A A A

Gee Research Blog

PREDICTS Project: Land-Use Change Doesn’t Impact All Biodiversity Equally

Mon, 13 Oct 2014 09:17:53 +0000

Humans are destroying, degrading and depleting our tropical forests at an alarming rate. Every minute, an area of Amazonian rainforest equivalent to 50 football pitches is cleared of its trees, vegetation and wildlife. Across the globe, tropical and sub-tropical forests are being cut down to make way for expanding towns and cities, for agricultural land […]

The post PREDICTS Project: Land-Use Change Doesn’t Impact All Biodiversity Equally appeared first on GEE Research.

Read more...

Calculated Risks: Foraging and Predator Avoidance in Rodents

Fri, 03 Oct 2014 10:07:08 +0000

Finding food is one of the most important tasks for any animal – most animal activity is focused on this job. But finding food usually involves some risks – leaving the safety of your burrow or nest to go out into a dangerous world full of predators, disease and natural hazards. Animals should therefore be […]

The post Calculated Risks:
Foraging and Predator Avoidance in Rodents
appeared first on GEE Research.

Read more...

Applying Metabolic Scaling Laws to Predicting Extinction Risk

Thu, 25 Sep 2014 10:32:49 +0000

The Earth is warming. That much were are now certain of. A major challenge for scientists hoping to ameliorate the effect of this on biodiversity is to predict how temperature increases will affect populations. Predicting the responses of species living in complex ecosystems and heterogenous environments is a difficult task, but one starting point is […]

The post Applying Metabolic Scaling Laws to Predicting Extinction Risk appeared first on GEE Research.

Read more...

The Importance of Size in the Evolution of Complexity in Ants

Tue, 16 Sep 2014 10:14:37 +0000

Ants are amongst the most abundant and successful species on Earth. They live in complex, cooperative societies, construct elaborate homes and exhibit many of the hallmarks of our own society. Some ants farm crops, others tend livestock. Many species have a major impact on the ecosystems they live in, dispersing seeds, consuming huge quantities of […]

The post The Importance of Size in the Evolution of Complexity in Ants appeared first on GEE Research.

Read more...

Understanding Catfish Colonisation and Diversification in The Great African Lakes

Fri, 05 Sep 2014 10:29:42 +0000

Why some regions or habitats contain vast, diverse communities of species, whilst others contain only relatively few species, continues to be the subject of scientific research attempting to understand the processes and conditions that allow and adaptive radiation. The Great African Lakes exist as freshwater ‘islands’, with spectacularly high levels of biodiversity and endemism. They […]

The post Understanding Catfish Colonisation and Diversification in The Great African Lakes appeared first on GEE Research.

Read more...

13 May 2013

"Why does selection care about codon usage (or what really determines ribosome velocity)"


Speaker:

Laurence Hurst
(Bath)
Date & Time:
Wednesday, 22 May at 5pm
Venue: Medical Sciences AV Hill Lecture Theatre (map)
Host: Jurg Bahler (51602)


Abstract
Owing to the structure of the genetic code more than one codon can specify the same amino acid.  At first sight natural selection should not care which of the multiple synonymous codons is employed as the translated protein will be the same regardless.  That we see selection on codon usage is thus intruiging.  Understanding why selection cares about codon usage is important for understanding how cells work and, in turn, for understanding how to intelligently engineer transgenes.  I provide evidence that selection cares about codon usage because it minimizes errors: it ensures translation is accurate and, in mammals, it ensures splicing is accurate. It is also commonly assumed that, because common codons match common tRNAs, codon usage must affect ribosomal velocity. Using ribosome protection data I find no evidence that in normal conditions codon usage has any effect on ribosomal velocity.  In retrospect this result makes sense as the original logic was flawed - it considered only tRNA supply, not codon driven tRNA demand.  We expect evolution to drive towards supply:demand equilibrium at which point rare codons specified by rare tRNAs wait as long to be translated as common codons specified by common tRNAs.  More generally, we see little or no evidence for RNA mediated effects on translational velocity (either codon usage or mRNA structure). This leaves the problem of what does actually determine ribosomal velocity.  I show that positively charged amino acids entering into the negatively charged ribosome exit tunnel have a profound effect on ribosome velocity.   This can explain the evolution of the polyA tail.  Methods to improve transgenes are suggested by these results.

Page last modified on 08 may 13 16:10