PhD

Investigating the Short Timescale Mechanics of Living Monolayer Tissues

Supervisors: Prof Mark Miodownik, Dr Guillaume Charras

Abstract: Multicellular organisms are made of different types of tissues, the simplest of which are one-cell-thick monolayers. Monolayer tissues play an important role through the lifetime of the organism, i.e. during the early development of the embryo and later in the physiology of the organism. Although their function involves generating internal forces and resisting to external forces, a deep understanding of their mechanical properties is lacking.

When put under stress, one-cell-thick monolayers change shape and elongate, while becoming thinner. Force relaxation experiments have revealed that under high strain rates, the response of tissue monolayers to mechanical stress is fast, leading to a significant change in shape (e.g. elongation). In my PhD, I aim to combine experimental and computational techniques to explore the origin of this mechanical response and discover how much of it is purely passive. The experimental part of my project incorporates implementation of a high sampling rate measurement technique in the existent system using force transducers. This will be accompanied by developing a FEM model, which will provide the theoretical framework for understanding the experimental results.