UCL Institute for Environmental Design and Engineering


Neural network architectures for a user overridable dynamic shading system


24 June 2014


This research explores the possibilities of integrating environmental and human inputs to achieve precise architectural goals. Specifically, the aim is to create an adaptive façade, trained on historical data relating to human (an override capability) and environmental inputs to maintain optimal internal lighting conditions for inhabitants. The study was conducted using a physical louvred shading system constructed in the Bartlett School of Architecture, University College London. The historical data was collected by the system over a one-week period and provided a sample data set to train the Artificial Neural Network (ANN) for which the system would operate. A multi-layer perceptron was the neural network used in the study and a series of experiments allowed for the optimal network architecture to be ascertained. Based on the trained network, further testing was carried out to assess the accuracy of the results with regards to the louvre angle suggested during system recall. It was found that the complexity derived from receiving both environmental and human data provided some confusion when recalling, however the system displayed a high level of accuracy, correctly recalling the desired blade angle over 70% of the time. Further testing found that the remaining recall error could be accounted for through environmental input data similarities. By physically building and testing the system this research suggests that a trained physical system based on computational principles can provide an adaptive architectural entity that considers building occupants behaviour and wants as well as the external environments natural imposition.

Neural network architectures for a user overridable dynamic shading system.

Nabil, A., Pitt, M., Hanna, S., Tsigkari, M. (2014)

The full text of this article is not available through UCL Discovery.