GEE News Publication
A A A

Gee Research Blog

Changing Perspectives in Conservation

Thu, 18 Dec 2014 12:15:44 +0000

Our views of the importance of nature and our place within have changed dramatically over the the last century, and the prevailing paradigm has profound influences on conservation from the science that is conducted to the policies that are enacted. In a recent perspectives piece for Science, GEE’s Professor Georgina Mace considered the impacts that […]

The post Changing Perspectives in Conservation appeared first on GEE Research.

Read more...

Function Over Form: Phenotypic Integration and the Evolution of the Mammalian Skull

Mon, 08 Dec 2014 14:05:52 +0000

Our bodies are more than just a collection of independent parts – they are complex, integrated systems that rely upon precise coordination in order to function properly. In order for a leg to function as a leg, the bones, muscles, ligaments, nerves and blood vessels must all work together as an integrated whole. This concept, […]

The post Function Over Form:
Phenotypic Integration and the Evolution of the Mammalian Skull
appeared first on GEE Research.

Read more...

The Best of Both Worlds:Planning for Ecosystem Win-Wins

Sun, 16 Nov 2014 12:25:44 +0000

The normal and healthy function of ecosystems is not only of importance in conserving biodiversity, it is of utmost importance for human wellbeing as well. Ecosystems provide us with a wealth of valuable ecosystem services from food to clean water and fuel, without which our societies would crumble. However it is rare that only a […]

The post The Best of Both Worlds:
Planning for Ecosystem Win-Wins
appeared first on GEE Research.

Read more...

Life Aquatic: Diversity and Endemism in Freshwater Ecosystems

Thu, 06 Nov 2014 11:22:07 +0000

Freshwater ecosystems are ecologically important, providing a home to hundreds of thousands of species and offering us vital ecosystem servies. However, many freshwater species are currently threatened by habitat loss, pollution, disease and invasive species. Recent research from GEE indicates that freshwater species are at greater risk of extinction than terrestrial species. Using data on […]

The post Life Aquatic:
Diversity and Endemism in Freshwater Ecosystems
appeared first on GEE Research.

Read more...

Handicaps, Honesty and VisibilityWhy Are Ornaments Always Exaggerated?

Thu, 23 Oct 2014 13:30:30 +0000

Sexual selection is a form of natural selection that favours traits that increase mating success, often at the expense of survival. It is responsible for a huge variety of characteristics and behaviours we observe in nature, and most conspicuously, sexual selection explains the elaborate ornaments such as the antlers of red deer and the tail […]

The post Handicaps, Honesty and Visibility
Why Are Ornaments Always Exaggerated?
appeared first on GEE Research.

Read more...

Mitochondria and the great gender divide - GEE's Profs Andrew Pomiankowski, Rob Seymour and Dr Nick Lane and Zena Hadjivasiliou publish paper in Proceedings of the Royal Society B

13 December 2011

8 December 2011

Eukaryotic cells

Why are there two sexes? It’s a question that has long perplexed generations of scientists, but researchers from UCL have come up with a radical new answer: mitochondria.

Using a new mathematical model, the team led by Dr Nick Lane and colleagues from the UCL CoMPLEX, and the Research Department of Genetics, Evolution and Environment showed that inheriting mitochondria from only one parent – in effect, the ‘female’ – improves fitness by optimizing the interactions between the two genomes. The paper is published today in Proceedings of the Royal Society B.

Dr Lane said: “The difference between the sexes boils down to the need to keep fit when energy demands are high”.

Descended from free-living bacteria, mitochondria were swallowed whole by another cell between one and a half to two billion years ago. But despite being engulfed, these tiny power packs have retained their own tiny genome, encoding just a handful of proteins, all of which are necessary for generating energy in the cell. 

The strangest thing about this odd arrangement is that cell respiration relies on proteins encoded by two genomes, the tiny mitochondrial genome and the nucleus, where most DNA is stored. For respiration to work properly, the two genomes must work together to encode proteins that interact with nanoscopic precision. 

"This difference seems to be the deepest evolutionary difference between the two sexes" - Zena Hadjivasiliou

Zena Hadjivasiliou, a PhD student in CoMPLEX and first author of the paper, said: “A clue to the answer was found in simple single celled organisms called protists. These tiny creatures normally have two sexes, despite the fact that it is impossible to tell them apart even with an electron microscope. 

“The only real difference between these ‘sexes’ relates to mitochondria, the tiny power packs found in all complex cells. In simple protists, one sex passes on mitochondria, the other does not,” added Hadjivasiliou. 

While the model shows that two sexes are only borderline necessary in simple cells like protists, but by the time large, energetically demanding organisms had evolved, two sexes made a big difference to maintaining fitness. 

Hadjivasiliou said: “This difference seems to be the deepest evolutionary difference between the two sexes. As a result all the gender wars throughout nature ultimately stand on this pinhead.”

Image: Altmann's Bioblasts - The four seasons (Credit: Odra Noel)

Links

Nick Lane
Energy revolution key to complex life
UCL’s Nick Lane wins the 2010 Royal Society Prize for Science Books
Research in Proceedings of the Royal Society B
UCL CoMPLEX
Research Department of Genetics, Evolution and Environment

Page last modified on 13 dec 11 12:16