XClose

Atomic, Molecular, Optical and Positron Physics

Home
Menu

Ultracold Gases

Prof Peter Barker
Dr Marzena Szymanska
Prof Tania Monteiro
Prof Ferruccio Renzoni
Dr Gillian Peach

mog1

Our research programmes in cold atoms and molecules are both theoretical and experimental and range from developing methods for cooling, trapping to utilising cold atoms for understanding quantum chaos and statistical physics. We also study ultracold Bose and Fermi gases and their interactions.

Cooling atoms and molecules: We are exploring new methods for creating cold atoms and molecules. This includes cavity cooling, optical Stark deceleration for the creation of slow cold molecules and sympathetic cooling of molecules with cold atoms . Cold atoms trapped in periodic potentials (optical lattices) can be used to mimic the random motions of systems in equilibrium with a thermal bath.  Directed (ratchet) motion and a Brownian motor has been realised using these systems (Barker , Jones, Renzoni).

Quantum dynamics and sensing: We investigate quantum systems relevant to the development of future quantum technologies, such as quantum computers and quantum sensors. We are part of the wider UCL optomechanics group which aims to cool a small mechanical oscillator down to its quantum ground state. We also investigate quantum spin dynamics, with a view to understand and control their quantum coherence. One motivation is the possibility to extend powerful techniques such as NMR and MRI down to the single spin level with single-spin sensing techniques. We investigate also how quantum spins qubits interact with the surrounding environment. Typically, the environment are other quantum spins so the back-action between environment and target spin, and entanglement between them makes the behaviour very different from the situation where a quantum particle loses coherence through its interaction with classical environmental noise.

Ultracold Bose and Fermi gases:  Many-particle descriptions of pairing via Feshbach resonances are studied, as well as the production and probing of exotic few-body molecules, and photoassociation using coherent control. (Kohler).

To learn more about our work please follow the links below: