[1]   A Aubert, R Costalat, and R Valabrgue. Modelling of the coupling between brain electrical activity and metabolism. Acta Biotheoretica, 49(4):301–326, 2001. PMID: 11804241.

[2]   K. Roth and M. W Weiner. Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with 31P NMR spectroscopy. Magnetic Resonance in Medicine, 22(2):505–511, 1991.

[3]   R J Corbett, A R Laptook, D Garcia, and J I Ruley. Energy reserves and utilization rates in developing brain measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 13(2):235–246, March 1993. PMID: 8436615.

[4]   Lars Edvinsson, Eric T Mackenzie, and James Mcculloch. Cerebral Blood Flow and Metabolism. Raven Pr, December 1992.

[5]   Murad Banaji, Ilias Tachtsidis, David Delpy, and Stephen Baigent. A physiological model of cerebral blood flow control. Math Biosci, 194(2):125–173, April 2005.

[6]   B. Korzeniewski and J. A Zoladz. A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys Chem, 92(1-2):17–34, August 2001.

[7]   R Gruetter, E J Novotny, S D Boulware, D L Rothman, G F Mason, G I Shulman, R G Shulman, and W V Tamborlane. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 89(3):1109–1112, February 1992. PMID: 1736294 PMCID: 48395.

[8]   MartinD. Brand, JulianL. Pakay, Augustine Ocloo, Jason Kokoszka, DouglasC. Wallace, PaulS. Brookes, and EmmaJ. Cornwall. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochemical Journal, 392(2):353, 2005.

[9]   R. Springett, J. Newman, M. Cope, and D. T Delpy. Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain. Am J Physiol Heart Circ Physiol, 279(5):–2202, November 2000.

[10]   Maria Erecinska, Shobha Cherian, and Ian A. Silver. Energy metabolism in mammalian brain during development. Progress in Neurobiology, 73(6):397–445, August 2004.

[11]   Murad Banaji, Alfred Mallet, Clare E Elwell, Peter Nicholls, and Chris E Cooper. A model of brain circulation and metabolism: NIRS signal changes during physiological challenges. PLoS Comput Biol, 4(11):–1000212, November 2008.

[12]   M. Pourcyrous, C. W Leffler, H. S Bada, S. B Korones, and D. W Busija. Cerebral blood flow responses to indomethacin in awake newborn pigs. Pediatric research, 35(5):565, 1994.

[13]   P A Flecknell, R Wootton, and M John. Cerebral blood flow and cerebral metabolism in normal and intrauterine growth retarded neonatal piglets. Clinical Science (London, England: 1979), 64(2):161–165, February 1983. PMID: 6681598.

[14]   M. Ursino and C. A Lodi. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model. Am J Physiol, 274(5 Pt 2):–1715, May 1998.

[15]   J W Lawson and R L Veech. Effects of pH and free mg2+ on the keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. Journal of Biological Chemistry, 254(14):6528 –6537, July 1979.

[16]   Ted S. Rosenkrantz, Joanna Kubin, Om P. Mishra, Douglass Smith, and Maria Delivoria-Papadopoulos. Brain cell membrane Na+,K+-ATPase activity following severe hypoxic injury in the newborn piglet. Brain Research, 730(1-2):52–57, August 1996.