XClose

Wolfson Institute for Biomedical Research

Home

Scanning electron micrograph of the dendrites of a cerebellar Purkinje cell - Hausser Lab

Menu

Wolfson Institute for Biomedical Research

The Wolfson Institute for Biomedical Research was established at UCL in 1995 for the pursuit of excellence in translational biomedical research. Now, with its primary focus on fundamental and translational neuroscience, the WIBR is a key hub within the rich environment of the UCL neuroscience community.
Lab Research Photo

Research

The WIBR is currently home to 14 Principal Investigators, including established senior academics as well as early-career scientists. Collectively we hold more than £25m in grants from The European Research Council, MRC, BBSRC, Wellcome and other biomedical research charities.

Teaching in lab

Teaching

Researchers within the WIBR organise and contribute to several distinguised undergraduate modules within the School of Life and Medical Sciences. The Institute has around 20 current PhD students, and runs a highly rated one-year MSc degree course in Drug Design.

Staff at WIBR

Staff

Contact details for WIBR staff

Contact Us (WIBR)

Contact Us

Our address and location

Recent Publications 

Library image publications

Luiz, A. P., Macdonald, D. I., Santana-Varela, S., Millet, Q., Sikandar, S., Wood, J. N., & Emery, E. C. (2019). Cold sensing by NaV1.8-positive and NaV1.8-negative sensory neuronsProceedings of the National Academy of Sciences of USA.

Jolly, S.*, Bazargani, N.*, Quiroga, A.C., Pringle, N.P., Attwell, D.§, Richardson, W.D. § and Li, H. § (2018). G protein-coupled receptor 37-like 1 modulates astrocyte glutamate transporters and neuronal NMDA receptors and is neuroprotective in ischemiaGlia 66, 47-61. § joint senior

Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q, Lolignier S, Morohashi T, Gossage SJ, Jay M, Linley JE, Baskozos G, Kessler BM, Cox JJ, Dolphin AC, Zufall F, Wood JN, Zhao J. Mapping protein interactions of sodium channel NaV1.7 using epitope-tagged gene-targeted mice.  EMBO J. 2018 Feb 1;37(3):427-445. doi: 10.15252/embj.201796692.    PMID: 29335280

Habib AM, Matsuyama A, Okorokov AL, Santana-Varela S, Bras JT, Aloisi AM, Emery EC, Bogdanov YD, Follenfant M, Gossage SJ, Gras M, Humphrey J, Kolesnikov A, Le Cann K, Li S, Minett MS, Pereira V, Ponsolles C, Sikandar S, Torres JM, Yamaoka K, Zhao J, Komine Y, Yamamori T, Maniatis N, Panov KI, Houlden H, Ramirez JD, Bennett DLH, Marsili L, Bachiocco V, Wood JN, Cox JJ. A novel human pain insensitivity disorder caused by a point mutation in ZFHX2.  Brain. 2018 Feb 1;141(2):365-376. doi: 10.1093/brain/awx326.  PMID: 29253101

Raouf R, Lolignier S, Sexton JE, Millet Q, Santana-Varela S, Biller A, Fuller AM, Pereira V, Choudhary JS, Collins MO, Moss SE, Lewis R, Tordo J, Henckaerts E, Linden M, Wood JN.Inhibition of somatosensory mechanotransduction by annexin A6.Sci Signal. 2018 Jun 19;11(535). pii: eaao2060. doi: 10.1126/scisignal.aao2060  PMID:29921656

Bangash MA, Alles SRA, Santana-Varela S, Millet Q, Sikandar S, de Clauser L, Ter Heegde F, Habib AM, Pereira V, Sexton JE, Emery EC, Li S, Luiz AP, Erdos J, Gossage SJ, Zhao J, Cox JJ, Wood JN. Distinct transcriptional responses of mouse sensory neurons in models of human chronic pain conditions.Wellcome Open Res. 2018 Jun 25;3:78. doi: 10.12688/wellcomeopenres.14641.1. eCollection 2018.  PMID:30079380

Sikandar S, Minett MS, Millet Q, Santana-Varela S, Lau J, Wood JN, Zhao J. Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain. Brain. 2018 Apr 1;141(4):1028-1039. doi: 10.1093/brain/awy009.  PMID: 29394316

Jun, J. et al. (2017). Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236. [PDF].

Schmidt-Hieber C, Toleikyte G, Aitchison L, Roth A, Clark BA, Branco T, Häusser M (2017). Active dendritic integration as a mechanism for robust and precise grid cell firingNature Neuroscience20(8):1114-1121.  [PDF]

Browne, L. E., Latremoliere, A., Lehnert, B. P., Grantham, A., Ward, C., Alexandre, C., . . . Woolf, C. J. (2017).Time-Resolved Fast Mammalian Behavior Reveals the Complexity of Protective Pain ResponsesCell Reports.doi:10.1016/j.celrep.2017.06.024 

Tripathi, R. B., Jackiewicz, M., McKenzie, I.A., Kougioumtzidou, E., Grist, M. and Richardson, W.D. (2017). Remarkable stability of myelinating oligodendrocytes in mice. Cell Reports 21, 316-323.

Kougioumtzidou, E., Shimizu, T., Hamilton, N.B., Tohyama, K., Sprengel, R., Monyer, H., Attwell, D.§ and Richardson, W.D.§ (2017). Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. eLife 2017;6:e28080 § joint senior

Espinosa-Medina, I., Saha, O., Boismoreau, F., Cettouh, Z., Rossi, F., Richardson, W.D. and Brunet, J.-F. (2016) The sacral autonomic outflow is sympathetic. Science 354, 893-897.

Xiao, L., Ohayon, D, McKenzie, I.A., Sinclair-Wilson, A., Wright, J.L., Fudge, A.D., Emery, B., Li, H. and Richardson, W.D. (2016). Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19, 1210-1217.  

Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcão, A., Xiao, L., Häring, M., Hochgerner, H., Romanov, R.A., Gyllborg, D., Muñoz Manchado, A., La Manno, G., Lönnerberg, P., Rezayee, F., Ernfors, P., Arenas, E., Hjerling-Leffler, J., Harkany, T., Richardson, W.D., Linnarsson, S. and Castelo-Branco, G. (2016). Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326-1329.