.04.560916. (web)
  • Akritas M, Armstrong AG, Lebert JM, Meyer AF, Sahani M and Linden JF (2023). Contextual modulation is a stable feature of the neural code in auditory cortex of awake mice. bioRxiv 2023.04.22.537782; doi: 10.1101/2023.04.22.537782. (web)
  • Linden JF (2023). Sensory representations in the auditory cortex and thalamus. Section 5, Chapter 7 in: Usrey WM (Ed.), Sherman CM (Ed.), Hirsch J (Section Ed.) and King AJ (Section Ed.), The Cerebral Cortex and Thalamus. Oxford University Press, in press.
  • Zinnamon FA, Harrison FG, Wenas S, Liu Q, Wang KH and Linden JF (2023). Increased central auditory gain and decreased parvalbumin-positive cortical interneuron density in the Df1/+ mouse model of schizophrenia correlate with hearing impairment. Biological Psychiatry: Global Open Science, 3:386-397. (web)
  • Wang B, Zartaloudi E, Linden JF and Bramon E (2022).  Neurophysiology in psychosis: the quest for biomarkers of disease mechanisms. Translational Psychiatry, 12(1):100. (web)
  • Gothner T, Goncalves PJ, Sahani M, Linden JF and Hildebrandt KH (2021). Sustained activation of PV+ interneurons in auditory cortex enables robust divisive gain control for complex and naturalistic stimuli. Cerebral Cortex 31(5):2364-2381.
  • Kopp-Scheinpflug C and Linden JF (2020). Coding of Temporal Information. In: Fritzsch B (Ed.) and Grothe B (Volume Ed.), The Senses: A Comprehensive Reference, Volume 2 (Audition). Elsevier, Academic Press, pp. 691-712. (Contact j.linden@ucl.ac.uk to request a reprint.)
  • Zinnamon FA, Harrison FG, Wenas SS, Meyer AF, Liu Q, Wang KH and Linden JF (2019). Hearing loss promotes schizophrenia-relevant brain and behavioural abnormalities in a mouse model of human 22q11.2 Deletion Syndrome. bioRxiv doi: 10.1101/539650. (web)
  • Meyer AF*, Poort J*, O'Keefe J, Sahani M and Linden JF (2018). A head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron 100:46-60.e7. (web) *equal contributions
  • Kopp-Scheinpflug C, Sinclair JL and Linden JF (2018). When sound stops: offset responses in the auditory system. Trends in Neurosciences 41:712-728. (web)
  • Anderson LA*, Hesse LL*, Pilati N*, Bakay WMH, Alvaro G, Large CH, McAlpine D, Schaette R, and Linden JF (2018). Increased spontaneous firing rates in auditory midbrain following noise exposure are specifically abolished by a Kv3 channel modulator. Hearing Research 365:77-89. (web) *equal contributions
  • Hildebrandt KJ, Sahani M and Linden JF (2017). The impact of cortical state on spike-sorting success: a comparison of ketamine and urethane anaesthesia. Frontiers in Systems Neuroscience, 29 November 2017, doi:10.3389/fncir.2017.00095. (web)
  • Guidi LG, Mattley J, Martinez-Garay I, Monaco AP, Linden JF, Velayos-Baeza A and Molnar Z (2017). Knockout mice for dyslexia susceptibility gene homologs KIAA0319 and KIAA0319L have unaffected neuronal migration but display abnormal auditory processing. Cerebral Cortex 17:1-15. (web)
  • Burgess CP, Lak A, Steinmetz N, Zatka-Haas P, Reddy CB, Jacobs E, Linden JF, Paton JJ, Ranson A, Schroeder S, Soares S, Wells M, Wool LE, Harris KD, Carandini M (2017).  High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice. Cell Reports 20(10): 2513-2524. (web)
  • Linden JF (2017). Timing is everything: corticothalamic mechanisms for active listening. Neuron 95(1): 3-5. (web)
  • Meyer AF, Williamson RS, Linden JF and Sahani M (2017). Models of neuronal stimulus-response functions: elaboration, estimation and evaluation. Frontiers in Systems Neuroscience 10(109), doi: 10.3389/fnsys.2016.00109. (web)
  • Hesse LL, Bakay W, Ong HC, Anderson LA, Ashmore J, McAlpine D, Linden JF and Schaette R (2016). Non-monotonic relation between noise exposure severity and neuronal hyperactivity in the auditory midbrain. Frontiers in Neurology 7(133), doi: 10.3389/fnrur.2016.00133. (web)
  • Williamson RS, Ahrens M, Linden JF* and Sahani M* (2016). Input-specific modulation by local sensory context shapes cortical and thalamic responses to complex sounds. Neuron 91(2): 467-71. (web) *equal contributions
  • Anderson LA and Linden JF (2016). Mind the gap: two dissociable mechanisms of temporal processing in the auditory system. Journal of Neuroscience 36(6): 1977-95. (web)
  • Fuchs JC, Linden JF, Baldini A and Tucker AS (2015). A defect in myogenesis causes otitis media in two mouse models of 22q11.2 deletion syndrome. Human Molecular Genetics 24(7): 1869-82. (web)
  • Christianson GB, Chait M, de Cheveigné A and Linden JF (2014). Auditory evoked fields measured non-invasively with small-animal MEG reveal rapid repetition suppression in the guinea pig. Journal of Neurophysiology 112(2): 3053-65. (web)
  • Sahani M, Williamson RS, Ahrens MB and Linden JF (2013). Probabilistic methods for linear and multilinear models. Chapter VII, pp. 193-222 in Depireux D and Elhilali M (Eds.), Handbook of Modern Techniques in Auditory Cortex, Nova Science Publishers. (web)
  • Fuchs JC, Zinnamon FA, Taylor RR, Ivins S, Scambler PJ, Forge A, Tucker AS and Linden JF (2013). Hearing loss in a mouse model of 22q11.2 Deletion Syndrome. PLoS ONE 8(11): e80104. (web)
  • Linden JF (2012). Consequences of chronic reduction of cortical inhibition. Proceedings of the National Academy of Sciences USA 109(34): 13473-74. (web)
  • Christianson GB, Sahani M and Linden JF (2011). Depth-dependent temporal response properties in core auditory cortex. Journal of Neuroscience 31(36): 12837-48. (web)
  • Anderson LA and Linden JF (2011). Physiological differences between histologically defined subdivisions in the mouse auditory thalamus. Hearing Research 274(1-2): 48-60. (web)
  • Richter CA, Amin S, Linden J, Dixon J, Dixon M and Tucker AS (2010). Defects in middle ear cavitation cause conductive hearing loss in the Tcof1 mutant mouse. Human Molecular Genetics 19(8): 1551-60. (web
  • Anderson LA, Christianson GB and Linden JF (2009a). Mouse auditory cortex differs from visual and somatosensory cortices in the laminar distribution of cytochrome oxidase and acetylcholinesterase. Brain Research 1252: 130-42. (web)
  • Anderson LA, Christianson GB and Linden JF (2009b). Stimulus-specific adaptation occurs in the auditory thalamus. Journal of Neuroscience 29(22): 7359-63. (web)
  • Ahrens M, Linden JF and Sahani M (2008). Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods. Journal of Neuroscience 28(8): 1929-42. (web)
  • Christianson GB, Sahani M and Linden JF (2008). The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields. Journal of Neuroscience 28(2): 446-55. (web)
  • Liu RC, Linden JF and Schreiner CE (2006). Improved cortical entrainment to infant communication calls in mothers compared to virgin mice. European Journal of Neuroscience 23(11): 3087-97. (web)
  • Linden JF, Liu RC, Sahani M, Schreiner CE and Merzenich MM (2003). Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology 90: 2660-75. (web)
  • Imaizumi K, Lee CC, Linden JF, Winer JA and SchComputational Neuroscience: Trends in Research, 1997.reiner CE (2005). The anterior field of auditory cortex: neurophysiological and neuroanatomical organization. In: König R, Heil P, Budinger E, and Scheich H (Eds.), The Auditory Cortex. Synthesis of Human and Animal Research. Mahwah, NJ, U.S.A.: Lawrence Erlbaum Associates, pp. 95-110. (web)
  • Linden JF and Schreiner CE (2003). Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebral Cortex 13(1): 83-9. (web)
  • Sahani M and Linden JF (2003b). Evidence optimization techniques for estimating stimulus-response functions. Advances in Neural Information Processing Systems 15: 301-8. (web)
  • Sahani M and Linden JF (2003a). How linear are auditory cortical responses? Advances in Neural Information Processing Systems 15: 109-16. (web)
  • Grunewald A, Linden JF and Andersen RA (1999). Responses to auditory stimuli in macaque lateral intraparietal area I. Effects of training. Journal of Neurophysiology 82: 330-42. (web)
  • Linden JF, Grunewald A and Andersen RA (1999). Responses to auditory stimuli in macaque lateral intraparietal area II. Behavioral modulation. Journal of Neurophysiology 82: 343-58. (web)
  • Andersen RA, Grunewald A and Linden JF (1997). The processing of auditory stimuli for eye movements in the posterior parietal cortex of monkeys. In Poon PWF and Brugge JF (Eds.), Central Auditory Processing and Neural Modeling. New York: Plenum Press, pp. 129-38. (web)
  • Linden JF (1997). Perceptual completion across the fovea under scotopic/mesopic viewing conditions. In Bower JM (Ed.), Computational Neuroscience: Trends in Research, 1997. San Diego: Academic Press, Inc., pp. 717-22. (web)