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Chapter 1

Differentiation

1.1 Introduction

Why differentiation? Well, it is a useful tool because many real-world problems rely on the
rates of change of quantities. For example, speed is the rate of change of distance of a
moving object.

Sometimes an engineer will need to look at a graph of, for example, distance vs time. In
that case, questions about rate of change become questions about gradients, i.e. slopes of
the tangent to a curve.

Slope of the chord PQ

=
Change in y

Change in x
=
f(x+ δx)− f(x)

δx
,

and as δx→ 0, chord → tangent.

Therefore: Slope of the tangent at x

=
dy

dx
= lim

δx→0

(
f(x+ δx)− f(x)

δx

)
.

2



CHAPTER 1. DIFFERENTIATION 3

Example 1.1. Use the above definition to differentiate y = f(x) = x2.

dy

dx
= lim

δx→0

(
(x+ δx)2 − x2

δx

)
= lim

δx→0

(
��x

2 + 2xδx+ (δx)2 −��x2

δx

)
= lim

δx→0
(2x+ δx)

= 2x.

1.2 Basic differentiation

Now let’s consider the functions given in Table 1.1. These are the basic building blocks
of the many functions an engineer will need to differentiate (chances are you already saw
these in A-Level).

Let us start by calculating some basic derivatives. . .

Example 1.2. Compute

d

dx
(2ex − 3 cosx) .

Applying the addition formula (Rule 1 in Table 1.2) yields

d

dx
(2ex − 3 cosx) = 2

d

dx
(ex)− 3

d

dx
(cosx)

= 2ex − 3(− sinx)

= 2ex + 3 sinx.

So we can find derivatives for sums of functions. However, if we are handling a product of
functions, we need the Product Rule instead:

f(x) df
dx

xn nxn−1

1 0

ln (x) x−1

ex ex

sin (x) cos (x)

cos (x) − sin (x)

sinh (x) cosh (x)

cosh (x) sinh (x)

Table 1.1: Table of Basic Derivatives
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Rule f(x) df
dx Notes

1 u+ v du
dx + dv

dx Addition Rule

2 Cu C du
dx (C =constant)

3 uv v du
dx + udv

dx Product Rule

4 u/v
v du
dx
−u dv

dx
v2

Quotient Rule

5 f(u(x)) f ′(u(x))du
dx Chain Rule

6 dx
dy

1
dy
dx

For Inverse Functions

Table 1.2: Table of Rules for Differentiation

Example 1.3. Compute
d

dx

(
x3 sinx

)
.

This is a product of two functions, hence the Product Rule is required (Rule 3 in Table 2).
This is:

d

dx
(uv) = v

du

dx
+ u

dv

dx
.

For this example, let u = x3 and v = sinx. Then we have. . .

d

dx

(
x3 sinx

)
=

d

dx

(
x3
)

sinx+ x3 d

dx
(sinx) ,

i.e.
d

dx

(
x3 sinx

)
= 3x2 sinx+ x3 cosx.

The Product Rule still works if you want to compute the derivative of a function that is a
product of three or more functions.

Example 1.4. Compute

d

dx

(
x2ex sinx

)
=

d

dx

(
x2
)
ex sinx

+ x2 d

dx
(ex) sinx

+ x2ex
d

dx
(sinx)

= (2xex + x2ex) sinx+ x2ex cosx.

This next example shows a standard use of the Quotient Rule:

Example 1.5. Compute
d

dx

(
x− 1

x2 + 1

)
.
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Applying the Quotient Rule gives

d

dx

(
x− 1

x2 + 1

)
=

(
x2 + 1

)
d

dx (x− 1)− (x− 1) d
dx

(
x2 + 1

)
(x2 + 1)2

=

(
x2 + 1

)
× 1− (x− 1)× 2x

(x2 + 1)2

=
−x2 + 2x+ 1

(x2 + 1)2 .

Example 1.6 (Differentiate tanhx using the quotient rule).

d

dx
(tanhx) =

d

dx

(
sinhx

coshx

)
=

coshx d
dx (sinhx)− sinhx d

dx (coshx)

cosh2 x

=
cosh× coshx− sinhx× sinhx

cosh2 x

=
cosh2 x− sinh2 x

cosh2 x
,

and now using the hyperbolic identity

cosh2 x− sinh2 x ≡ 1,

this leads to

d

dx
(tanhx) =

1

cosh2 x
,

and since

sechx ≡ 1

coshx
=⇒ sech2 x ≡ 1

cosh2 x
,

this leads to the result
d

dx
(tanhx) = sech2 x.

This looks very similar to the following result. . .

d

dx
(tanx) = sec2 x,

which uses the trigonometric functions instead of hyperbolic ones. You will get to prove
this result for yourself in the Problem Sheet!

1.3 The Chain Rule

So far, we have calculated derivatives of sums, products and quotients of functions. But
what happens when you have a function of a function?
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Example 1.7. Compute the following derivative

d

dx
(sin 2x) .

The Chain Rule says that
d

dx
(f(u(x))) = f ′(u(x))

du

dx
.

So we let

u(x) = 2x,
du

dx
= 2,

f(u) = sinu
df

du
= cosu

then applying the chain rule gives

d

dx
(sin 2x) =

d

du
(f(u))

du

dx
= 2 cosu,

and rewriting back in terms of the original variable x gives

d

dx
(sin 2x) = 2 cos 2x.

Let’s try another example. . .

Example 1.8. Compute the following derivative

d

dx

(
ln
(
x2 − 1

))
.

Put

u(x) = x2 − 1, u′(x) = 2x,

f(u) = lnu, f ′(u) =
1

u
,

then applying the chain rule gives

d

dx

(
ln
(
x2 − 1

))
=

2x

u
=

2x

x2 − 1
.

You will want to brace yourself for the next example! This one shows you how to use the
chain rule more than once.

Example 1.9. Compute the following derivative

d

dx

(
sin
(
ln
(
x2ex

)))
First apply chain rule with f(u) = sinu, u = ln

(
x2ex

)
= cos

(
ln
(
x2ex

))
× d

dx

(
ln
(
x2ex

))
Then apply chain rule again, this time with f(u) = lnu, u = x2ex

= cos
(
ln
(
x2ex

)) 1

x2ex
d

dx

(
x2ex

)
Finally, apply the product rule with u = x2, v = ex

= cos
(
ln
(
x2ex

)) 1

x2ex
[
x2ex + 2xex

]
.
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Example 1.10 (2009 Exam Question). Compute the following derivative:

dy

dx
for y = sin

(
e−x

x

)
.

This problem requires the chain rule with

f(u) = sinu,
df

du
= cosu,

u =
e−x

x
,

du

dx
= −e

−x

x
− e−x

x2
.

Hence
dy

dx
= cos

(
e−x

x

)(
−e
−x

x
− e−x

x2

)
.

1.3.1 Implicit differentiation

Sometimes you can’t write a function in terms of x only. In that case, if you are differenti-
ating w.r.t. x, you use implicit differentiation.

Example 1.11 (Slope of a circle with radius 1). Suppose x2 + y2 = 1.

• This is the equation of a circle, centre O, radius 1.

• y is an implicit function of x, i.e. not in the form

y = Stuff depending onx only

• To find dy
dx we take d

dx of all terms:

d

dx

(
x2
)

+
d

dx

(
y2
)

=
d

dx
(1) ,

i.e

2x+ 2y
dy

dx
= 0 ∴

dy

dx
= −x

y
.

Example 1.12. If the equation of a curve satisfies

x2 + 3xy + y2 = 7,

find dy
dx in terms of x and y.

Proceed by differentiating each term w.r.t. x:

2x+ 3y + 3x
dy

dx
+ 2y

dy

dx
= 0

(Common error: Forgetting to differentiate the 7!)

i.e
dy

dx
= −2x+ 3y

3x+ 2y
.
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Logarithmic differentiation

Sometimes it is useful to take logs on both sides of an equation before differentiating. By
doing this you are setting up an implicit equation, making this an example of implicit
differentiation.

Example 1.13. Differentiate the function y = 10x with respect to x.

y = 10x, ∴ ln y = x ln 10.

and so in differentiating w.r.t x

1

y

dy

dx
= ln 10,

dy

dx
= 10x ln 10.

Example 1.14. Find
d

dx
(xx) .

First let y = xx, then ln y = lnxx = x lnx.

d

dx
(ln y) =

d

dx
(x lnx)

⇒ 1

y

dy

dx
= lnx+

�x

�x

⇒ dy

dx
= y (1 + lnx)

∴
dy

dx
= xx (1 + lnx) .

Example 1.15.

y =
x2 cosx

sin 2x

(
=

x2

2 sinx

)
.

Take logs and differentiate with respect to x to give

ln y = lnx2 + ln cosx− ln sin 2x

1

y

dy

dx
=

2x

x2
− sinx

cosx
− 2

cos 2x

sin 2x
.

∴
dy

dx
= y

(
2

x
− tanx− 2 cot 2x

)
dy

dx
=

x2 cosx

sin 2x

(
2

x
− tanx− 2 cot 2x

)
.

Differentiating Inverse functions

Believe it or not, when you differentiate an inverse function, you are using implicit
differentiation (again!)
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Example 1.16.

Find
dy

dx
when y = sin−1 x.

y = sin−1 x

sin y = x

d

dx
(sin y) = 1

cos y
dy

dx
= 1

dy

dx
=

1

cos y
=

1√
1− x2

.

Example 1.17.

Find
dy

dx
when y = cosh−1 x.

y = cosh−1 x

x = cosh y

1 = sinh y
dy

dx
(Implicit differentiation)

dy

dx
=

1

sinh y

=
1√

cosh2 y − 1
(cosh2 y − sinh2 y ≡ 1)

=
1√

x2 − 1
.

Therefore
dy

dx
=

1√
x2 − 1

.

1.4 Higher derivatives

Having found
dy

dx
, we can differentiate this again, which gives the second derivative

d2y

dx2
. If

we then differentiate again, we get
d3y

dx3
,

d4y

dx4
, etc. These are collectively known as higher

derivatives.



CHAPTER 1. DIFFERENTIATION 10

Example 1.18.

y = x6

dy

dx
= 6x5

d2y

dx2
= 6× 5x4 = 30x4

d3y

dx3
= 30× 4x3 = 120x3

d4y

dx4
= 360x2

d5y

dx5
= 720x

d6y

dx6
= 720

d7y

dx7
= 0

d8y

dx8
= 0.

For convenience the following notation is sometimes used for higher derivatives:

dny

dxn
= y(n),

and so
d2y

dx2
= y(2),

d3y

dx3
= y(3), etc.

Example 1.19.

For y = sin 2x, find
dy

dx
,

d2y

dx2
, y(3).

dy

dx
= 2 cos 2x,

d2y

dx2
= −4 sin 2x

y(3) = −8 cos 2x.

Example 1.20. If y = e2x, what is
dny

dxn
?

dy

dx
= y(1) = 2e2x, y(2) = 4e2x, y(3) = 8e2x

∴ y(n) = 2ne2x.

1.4.1 Computing the nth derivative of a product

Suppose we have a function defined as a product, i.e. given by

y = uv, where u = u(x), v = v(x).
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In general if y = uv then applying the product rule gives:

y(1) = u(1)v + uv(1)

y(2) = u(2)v + u(1)v(1) + u(1)v(1) + uv(2)

y(3) = u(3)v + 3u(2)v(1) + 2u(2)v(1) + 2u(1)v(2)

+ u(1)v(2) + uv(3)

= u(3) + 3u(2)v(1) + 3u(1)v(2) + uv(3).

Notice that the binomial coefficients are appearing.

In fact. . .

y(n) = u(n)v +

(
n

1

)
u(n−1)v(1) +

(
n

2

)
u(n−2)v(2) + · · ·

+

(
n

n− 1

)
u(1)v(n−1) + uv(n)

=
n∑
k=0

(
n

k

)
u(n−k)v(k), (1.1)

where (
n

k

)
=

n!

(n− k)!k!
.

Equation 1.1 is known as the Leibniz rule for differentiating a product n times.

Example 1.21.

If y = xex, what is
dny

dxn
?

Using the Leibniz rule with v = x, u = ex gives

y(n) = x
dn

dxn
(ex) +

(
n

1

)
d

dx
(x)

dn−1

dxn−1
(ex)

+
���

���
���

���:
0(

n

2

)
d2

dx2
(x)

dn−2

dxn−2
(ex) + 0

= xex + n.1.ex

= ex(x+ n).

Example 1.22.

Let y = x2 sinx. Find
d17y

dx17
.

Tip: When applying the Leibniz rule for the function uv you should choose v such that it
becomes zero when differentiated a relatively few number of times (if this is possible). So
we choose u = sinx, v = x2.

y(17) = x2 d17

dx17
(sinx) +

(
17

1

)
2x

d16

dx16
(sinx)

+

(
17

2

)
2

d15

dx15
(sinx) + 0.
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Now it can be shown that

d16

dx16
(sinx) = sinx, ∴

d17

dx17
(cosx) ,

d15

dx15
(− cosx) .

∴ y(17) = x2 cosx+ 17.2x sinx+
17.16

�2
.�2. (− cosx)

= x2 cosx+ 34x sinx− 272 cosx.

1.4.2 Parametric differentiation

In many applications a function is expressed using a PARAMETER, e.g.

y = cos 2t, x = sin t,

where the parameter t ≡time (for example).

• For a given value of t, both x and y may be found.

• This implies that we can generate a curve y = f(x).

Example 1.23. If a curve is defined parametrically as

y = cos 2t, x = sin t, then find
dy

dx
and

d2y

dx2
.

First,
dy

dt
= −2 sin 2t and

dx

dt
= cos t.

Thus
dy

dx
=

dy

dt
.
dt

dx︸ ︷︷ ︸
Chain Rule

=
dy
dt
dx
dt

.

Then
dy

dx
=
−2 sin 2t

cos t
= −4 sin t���cos t

���cos t
= −4 sin t.

What about. . . ?
d2y

dx2

(
6= d2y

dt2

/d2x

dt2

)
By definition

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx
(−4 sin t)

=
d

dt
(−4 sin t)

dt

dx
(Chain Rule!)

= −4
cos t

dx
dt

= −4���cos t

���cos t
= −4.
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Example 1.24.

y = 3 sin θ − sin3 θ, x = cos3 θ, Find
dy

dx
,

d2y

dx2
.

In this example θ is the parameter.

dy

dx
=

dy

dθ

/dx

dθ
=
�3 cos θ − �3 sin2 θ cos θ

−�3 cos2 θ sin θ
,

=
cos θ

(
1− sin2 θ

)
− cos2 θ sin θ

=
cos θ���

�(
cos2 θ

)
−���cos2 θ sin θ

= −cos θ

sin θ
= − cot θ.

Meanwhile,

d2y

dx2
=

d

dx
(− cot θ) =

d

dθ
(− cot θ)

dθ

dx

= −
(
− 1

sin2 θ

)/(
−3 cos2 θ sin θ

)
= − 1

3 cos2 θ sin3 θ
.

1.5 Using differentiation

1.5.1 Finding stationary points

Consider the following diagram...

First observe that

1. If f ′(a) < 0 then f is decreasing near a,

2. If f ′(b) > 0 then f is increasing near b.

A stationary point is where dy
dx = 0. It can correspond to either. . .
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dy
dx

d2y
dx2

dy
dx is Classification

0 > 0 ⇒ Increasing ⇒ Minimum

0 < 0 ⇒ Decreasing ⇒ Maximum

0 = 0 ⇒ ??? ⇒ Need more info!

Table 1.3: Using second derivatives to classify stationary points

1. A maximum (derivative changes from positive to negative)

2. A minimum (derivative changes from negative to positive)

3. A point of inflection (second derivative changes sign)

Remark 1.1. A point of inflection does not have to be a stationary point. So watch out!

Second Derivative Tests for stationary points. . .

Example 1.25. For

y = x4,
dy

dx
= 4x3

∴ Stationary point at x = 0.

d2y

dx2
= 12x2 = 0 at x = 0.

But clearly x = 0 is a minimum, as shown in Figure 1.1.

. . . hence we need a different test. Fortunately, we do have one. . . we can construct a sign

diagram of dy
dx , as done in Figure 1.2. This works even when d2y

dx2
= 0!

Hence the point x = 0 must be a minimum.

Example 1.26. Find all the stationary points and their nature for

y = f(x) = 3x4 − 4x3 + 1.
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Figure 1.1: A plot of y = x4. We can see that there is a minimum at x = 0; however, the
usual second derivative test doesn’t work on this one!

Figure 1.2: The sign test for y = x4. This is done by checking the sign of dy
dx on either side

of the stationary point x = 0., which tells you whether the he tangent to the curve points
up or down for each side of the stationary point.

Calculating the first derivative yields

dy

dx
= 12x3 − 12x2 = 12x2(x− 1).

At the stationary points

dy

dx
= 0, and so 12x2(x− 1) = 0,

∴ Stationary points at x = 0, 1.

Now apply the second derivative test. Calculating the second derivative yields

d2y

dx2
= 36x2 − 24x.

Evaluating the value of the second derivative at the stationary points gives

At x = 1
d2y

dx2
= 36− 24 > 0 ∴ Minimum.

At x = 0
d2y

dx2
= 0 ∴ Use different test.

For the point x = 0, construct a sign diagram for dy
dx , as done in Figure 1.3

Therefore x = 1 is a minimum, while x = 0 is a point of inflection.
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Figure 1.3: Sign test for the derivative of 3x4 − 4x3 + 1, which demonstrates that x = 0
has a point of inflection.

Example 1.27 (Exam Question (2007)). A curve is given by

x = t2, y = te−t. (1.2)

Find dy
dx and d2y

dx2
.

Where does the curve have a critical (stationary) point? Is it a maximum, minimum
or point of inflection? Justify your answer.

Solution: First calculate the derivatives using the chain rule...

dy

dx
=

e−t − te−t

2t
=

(1− t)e−t

2t

d2y

dx2
=

2t
[
−e−t − (1− t)e−t

]
− (1− t)e−t(2)

(2t)3
.

= e−t
−2t−��2t+ 2t2 − 2 +��2t

8t3
.

=
e−t

4t3
(t2 − t− 1).

=
e−t

4t
− e−t

4t2
− e−t

4t3
.

Note that dy
dx = 0 only when t = 1 (therefore it is the only possible stationary point). For

the second derivative
d2y

dx2

∣∣∣
t=1

=
�
�
�e−1

4
−
�
�
�e−1

4
− e−1

4
< 0,

so our stationary point is a maximum.

Don’t forget to give the Cartesian coordinates for the maximum! To do this, simply
substitute t = 1 into Equations (1.2). You end up with:

y = 1× e−1 = e−1, x = 12 = 1,

i.e. the maximum is at (1,
1

e
).

1.5.2 Curve sketching

Thanks to modern technology, we can use graphics calculators (or even computers!) as
a guide. However, you should work through the following recipe in order to accurately
sketch a curve.
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First let y = f(x). Then follow this recipe:

1) Where is f defined? (Or put another way, where is it undefined?). Typically we can
sometimes get vertical asymptotes.

2) Is f odd or even or neither?

3) Find where f(x) = 0 (if possible), i.e. where the curve cuts the x axis.

4) Find the value of f when x = 0, i.e. y = f(0), where the curve cuts the y axis.

5) Find ALL stationary points and their nature (and the value of f at such points)

6) Analyse the asymptotes

i. Horizontal asymptotes: What happens to y as x→ ±∞?

ii. If x = a is a vertical asymptote, what happens as x→ a+ and x→ a−?

Note: When the notation of x→ a+ is used, this refers to the right-sided limit, i.e. lim
x→a
x>a

y.

Similarly, the notation x→ a− represents the left-sided limit lim
x→a
x<a

y.

Note 2: Often it is possible to deduce the nature of the turning point without calculating
d2y
dx2

.

Example 1.28. Sketch the curve y = f(x) = 1
x2−1

.

1) Not defined at x = ±1 (i.e. vertical asymptotes as x = ±1).

2) f(−x) = f(x), therefore f(x) is even.

3) f(x) 6= 0 or all x, therefore f(x) never cuts the x-axis.

4) f(0) = −1, i.e. the curve passes through the y-axis at (0,−1)

5) For the derivative

f ′(x) = − 2x

(x2 − 1)2
= 0 when x = 0,

where the nature of the turning point can be determined by analysing the vertical
asymptotes; you will see that x = 0 is a maximum.

6i) For the horizontal asymptotes,

As x→∞, f(x)→∞,
As x→ −∞, f(x)→∞.

6ii) For the vertical asymptotes, look at x→ 1 first.

As x→ 1+, f(x)→∞,
As x→ 1−, f(x)→ −∞,
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and similarly for x→ −1,

As x→ −1+, f(x)→ −∞,
As x→ −1−, f(x)→∞.

At last! We are now in a position to sketch the curve; see Figure 1.4.

Figure 1.4: A sketch of the function y = f(x) = 1/(x2 − 1). Observe the stationary point
at x = 0; the fact that this is a maximum has been deduced with the help of the vertical
asymptotes.

Example 1.29. Sketch the graph of

y2 =
x(1− x)

4− x2
, (1.3)

Again, we follow the recipe. . .

1) Note that

y2 =
x(1− x)

(2− x)(2 + x)
,

therefore there are vertical asymptotes at x = ±2. Also, are only interested in real y,
thus we require y2 > 0. Hence it follows that y is defined only when

x(1− x)

4− x2
> 0.

The RHS of (1.3) may change sign at x = 0, 1, and possibly at the position of the
vertical asymptotes! Consider the following diagram of the sign of y2:

Therefore the graph of y is undefined for

−2 ≤ x < 0 and 1 < x ≤ 2.

2) y is neither odd nor even, but observe

y = ±
√
x(1− x)

4− x2

and the ± sign indicated that the graph should be symmetric about the horizontal x
axis.
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Figure 1.5: You can make a sign diagram for y2 = x(1−x)
(2−x)(2+x) , too! Because y2 is non-

negative for any real value of y, the function is undefined wherever we find that y2 < 0
(these are indicated by a minus sign in the diagram).

3) y = 0 when x = 0, 1.

4) x = 0 ∴ y = 0 (but we already know that!).

5) dy
dx is stationary when d

dx(y2) is, since d
dx(y2) = 2y dy

dx .

d

dx
(y2) =

(4− x2)(1− 2x)− (x− x2)(−2x)

(4− x2)2
= 0.

For this to be zero the numerator must be zero. Therefore simplifying the numerator
leads to

x2 − 8x+ 4 = 0 ∴ x = 4± 2
√

3 (≈ 0.54, 7.5).

Rather than calculating the second derivative (which would be quite tedious), we
can deduce the nature of these turning points from the information regarding the
behaviour near the horizontal asymptotes.

6i) To figure out the behaviour of the behaviour as x→ ±∞, write

y2 =
1− 1

x

1− 4
x2

(1.4)

and use the geometric series

1

1− z
= 1 + z + z2 + . . . , for |z| < 1,

so Equation (1.4) can be approximated as (for large |x|)

y2 ≈
(

1− 1

x

)(
1 +

4

x2
+ . . .

)
≈ 1− 1

x
, (1.5)

which is valid for |x| → ∞. Thus

As x→∞, y → 1− (from below)

As x→ −∞, y → 1+ (from above)

In addition, there are there are mirror images (see Step 2) of this horizontal asymp-
tote, i.e. at y = −1.
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Figure 1.6: Plots of the upper branch of f(x) for x < −2 and 3 < x < 9 respectively.

6ii) To get the behaviour near the vertical asymptotes it is simplest (in this case) to find
where the curve cuts its horizontal asymptote, i.e. set y2 = 1:

∴ 4−��x2 = x−��x2 ⇒ x = 4

Hence we can sketch two parts of the upper half of the graph, see Figure 1.6.

And let’s not forget to plot the rest of the graph!

Figure 1.7: The complete sketch for the (implicit) function y2 = x(1−x)
4−x2 .

1.5.3 Equations of Tangent and Normal

Example 1.30. Find equations of the tangent and normal to y = x2 at x = 1.

First find dy
dx , recalling that dy

dx ≡ slope of the tangent.

dy

dx
= 2x, ∴

dy

dx

∣∣∣
x=1

= 2.

Also, at x = 1 we have y = 1. Therefore using

y − y1 = m(x− x1)
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where x1 = 1, y1 = 1 and m = 2, the line through (1, 1) with slope 2 has equation

y = 2x− 1.

The normal is perpendicular to the tangent. Therefore

Slope of Normal =
−1

Slope of Tangent
= −1

2
.

The normal is the line through (1, 1) with slope = −1/2. Therefore using

y − y1 = m(x− x1)

with x1 = 1, y1 = 1 and m = −1/2 yields the equation for the normal as

y = −1

2
x+

3

2
.

Example 1.31. Find equations of the tangent and normal to the curve given by

y = t2, x = t3 + 1 at t = 1.

For this we use parametric differentiation

dy

dx
=

dy
dt
dx
dt

=
2t

3t2
=

2

3
at t = 1.

Also at t = 1, (x, y) = (2, 1).
The tangent is the line through (2, 1) with slope 2

3 , i.e.

y − 1 =
2

3
(x− 2), ∴ y =

2

3
x− 1

3
.

The normal has slope −3
2 , and thus its equation is

y − 1 = −3

2
(x− 2), ∴ y = −3

2
x+ 4.
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Hyperbolic functions

2.1 Definitions of hyperbolic functions

In the first chapter, we got a few glimpses of hyperbolic functions, so now you’re probably
itching to find out just what they are. Well, that’s what this chapter is for!

First things first, here are the definitions:

sinhx =
ex − e−x

2

coshx =
ex + e−x

2

tanhx =
ex − e−x

ex + e−x
=

sinhx

coshx
.

The three functions are pronounced “shine x”, “cosh x” and “tansh x” respectively.

Recall that
as x→∞, ex →∞ and e−x → 0.

1 If y = coshx = ex+e−x

2 ,
cosh (0) = 1.

Also note that

y = cosh (−x) =
e−x + e−(−x)

2
=
e−x + ex

2
= coshx.

Therefore the curve is symmetrical about the y axis, i.e. is an even function.
And

as x→∞, y → ex + 0

2
=

1

2
ex →∞.

2 If y = sinhx = ex−e−x
2 ,

sinh (0) = 0.

Also,

y = sinh (−x) =
e−x − e−(−x)

2
=
e−x − ex

2
= − sinhx,

22
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therefore the curve is anti-symmetrical about the y axis, i.e. is an odd function.
And

as x→∞, y → ex − 0

2
=

1

2
ex → +∞,

as x→ −∞, y → 0− e−x

2
= −1

2
e−x → −∞.

3 For

y = tanhx =
ex − e−x

ex + e−x
=

sinhx

coshx
,

we see that

tanh (0) =
0

1
= 0.

Also, if we consider the limits x→ ±∞:

as x→∞, y → ex − 0

ex + 0
→ 1,

as x→ −∞, y → −0− e−x

0 + e−x
→ −1.

Finally, note that

tanh (−x) =
sinh (−x)

cosh (−x)

=
− sinhx

coshx
= − tanhx,

so tanhx is an odd function.

Figure 2.1: Plots of the three main hyperbolic functions. The blue curve is sinhx, the red
curve is coshx, and the green curve is tanhx.
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2.2 Inverse hyperbolic functions

The hyperbolic functions do come with inverse functions.

1 Suppose that
y = sinh−1 x, ∴ x = sinh y.

Then by definition,

x =
1

2

(
ey − e−y

)
⇐⇒ ey − e−y = 2x

Multiplying by ey gives
e2y − 1− 2xey = 0,

or
(ey)2 − 2x(ey)− 1 = 0,

which is a quadratic equation in ey.

∴ ey =
2x±

√
4x2 + 4

2

= x±
√
x2 + 1, .

thus
ey = x+

√
x2 + 1, or ey = x−

√
x2 + 1.

Now ey > 0 for all y, but

x−
√
x2 + 1 < 0,

because
x2 + 1 > x ⇒

√
x2 + 1 >

√
x2 = x.

So the second option (negative choice) is impossible! Hence we are left with

ey = x+
√
x2 + 1,

or
y = sinh−1 x = ln

(
x+

√
x2 + 1

)
.

2 Suppose that
y = cosh−1 x, ⇒ x = cosh y, (so x ≥ 1).

Then by definition of cosh,

1

2

(
ey + e−y

)
= x ⇐⇒ ey + e−y = 2x

As before, multiply by ey to get

e2y + 1− 2xey = 0

or
(ey)2 − 2x(ey) + 1 = 0.
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which is a quadratic equation in ey (again!)

∴ ey =
2x±

√
4x2 − 4

2

= x±
√
x2 − 1,

and this is real since x ≥ 1 anyway. Therefore

ey = x+
√
x2 − 1, or ey = x−

√
x2 − 1.

Now ey > 0 for all y, and

x±
√
x2 − 1 > 0

are both possibilities (so we can’t rule any option out!) Observe that

1

x+
√
x2 − 1

=
1

x+
√
x2 − 1

× x−
√
x2 − 1

x−
√
x2 − 1

=
x−
√
x2 − 1

x2 − (x2 − 1)

= x−
√
x2 − 1.

Thus

ey = x+
√
x2 − 1 or ey =

1

x+
√
x2 − 1

.

So
y = ln

(
x+

√
x2 − 1

)
,

or

y = ln

(
1

x+
√
x2 − 1

)
= − ln

(
x+

√
x2 − 1

)
,

i.e.
y = ± ln

(
x+

√
x2 − 1

)
.

Figure 2.2: Plot of coshx. Note that for a given value of y there are two possibilities for x

2.3 Hyperbolic identities

Just like the trigonometric functions, the hyperbolic ones come with all sorts of weird and
wonderful identities. You will see many of them in this section.
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Now is a good time to introduce three more hyperbolic functions. They are. . .

cothx ≡ 1
tanhx

(
c.f. cotx ≡ 1

tanx

)
(2.1)

sechx ≡ 1
coshx

(
c.f. secx ≡ 1

cosx

)
(2.2)

cosechx ≡ 1
sinhx

(
c.f. cosecx ≡ 1

sinx

)
(2.3)

. . . and they are pronounced ’coth’, ’shec’ and ’coshec’ respectively.

From the definitions of sinhx and coshx,

coshx+ sinhx ≡ ex +��e−x

2
+
ex −��e−x

2
≡ ex,

and similarly

coshx− sinhx ≡ �
�ex + e−x

2
−�
�ex − e−x

2
≡ e−x,

therefore
(coshx+ sinhx) (coshx− sinhx) ≡��ex��e−x ≡ 1

i.e.
cosh2 x− sinh2 x ≡ 1,

which is analogous to cos2 x+ sin2 x ≡ 1.

Now divide the above result by sinh2 x to yield

cosh2 x

sinh2 x
− 1 ≡ 1

sinh2 x
,

∴ cosech2 x ≡ coth2 x− 1,

(which is analogous to cosec2 x ≡ cot2 x+ 1).

Recall that

coshx+ sinhx ≡ ex

coshx− sinhx ≡ e−x.

Squaring both of these yields

cosh2 x+ 2 sinhx coshx+ sinh2 x ≡ e2x (2.4)

cosh2 x− 2 sinhx coshx+ sinh2 x ≡ e2x (2.5)

and then doing (2.4) minus (2.5) yields

4 sinhx coshx ≡ e2x − e−2x ⇐⇒ 2 sinhx coshx ≡ e2x − e−2x

2
,

i.e.
2 sinhx coshx ≡ sinh 2x,

which is analogous to 2 sinx cosx ≡ sin 2x.

But for now, let’s just admire the Table 2.1. Notice that the hyperbolic identities are
very similar to the trigonometric counterparts, but with some different signs! This is
called Osborne’s rule, which tells you to flip the sign whenever we have a product of sinhs;
this includes cosech2 x, tanh2 x and coth2 x as well as sinh2 x! Otherwise the hyperbolic
identities are essentially the same as their trigonometric versions. You will get to derive
one of these identities as part of your homework!
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Hyperbolic Trigonometric

cothx ≡ 1/ tanhx cotx ≡ 1/ tanx

sechx ≡ 1/ coshx secx ≡ 1/ cosx

cosechx ≡ 1/ sinhx secx ≡ 1/ sinx

cosh2 x− sinh2 x ≡ 1 cos2 x+ sinx ≡ 1

sech2 x ≡ 1− tanh2 x sec2 x ≡ 1 + tan2 x

cosech2 x ≡ coth2 x− 1 cosec2 x ≡ cot2 x+ 1

sinh 2x ≡ 2 sinhx coshx sin 2x ≡ 2 sinx cosx

cosh 2x ≡ cosh2 x+ sinh2 x cos 2x ≡ cos2 x− sin2 x

cosh 2x ≡ 1 + 2 sinh2 x cos 2x ≡ 1− 2 sin2 x

cosh 2x ≡ 2 cosh2 x− 1 cos 2x ≡ 2 cos2 x− 1

Table 2.1: Lots of hyperbolic identities, along with with their trigonometric counterparts.
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Partial differentiation

3.1 Introduction to partial differentiation

Many quantities that we measure are functions of two or more variables.

Example 3.1. The temperature T of a rod heated suddenly from time t = 0 at one end.

Figure 3.1: The rod is heated at the end x = 0. Initially, T = 0.

Clearly T depends on:

i The distance x from the heated end

ii The time t after heating commenced.

So we write
T = T (x, t),

i.e. T is a function of the two independent variables: x and t.

Example 3.2. (More abstractly), suppose that a function f is defined as

f(x, y) = x2 + 3y2,

then the value of f is determined by every possible pair (x, y), so if (x, y) = (0, 2) then

f(0, 2) = 02 + 3× 22 = 12.

Partial derivatives generalise the derivative to functions of two or more variables.

28
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Definition 3.1. Suppose f is a function of two independent variables x and y, then the
partial derivative of f(x, y) w.r.t x is defined as

∂f

∂x
= fx = lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
.

Similarly, the partial derivative of f(x, y) w.r.t y is

∂f

∂y
= fy = lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y
.

But. . . there’s a shortcut! If you want fx, say, then just pretend that y is a constant and
differentiate with respect to x only. Similarly, when you want fy, simply pretend that x is
constant and go ahead with differentiating with respect to y only. And yes, this lets you
use (most) of the tricks we have from Chapter 1!

Example 3.3. For the function f defined by

f(x, y) = x2 + 3y2,

find the partial derivative of f w.r.t x by

i Differentiating from first principles:

∂f

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x

= lim
∆x→0

(x+ ∆x)2 + 3y2 − (x2 + 3y2)

∆x

= lim
∆x→0

2x∆x+ (∆x)2

∆x
= 2x.

ii Differentiating w.r.t x, treating y as a constant. Then we can ignore the term 3y2

because it vanishes, hence we end up with:

∂f

∂x
= 2x,

as above.

We can also find the partial derivative of f w.r.t y. . .

i Again, we use the definition:

∂f

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y

= lim
∆y→0

x2 + 3(y + ∆y)2 − (x2 + 3y2)

∆y

= lim
∆y→0

3(2y∆y + (∆y)2)

∆y
= 6y.
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ii Alternatively, if we differentiate f w.r.t y, treating x as a constant, we see that the
x2 term vanishes, leaving us with

∂f

∂y
= 6y,

as expected.

Physical Interpretation: Consider the heated rod problem.

Figure 3.2: Plots showing how temperature T varies with respect to t and to x separately.

a In the top graph of Figure 3.2, ∂T∂t is the rate of change of T with time at a fixed distance x.

b In bottom graph of the same figure, ∂T
∂x is the rate of change of T with distance x at

a particular instance in time.

Example 3.4. Suppose
f(x, y) = y sinx+ x cos2 y,

Then for the partial derivative fx

∂f

∂x
= y cosx+ cos2 y

where we treated y as a constant.
Meanwhile,

∂f

∂y
= sinx+ 2x cos y(− sin y)

= sinx− x sin 2y

where we treated x as a constant.

Example 3.5. Suppose

f(x, y) = tan−1
(y
x

)
then compute fx and fy.

Recall that
d

du

(
tan−1 u

)
=

1

1 + u2
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Therefore, calculating fx (treating y as a constant):

fx =
1

1 +
( y
x

)2 ∂

∂x

(y
x

)
=

1

1 +
( y
x

)2 (− y

x2

)
,

i.e
∂f

∂x
= fx = − y

x2 + y2
.

Similarly, calculating fy (treating x as a constant):

fy =
1

1 +
( y
x

)2 ∂

∂y

(y
x

)
=

1

1 +
( y
x

)2 (1

x

)
,

i.e
∂f

∂y
= fy =

x

x2 + y2
.

Example 3.6 (Exam Question 2008). If a function f(x, y) is defined as

f(x, y) = x ln

(
x

y

)
,

then find ∂f
∂x and ∂f

∂y .

Solution: Note that

f(x, y) = x ln

(
x

y

)
= x (lnx− ln y) ,

so for the x derivative,

∂f

∂x
= 1 · (lnx− ln y) + x

(
1

x
− 0

)
= (lnx− ln y) +�x ·

1

�x

= lnx− ln y + 1

= ln

(
x

y

)
+ 1.

Meanwhile, for the y derivative

∂f

∂y
= 0− ∂

∂y
(x ln y)

= −x ∂
∂y

(ln y)

= −x
y
.

Example 3.7 (Function with three variables). Suppose f(x, y, z) is defined as

f(x, y, z) = zey cosx

then

∂f

∂x
= −zey sinx,

∂f

∂y
= zey cosx,

∂f

∂y
= ey cosx.
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3.2 Higher Partial Derivatives

You can differentiate the first partial derivatives again to obtain second partial derivatives.

fxx =
∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2

fyy =
∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2

fxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x

fyx =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y

Example 3.8. For the function

f = tan−1

(
x

y

)
,

we are given that

fx =
y

x2 + y2
, fy = − x

x2 + y2
.

We calculate fxx by treating y as constant and applying the quotient rule:

fxx =
∂

∂x
[fx] =

∂

∂x

[
y

x2 + y2

]
=

0− y(2x)

(x2 + y2)2
= − 2xy

(x2 + y2)2
.

In a similar fashion,

fyy =
∂

∂y
[fy] =

∂

∂y

[
−x

x2 + y2

]
=

0− (−x)(2y)

(x2 + y2)2
=

2xy

(x2 + y2)2

and

fxy =
∂

∂y
[fx] =

∂

∂y

[
y

x2 + y2

]
=

(x2 + y2)− y(2y)

(x2 + y2)2

=
x2 + y2 − 2y2

(x2 + y2)2
=

x2 − y2

(x2 + y2)2
.

And finally,

fyx =
∂

∂x
[fy] =

∂

∂x

[
−x

x2 + y2

]
=

(x2 + y2)(−1)− (−x)(2x)

(x2 + y2)2

=
x2 − y2

(x2 + y2)2
= fxy.
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Fact: If fx, fy, fxy and fyx are continuous (i.e. doesn’t ’jump’) at (x, y), then fxy = fyx,
i.e. fyx = fxy holds for any f .

Example 3.9. Let
f(x, y) = xe2y.

fx = e2y fy = 2xe2y fy = 2xe2y

fxy = 2e2y fyx = 2e2y fyy = 4xe2y

fxyy = 4e2y fyxy = 4e2y fyyx = 4e2y

i.e.
fxyy = fyxy = fyyx

so the order does not matter.

Example 3.10 (Exam Question 2004). a) Verify that f(x, y) = e−(1+a2)x cos ay is a
solution of the equation

∂f

∂x
=
∂2f

∂y2
− f.

Solution: First compute the required derivatives

∂f

∂x
= −(1 + a2)e−(1+a2)x cos ay

∂f

∂y
= −ae−(1+a2)x sin ay

∂2f

∂y2
= −a2e−(1+a2)x cos ay

So computing the RHS (right hand side)

RHS = fyy − f
= −a2e−(1+a2)x cos ay − e−(1+a2)x cos ay

= −(1 + a2)e−(1+a2)x cos ay = LHS.

b Let g = yf(xy). Show that

y
∂g

∂y
− x∂g

∂x
= g.

Solution:

∂g

∂y
= = f(xy) + yxf ′(xy),

∂g

∂x
= y2f ′(xy),

where primes denote differentiation w.r.t the combined variable xy.

Note: To see this, consider
d

dx
(sin 2x) = 2 cos 2x,
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i.e
d

dx
(f(2x)) = 2f ′(2x).

Also consider
∂

∂x
(sinxy) = y cosxy,

and therefore
∂

∂x
(f(xy)) = yf ′(xy).

Hence returning to the example,

LHS = yf(xy) +���
��xy2f ′(xy)−���

��xy2f ′(xy) = g(x, y) = RHS,

as required.
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Integration

4.1 The basics

There are two ways to interpret integration. . .

1. Integration is the reverse of differentiation! If we have, say,

dA(x)

dx
= f(x),

then we can write

A(x) =

∫
f(x)dx+ C. [Indefinite integral!]

We say that A is the integral (antiderivative) of f(x).

2. Integration gives the area under a curve To achieve this, you sum the contri-
bution of lots of infinitesimally small pieces.

To demonstrate, consider the area bounded by the x-axis, the lines x = a, x = b and
the curve y = f(x), as shown in the following diagram:

It is often taken for granted that the two interpretations are the same. In fact, this
is not obvious, so mathematicians have a big theorem about it. . .

35
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Theorem: Fundamental Theorem of Calculus
The shaded area above is ∫ b

a
f(x)dx.

Proof: Let A(x) = area from say, the origin O to the point x under the curve. Then
the area of the shaded rectangle is

A(x+ h)−A ≈ f(x)h.

[Note: The intuition behind the above approximation is that it becomes more
accurate as h→ 0!]

∴ f(x) ≈ A(x+ h)−A(x)

h
→ dA(x)

dx
as h→ 0.

Therefore the area from x = a to x = b is

A(b)−A(a) =

∫ b

a
f(x)dx. [A number; a definite integral!]

�

When tackling an integral, an engineer can count on these standard results. . .

f(x)
∫
f(x)dx

xn (n 6= −1) 1
n+1x

n+1 + C

x−1 ln |x|+ C

eax 1
ae
ax + C

cos (ax) 1
a sin (ax) + C

sin (ax) − 1
a cos (ax) + C

1
x2+1

tan−1 x+ C

Table 4.1: Table of Basic Integrals
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4.2 Integration by substitution

Sometimes an integral is easier to solve if you change the variable you are integrating with
respect to, i.e. make a substitution.

Formally, if I =

∫ x2

x1

f(x) dx,

try introducing u = g(x),

⇒ du

dx
= g′(x) or

dx

du
=

1

g′(x)
,

so we end up with something that looks like multiplying and dividing by du:

I =

∫ x2

x1

f(x) dx =

∫ u2

u1

f(u)
dx

du
du,

where u1 = g(x1), u2 = g(x2). So you must change the upper and lower limits for your
definite integral.

The best time to use this is when you have a function “wrapped” in another function you
would like to unravel.

Example 4.1. Calculate the integral∫
(3x− 7)−5dx.

We want to remove the “function of a function”, so let

u = 3x− 7 ⇒ du = 3dx ⇒ dx =
1

3
du,

then ∫
(3x− 7)−5dx =

1

3

∫
u−5du

=
1

3

(
−1

4
u−4

)
+ C

= − 1

12
u−4 + C

= − 1

12
(3x− 7)−4 + C.

Don’t forget to rewrite your final answer in terms of x!

Example 4.2. Calculate the integral ∫
sin
√
x√

x
dx.

Here, the ’horrible’ bit is
√
x, so let

u =
√
x ⇒ du =

1

2
√
x

dx,
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i.e.
dx = 2

√
xdu = 2udu∫

sin
√
x√

x
dx =

∫
sinu

�u
.2�udu

= 2

∫
sinudu

= −2 cosu+ C

= −2 cos
√
x+ C.

Example 4.3.

I =

∫ √
x
(
1 +
√
x
) 1

4 dx.

If we let u =
√
x we still end up with a term that looks like u2(1+u)

1
4 which is still difficult

to deal with.

How about. . .u = 1 +
√
x?

du =
1

2
√
x

dx ⇒ dx = 2
√
xdu = 2(u− 1) = 2

√
xdu.

Subsequently,∫ √
x
(
1 +
√
x
) 1

4 dx =

∫
(u− 1)u

1
4 2(u− 1)du

= 2

∫
(u− 1)2u

1
4 du

= 2

∫
u

1
4
(
u2 − 2u+ 1

)
du

= 2

(
4

13
u

13
4 − 2

4

9
u

9
4 +

4

5
u

5
4

)
+ C

=
8

13
(1 +

√
x)

13
4 − 16

9
(1 +

√
x)

9
4 +

8

5
(1 +

√
x)

5
4 + C.

4.2.1 A question of logs

Let us consider the derivative of the logarithm of some general function f(x):

d

dx
(ln(f(x))) =

1

f(x)
· d

dx
(f(x))

=
f ′(x)

f(x)

This implies that: ∫
f ′(x)

f(x)
dx = ln(f(x)) + c

Example 4.4. Consider the the following integral:

I =

∫
2x+ 5

x2 + 5x+ 3
dx
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Now, if we choose f(x) = x2 + 5x+ 3, then f ′(x) = 2x+ 5. So, if we differentiate ln(f(x)),
in this case we have

d

dx

[
ln(x2 + 5x+ 3)

]
=

2x+ 5

x2 + 5x+ 3
,

by the chain rule. Thus we know the integral must be

I = ln(x2 + 5x+ 3) + C.

4.2.2 Trigonometric and hyperbolic substitutions

If you see Try substituting
√
a2 − x2 x = a sin θ
√
a2 + x2 x = a sinh θ
√
x2 − a2 x = a cosh θ

1

a2 + x2
x = a tan θ

Example 4.5 (To show why).

I =

∫
1√

a2 + x2
dx.

If we let x = a sinh θ, then
dx = a cosh θdθ,

thus

I =

∫
a cosh θ√

a2 + a2 sinh2 θ
dθ

=

∫
�a cosh θ

�a
√

1 + sinh2 θ
dθ

=

∫
cosh θ

cosh θ
dθ

=

∫
1dθ

= θ + C = sinh−1
(x
a

)
.

Example 4.6 (Harder!).

I =

∫ −1

−3

1√
14− 12x− 2x2

dx

=
1√
2

∫ −1

−3

1√
7− 6x− x2

dx,

Not obvious what the next step is.

Complete the square in the denominator!

7− 6x− x2 = 7− (x+ 3)2 + 9 = 16− (x+ 3)2.
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Hence

I =
1√
2

∫ −1

−3

1√
16− (x+ 3)2

dx,

which looks like
1√

a2 − u2
,

so we will choose a substitution like a sin θ.

Let u = x+ 3, then du = dx, and as a result:

I =
1√
2

∫ 2

0

1√
16− u2

du.

Now put
u = 4 sin θ ⇒ du = 4 cos θdθ.

I =
1√
2

∫ π
6

0

4 cos θ√
16− 16 sin2 θ

dθ

=
1√
2

∫ π
6

0

���
�4 cos θ

���
�4 cos θ

dθ

=
1√
2

∫ π
6

0
1dθ

=
π

6
√

2

=
π
√

2

12
.

4.2.3 One more trick

If you see an integral like ∫
sin4 x cosxdx,

try u = sinx, because you get du = cosxdx, making the cos term disappear.

However, if you are facing ∫
sin4 x cos3 xdx,

keep your eyes open for less obvious clues!

=

∫
sin4 x cos2 x cosxdx

=

∫
sin4 x(1− sin2 x) cosxdx

=

∫
sin4 x cosxdx−

∫
sin6 x cosxdx,

then we can summon u = sinx.
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Remark 4.1. This even works for, say,∫
cos5 xdx =

∫
(1− sin2 x)2 cosxdx

And finally. . . be bold! Try!

4.3 Integration by parts

This is a good strategy when you are integrating a product of two terms, one of which
either differentiates or integrates into something simpler.

Recall the product rule:
d

dx
(uv) = v

du

dx
+ u

dv

dx

Now integrate both sides w.r.t. x:

uv =

∫
v

du

dx
dx+

∫
u

dv

dx
dx

⇒
∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx︸ ︷︷ ︸

Another integral!

,

The idea is that u becomes “better” as you differentiate or
dv

dx
becomes “better” as you

integrate.

Example 4.7. Find ∫
xexdx.

Since x differentiates away nicely,

choose u = x,
dv

dx
= ex,

then
du

dx
= 1, v =

∫
exdx = ex.

Apply the by parts formula: ∫
xexdx = xex −

∫
1 · exdx

= xex − ex + C.

= ex(x− 1) + C.

(4.1)

(Note that the arbitrary constant has been included right at the very last step)

Question: What happens if you try the other way round?

If u = ex,
dv

dx
= x,



CHAPTER 4. INTEGRATION 42

then
du

dx
= ex, v =

x2

2
,

which already does not look promising. If we go ahead and use the by-parts rule, then. . .∫
xexdx =

x2

2
ex − 1

2

∫
x2exdx,

which is true, but does not help!

So what have we learned from this example? Well, it does matter which term you choose

for u or
dv

dx
, as it can make or break your hopes of solving an integral. So choose wisely!

Example 4.8. Find

I =

∫
e2x sinxdx.

Let

u = sinx,
dv

dx
= e2x,

then
du

dx
= cosx, v =

1

2
e2x

and the by-parts formula gives:

I =
1

2
e2x sinx− 1

2

∫
e2x cosxdx

=
1

2
e2x sinx− 1

2
J ,

where

J =

∫
e2x cosxdx,

yet another integral. But don’t panic! This one can be handled by parts too; simply let

u = cosx,
dv

dx
= e2x,

then
du

dx
= − sinx, v =

1

2
e2x,

which gives

J =
1

2
e2x cosx+

1

2

∫
e2x sinxdx

=
1

2
e2x cosx+

1

2
I .

∴ I =
1

2
e2x sinx− 1

4

(
e2x cosx+ I

)
⇒ 5

4
I =

1

2
e2x sinx− 1

4
e2x cosx,

So, finally, we have:

∴ I =
1

5

(
2e2x sinx− e2x cosx

)
+ C,

not forgetting the constant of integration at the very end!



CHAPTER 4. INTEGRATION 43

Example 4.9. Compute∫
lnx dx. (Classic A-Level question!)

∫
lnx dx =

∫
1 · lnxdx

= x lnx−
∫
�x

1

�x
dx

= x(lnx− 1) + C.

Example 4.10. Find

I =

∫
sin−1 x dx.

I =

∫
1 · sin−1 xdx

= x sin−1 x−
∫

x√
1− x2

dx

= x sin−1 x−
√

1− x2.

4.4 Using partial fractions

Sometimes we want to compute, say,∫
x+ 1

x2 − 3x+ 2
dx,

which we can’t integrate directly. Here we must express the integrand as a sum of partial
fractions.

4.4.1 Recap: Partial fractions

You can express the function
P (x)

Q(x)
with partial fractions if Q(x) factorises.

For every factor of Q(x) You get this partial fraction form:

(ax+ b)
A

(ax+ b)

(ax+ b)2 A

(ax+ b)
+

B

(ax+ b)2

(ax+ b)3 A

(ax+ b)
+

B

(ax+ b)2
+

C

(ax+ b)3

(ax2 + bx+ c)
Ax+B

ax2 + bx+ c

Then plug in some different values of x to find A, B, . . . (or use any other method you
prefer!)

For the next three examples P (x) will be linear and Q(x) will be quadratic polynomials.



CHAPTER 4. INTEGRATION 44

Example 4.11 (Case 1: Denominator has two real roots).∫
3x− 5

x2 − 2x− 3
dx.

First things first. . . factorise the denominator!

x2 − 2x− 3 ≡ (x− 3)(x+ 1)

∴
3x− 5

x2 − 2x− 3
≡ A

(x− 3)
+

B

x+ 1
.

Hence
3x− 5 ≡ A(x+ 1) +B(x− 3).

Let’s try two different values of x. How about. . . ?

x = −1⇒ −8 = −4B ⇒ B = 2,

x = 3⇒ 4 = 4A⇒ A = 1,

∴
3x− 5

x2 − 2x− 3
≡ 1

(x− 3)
+

2

x+ 1
.

Then ∫
3x− 5

x2 − 2x− 3
dx

=

∫ (
1

x− 3
+

2

x+ 1

)
dx

=

∫
1

x− 3
dx+

∫
2

x+ 1
dx

= ln |x− 3|+ 2 ln |x+ 1|+ C.

Example 4.12 (Case 2: Denominator has one real root).∫
x

x2 − 2x+ 1
dx.

Start with
x

x2 − 2x+ 1
≡ x

(x− 1)2
≡ A

x− 1
+

B

(x− 1)2
.

∴ x ≡ A(x− 1) +B ≡ Ax+B −A.

Let’s compare coefficients: the x terms suggest that A = 1. As for the constant terms:

B −A = 0⇒ A = B = 1.

Therefore ∫
x

x2 − 2x+ 1
dx

=

∫
1

x− 1
dx+

∫
1

(x− 1)2
dx

= ln |x− 1| − 1

x− 1
+ C.
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Example 4.13 (Case 3: Denominator has no real roots).∫
x− 2

x2 − 2x+ 5
dx

So we can’t factorise the denominator, but we can still complete the square!

x2 − 2x+ 5 = (x− 1)2 + 4,

thus the integral is ∫
x− 2

(x− 1)2 + 4
dx.

Looks like something with (u2 + 1), so choose

x− 1 = u, ⇒ dx = du.

Then ∫
x− 2

x2 − 2x+ 5
dx =

∫
u− 1

u2 + 4
du

=

∫
u

u2 + 4
du−

∫
1

u2 + 4
du.

Now ∫
u

u2 + 4
du =

1

2
ln |u2 + 4|

=
1

2
ln |(x− 1)2 + 4|,

while for the other u-integral, try

u = 2 tan θ ⇒ du = 2 sec2 θdθ,

hence ∫
1

u2 + 4
du =

∫
2 sec2 θ

4 tan2 θ + 4
dθ

=

∫
���sec2 θ

2��
�

sec2 θ
dθ

=

∫
1

2
dθ

=
1

2
θ + C =

1

2
tan−1

(
x− 1

2

)
+ C.

Thus our final answer is∫
x− 2

x2 − 2x+ 5
dx =

1

2
ln
(
x2 − 2x+ 5

)
+

1

2
tan−1

(
x− 1

2

)
+ C.

Remark 4.2. If degree ofP ≥ degree ofQ, use long division first to get N(x) +
R(x)

Q(x)
(R

for remainder!). Then use partial fractions on
R(x)

Q(x)
.
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Example 4.14. Evaluate the indefinite integral∫
x3 + 2x

x− 1
dx

Do the long division first:

x2 + x+ 3

x− 1
)

x3 + 2x
− x3 + x2

x2 + 2x
− x2 + x

3x
− 3x+ 3

3

∴
∫
x3 + 2x

x− 1
dx =

∫ (
x2 + x+ 3 +

3

x− 1

)
dx

=
x3

3
+
x2

2
+ 3x+ 3 log |x− 1|+ C.

4.5 Some trigonometric integrals

i Evaluate ∫
cos2 xdx =

∫
1

2
(cos 2x+ 1) dx

=
1

4
sin 2x+

1

2
x+ C.

ii Evaluate ∫
sin2 xdx =

∫
1

2
(1− cos 2x)dx

=
1

2
x− 1

4
sin 2x+ C.

4.6 Using integration

As stated at the start of the chapter, integration is great for calculating areas under curves.

Example 4.15 (1997 Exam question). Sketch the region enclosed by the curve y =
1

1 + x2

and the line y =
1

2
and find its area.

Apply the recipe for curve sketching:
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• No vertical asymptotes

• An even function

• Passes through (0, 1)

• y 6= 0, and in fact y > 0 for all x.

• y → 0 as x→ ±∞.

• For the turning points

dy

dx
= − 2x

(1 + x2)2
= 0 when x = 0.

Now don’t forget the sketch!

Figure 4.1: A sketch of the curve y =
1

1 + x2
(red) and the line y =

1

2
(yellow). The

enclosed region is shaded in green.

A =

∫ 1

−1

1

1 + x2
dx− (Area of Rectangle)

=

∫ 1

−1

1

1 + x2
dx− 2× 1

2

=
[
tan−1 x

]1
−1
− 1

=
π

4
−
(
−π

4

)
− 1 =

π

2
− 1.

Example 4.16. Question: Find the area bounded by the curve y = x2 − 6x+ 5 and the
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x axis between x = 1 and x = 3.

A =

∫ 3

1
ydx =

∫ 3

1

(
x2 − 6x+ 5

)
dx

=

[
1

3
x3 − 3x2 + 5x

]3

1

=

[
1

3
· 33 − 3 · 32 + 5 · 3

]
−
[

1

3
· 13 − 3 · 12 + 5 · 1

]
= −5

1

3
.

But why is the area negative? Let’s draw a sketch.

Figure 4.2: A sketch of the curve y = x2 − 6x+ 5 (red). The region we want to integrate
over (blue) is bounded by the grey vertical lines x = 1 and x = 3. Trouble is, the region
below the x axis gives a negative area!

Example 4.17. (Mechanics)
A ball is thrown down from a high building with an initial velocity of 30 metres per second.
Then its velocity after t seconds is given by v(t) = 10t + 30. How far does the ball fall
between 1 and 3 seconds of elapsed time?

The distance s(t) turns out to be the integral of the velocity, i.e.

s(t) =

∫
v(t)dt.

Hence the distance we want is

s(3)− s(1) =

∫ 3

1
v(t)dt

=

∫ 3

1
(10t+ 30)dt

=
[
5t2 + 30t

]3
1

= 135− 35

= 100 metres.
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Example 4.18. Find the area A of an ellipse, given by the equation

x2

a2
+
y2

b2
= 1,

Figure 4.3: An ellipse

Note from Figure 4.3 that A = 4×A1 by symmetry. Hence for the area A,

A = 4

∫ a

0
b

√
1− x2

a2
dx

= 4b

∫ a

0

√
1− x2

a2
dx,

an integral that can be solved by substitution. Let

x

a
= sinu, ⇒ dx

du
= a cosu

and √
1− x2

a2
=
√

1− sin2 u = cosu.

So we have

A = 4b

∫ u2

u1

cosu(a cosu) du.

Reminder: In changing the variable it is also very important to change the limits, i.e.
find numerical values for u1 and u2.

When x = a, sinu = 1, ∴ u =
π

2
.

When x = 0, sinu = 0, ∴ u = 0.

Therefore we have

A = 4ab

∫ π
2

0
cos2 udu
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Proceeding with the integral, we get

A = 4ab

∫ π
2

0
cos2 udu

= 4ab

∫ π
2

0

(
1

2
+

1

2
cos 2u

)
du

= 4ab

(
1

2
u+

1

4
sin 2u

)
= 4ab

(π
4

+ 0− (0 + 0)
)

= πab.

Note: For a circle, a = b which givws A = πa2.

4.7 Improper integrals

Often, you will come across integrals of the type∫ ∞
a

f(x)dx.

This is an improper integral, and it must be interpreted as

= lim
b→∞

∫ b

a
f(x)dx,

if the limit exists! (If it doesn’t, the integral is said to diverge).

Remark 4.3. Technically, there are other kinds of improper integrals, in which

I =

∫ b

a
f(x)dx

has a problem because f(x) “blows up” at a, b or some point c in between (a < c < b). But
we won’t worry about them here!

Example 4.19. Consider

I =

∫ ∞
1

1

xn
dx, n > 1.

Then ∫ ∞
1

1

xn
dx = lim

b→∞

∫ b

1

1

xn
dx

= lim
b→∞

(
1

n− 1

[
1− 1

bn−1

])
=

1

n− 1

Remark 4.4. This integral in this last example diverges for n ≤ −1.



Chapter 5

Differential Equations

5.1 Introduction

Many problems in engineering and physical science (also biology, economics, etc.) can be
reduced to solving differential equations.

Example 5.1 (RLC Series Circuit). Consider the following series circuit comprised of a
resistor, a capacitor and an inductor. This circuit is known as an RLC circuit.

Figure 5.1: An RLC Circuit

L
d2I

dt2
+R

dI

dt
+

1

C
I = E (5.1)

where

I ≡ Current Flowing in a Circuit

C ≡ Capacitance

R ≡ Resistance

L ≡ Inductance

E ≡ Voltage.

where C,R,L and E are constants and I is the unknown function to be found.
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An ordinary differential equation (ODE) is a relation between a function y(x), x, and the

derivatives
dy

dx
,

d2y

dx2
, etc.

The order of the ODE is the order of the highest derivative in the equation.

An ODE is linear if there are no products of y and its derivatives, e.g.

y
dy

dx
, y2

and no functions of y and its derivatives, such as

ey, cos y.

For example, Equation (5.1) is a linear second order ode.

Example 5.2 (Legendre’s Equation).

(1− x2)y
′′ − 2xy

′
+ k2y = 0 (k = constant)

is ubiquitous in problems with spherical symmetry (e.g a Hydrogen atom). It is a linear
second order equation.

Example 5.3 (Radioactive decay).

dR

dt
= −kR. (k = constant)

This is first order and linear.

Example 5.4 (Simple pendulum).

d2θ

dt2
+
g

l
sin θ = 0.

It is a second-order ODE. However it is non-linear, due to the sin θ term.

Figure 5.2: An simple pendulum comprised of an object with mass m attached to a string
with length l. The other end of the string is attached to a ceiling.

Partial differential equations (PDEs) involve partial derivatives (see Chapter 3), such as. . .
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Example 5.5 (Beam Equation). The Beam Equation provides a model for the load
carrying and deflection properties of beams, and is given by

∂2u

∂t2
+ c2∂

4u

∂x4
= 0.

. . . but you won’t see them in this course. You’ll have to wait until Maths for Engineers 3
(MATH6503) for that!

5.2 First order separable ODEs

An ODE
dy

dx
= F (x, y) is separable if we can write F (x, y) = f(x)g(y) for some functions

f(x), g(y).

Example 5.6.
dy

dx
= y IS separable,

dy

dx
= x2 − y2 IS NOT.

Example 5.7. Find the general solution to the ODE

9y
dy

dx
+ 4x = 0.

“Separating the variables”, we have

9ydy = −4xdx ⇐⇒

9

∫
ydy = −4

∫
xdx

9

2
y2 = −4

2
x2 + C,

i.e. the general solution is

x2

9
+
y2

4
= K, (K = C/36)

which describes a ‘family’ of ellipses.

We can check our solution by differentiating:

2

9
x+

2

4
yy
′

= 0

i.e
9yy

′
+ 4x = 0.

Example 5.8. Find the general solution to

dy

dx
=
y + 1

x+ 1
.
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⇒
∫

1

y + 1
dy =

∫
1

x+ 1
dx

⇒ ln |y + 1| = ln |x+ 1|+ C.

Use log
(a
b

)
= log a− log b:

ln

∣∣∣∣y + 1

x+ 1

∣∣∣∣ = C,

or
y + 1

x+ 1
= eC = K.

Again we can easily check this using differentiation.

Example 5.9. Solve the ODE
dy

dx
= 1 + y2

Separating variables: ∫
dy

1 + y2
=

∫
dx

⇒ arctan y = x+ C

⇒ y = tan (x+ C).

Once again, this is easily checked by differentiation.

Example 5.10 (2007 Exam Question). Solve

dy

dx
− y(y + 1)

x(x− 1)
= 0

finding y explicitly, i.e y = f(x).

Solution: This equation is separable, thus separating the variables and integrating gives

dy

dx
=
y(y + 1)

x(x− 1)∫
dy

y(y + 1)
=

∫
dx

x(x− 1)
.

To solve the integrals, use partial fractions:∫ [
1

y
− 1

y + 1

]
dy =

∫ [
−1

x
+

1

x− 1

]
dx

ln y − ln (y + 1) = − lnx+ ln (x− 1) + C

ln

(
y

y + 1

)
= ln

(
x− 1

x

)
+ C

y + 1

y
= e−C

x

x− 1
.

Let K = eC . Then

y = (y + 1)

(
x− 1

Kx

)
y

[
1−

(
x− 1

Kx

)]
=

(
x− 1

Kx

)
y(Kx− x+ 1) = x− 1.
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∴ y =
x− 1

Kx− x+ 1

is the explicit solution.

Example 5.11 (2010 Exam Question). Solve

(y + x2y)
dy

dx
= 1.

Solution:

y(1 + x2)
dy

dx
= 1∫

y dy =

∫
dx

x2 + 1

y2

2
= arctanx+ C

i.e. the solution is y = ±
√

2 arctanx+ 2C.

5.3 First order linear ODEs

Aside: Exact types An exact type is where the LHS of the differential equation is the
exact derivative of the product.

Example 5.12.

x
dy

dx
+ y = ex

⇒ d

dx
(xy) = ex

⇒ xy = ex + C.

Example 5.13.

exey
dy

dx
+ exey = e2x

⇒ d

dx
(exey) = e2x

⇒ exey =
1

2
e2x + C.

I recommend that you bear this in mind as we proceed. . .

First order linear ODEs are equations that may be written in the form:

dy

dx
+ P (x)y = Q(x). (5.2)

Example 5.14.

dy

dx
+ y cotx = cosecx. [P (x) = cotx, Q(x) = cosecx]
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Example 5.15.

tanx
dy

dx
+ y = ex tanx

⇒ dy

dx
+ cotx y = ex. [P (x) = cotx, Q(x) = ex]

In general, Equation (5.2) is NOT exact.

Big question: Can we multiply the equation by a function of x which will make it
exact?

Let’s suppose we can, and call this function I(x); the integrating factor (IF). Then
multiply both sides of (5.2) by I:

I
dy

dx
+ IPy︸ ︷︷ ︸

Exact type

= IQ.

Compare the LHS with
d
dx

(Iy)︷ ︸︸ ︷
I

dy

dx
+

dI

dx
y,

Hence we require

IP �y =
dI

dx �
y

⇒ dI

dx
= IP

⇒
∫

dI

I
=

∫
P dx

⇒ ln I =

∫
P dx [No need for integration constants!]

⇒ ln I = e
∫
P dx,

and this is the IF. We will substitute this into (5.2):

dy

dx
+ P (x)y = Q(x).

Multiply by I:

e
∫
P dx dy

dx
+ e

∫
P dxPy = e

∫
P dxQ

⇒ d

dx
(ye

∫
P dx) = e

∫
P dxQ

⇒ yI =

∫
e
∫
P dxQdx.

This is the form we end up with.

I will not ask you to go through this derivation in the exam. However, you will need to
know how to apply it.
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Example 5.16. Solve
dy

dx
+ 2y = e−x.

We require the IF:
I = e

∫
P dx = e

∫
2 dx = e2x.

Then

e2x dy

dx
+ 2e2xy = e2xe−x

⇒ d

dx
(ye2x) = ex

⇒ ye2x = ex + C,

or
y = e−x + Ce−2x.

Example 5.17. Solve

cosx
dy

dx
+ y sinx =

1

2
sin 2x.

Get it into the right form first!

⇒ dy

dx
+ y tanx =

sin 2x

2 cosx
=
�2 sinx���cosx

�2���cosx

⇒ dy

dx
+ y tanx = sinx, (5.3)

so P (x) = tanx. Now seek the IF:

I = e
∫
P dx = e

∫
tanxdx = e− ln(cosx) =

1

eln(cosx)
=

1

cosx
.

A VERY common error: e− ln(cosx) = cosx.

Multiply (5.3) throughout by I to give

1

cosx

dy

dx
+

tanx

cosx
y = tanx,

i.e.

d

dx

( y

cosx

)
= tanx

⇒ y

cosx
=

∫
tanx dx+ C = − ln(cosx) + C.

Therefore the general solution is

y = C cosx− cosx ln(cosx).

Example 5.18. Solve

x
dy

dx
+ = x2 + 3y.

Get it in the right form first. . .
dy

dx
− 3

x
y = x. (5.4)
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Find the integrating factor

I(x) = e
∫
− 3
x

dx = e−3 lnx = eln(x−3) = x−3,

Now multiply both sides of (5.4) by the integrating factor to make the LHS an exact type:

x−3 dy

dx
− 3x−4y = x−2 ∂

∂x

(
x−3y

)
= x−2,

and integrate both sides of the equation to gain

x−3y = −x−1 + C

y = x3
(
C − x−1

)
y = x2(Cx− 1).

5.4 Initial Value Problems

All the solutions we obtained so far contain an annoying constant of integration C. When
engineers work with ODEs, they are interested in a particular solution satisfying the given
initial condition.

An ODE together with an initial condition (IC) is called an initial value problem (IVP). In
other words:

ODE + IC = IVP

We need only two steps to solve an IVP:

1 ODE: Find the general solution, containing an arbitrary constant.

2 IC: Apply the condition to determine the arbitrary constant. Usually, the condition
is given as

y(x0) = y0,

which tells us that when x = x0, y = y0.

Example 5.19. Solve the IVP

2
dy

dx
− 4xy = 2x, y(0) = 0.

Start by rewriting in the form
dy

dx
− 2xy = x,

which is a first order linear equation, so we calculate the IF:

I = e
∫
−2x dx = e−x

2
.

∴
dy

dx
e−x

2 − 2xe−x
2
y = xe−x

2
.
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Hence

d

dx

(
ye−x

2
)

= xe−x
2

⇒ ye−x
2

=

∫
xe−x

2
dx,

⇒ ye−x
2

= −1

2
e−x

2
+ C

⇒ y = −1

2
+ Cex

2
.

Now apply the IC y(0) = 0. This gives

0 = −1

2
+ C ⇒ C =

1

2
,

and so the solution is

y =
1

2

(
ex

2 − 1
)
.

Example 5.20. Solve the IVP

x
dy

dx
+ 2y = 4x2, y(1) = 2.

Get the equation in the right form first!

dy

dx
+

2

x
y = 4x.

Then the IF is:

I = e
∫

2
x

dx = e2 lnx = elnx2 = x2.

⇒ x2 dy

dx
+ 2xy = 4x3

⇒ d

dx

(
x2y
)

= 4x3

⇒ x2y = x4 + C

⇒ y = x2 + Cx−2.

Apply the condition y(1) = 2:

y(1) = 1 + C = 2 ⇒ C = 1.

So the solution is

y = x2 +
1

x2
.

Example 5.21 (Logistic Equation). Suppose the rate of change of x is proportional to:

rx (1− x) ,

where r > 0 is constant. Show that if initially x = x0 (at t = 0) and 0 < x0 < 1, then
lim
t→∞

x = 1.

First, we set up the ODE:
dx

dt
= rx (1− x) ,
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which is the logistic equation. This ODE has applications in many fields of study such as
ecology, psychology, chemistry and even politics!

The logistic equation can be tackled by separating variables. . .∫
dx

x (1− x)
= r

∫
dt∫ [

1

x
+

1

1− x

]
dx = rt+ C

ln |x| − ln |1− x| = rt+ C

ln | x

1− x
| = rt+ C

x

1− x
= ert+C = erteC ,

and let G = eC . We then make x the subject. . .

x = (1− x)Gert

x = Gert − xGert

x(1 +Gert) = Gert,

which leads to

x =
Gert

1 +Gert
.

Next, find G using the initial condition:

x0 =
1

1
G + 1

, ⇒ 1

G
=

1

x0
− 1,

and therefore

x(t) =
1

1 +
(

1
x0
− 1
)e−rt =

x0

x0 + (1− x0)e−rt
,

the so-called logistic function. Finally, we note that as t→∞, x(t)→ ��x0
��x0

= 1, as intended.

Figure 5.3: A plot depicting the logistic curve. Here, x0 = 0.01 and r = 0.2.
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Vectors

6.1 Introduction

Definition 6.1. A vector is a quantity with both a magnitude (size) and direction.

Many quantities in engineering applications can be described by vectors, e.g. force, velocity,
magnetic field.

They can be represented by arrows, for example. . .

Figure 6.1: Some vectors.

Magnitude=Length of AB

Direction is shown in the Figure 6.1.

We will write
−−→
AB or a to represent the top vector in the figure.

Two vectors are equal when they have both the same magnitude and direction. So−−→
AB =

−−→
CD.

61
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But
−−→
AB 6=

−−→
EF , since both the magnitude and direction are different.

The sum of two vectors a and b is found by adding the vectors “head to tail”:

Example 6.1 (Forces on an object). Consider the following forces acting on an object:

Forces add to give a net effect or resultant force.

R = F1 + F2

Magnitude: |R| =
√

82 + 52 ≈ 9.4N.

Direction: Use tan θ =
|F1|
|F2|

=
8

5
= 1.6

⇒ θ = 58°.

You can multiply a vector a by a scalar (number) k. Then, as shown in Figure 6.2, if k > 0,
ka is a vector in the same direction as a, and the magnitude is k|a|. . . BUT if k < 0, ka is
in the opposite direction!

Example 6.2. Two points A and B have position vectors ( i.e. relative to a fixed origin
O) a and b respectively. What is the position vector of a point on the line joining A and
B, equidistant from A and B?

Well, the first thing we need is a sketch of the problem, like in Figure 6.3.

Next, note that
−−→
AB = b− a.
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Figure 6.2: Two examples of scalar multiplication of the vector a.

Figure 6.3: In this sketch, X is the midpoint of the line joining A and B

x = a +
−−→
AX = a +

1

2

−−→
AB

= a +
1

2
(b− a)

=
1

2
(a + b).

Definition 6.2. A unit vector is a vector with magnitude 1.

Often represented using a hat symbol:

For any vector a,

â =
a

|a|
is a unit vector since

|a| =
∣∣∣∣ a

|a|

∣∣∣∣ =
|a|
|a|

= 1.

Unit vectors in the x, y, z idrections are denoted i, j, k respectively.

Then the position of a point P from the origin, with coordinates (x, y, z), is

r = xi + yj + zk.
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Figure 6.4: ijk

Example 6.3.

a = 6i− 3j + k,

b = 4i + 2j.

Then

a + b = 10i− j− k

b− a = −2i + 5j− k

3a = 18i− 9j + 3k.

For a position vector r = xi + yj + zk, the magnitude is

|r| =
√
x2 + y2 + z2.

Then for the previous example,

|a| =
√

62 + (−3)2 + 12 =
√

46,

|b| =
√

42 + 22 + 02 = 2
√

5.

So far we’ve seen how to add two vectors. Now we have a question. . .

Q: How can we multiply two vectors together?

I’m going to show you that there are in fact two ways to multiply vectors. . .

6.2 The Dot Product

Let us consider the origin of the dot product:

We take two vectors a and b:

We might be interested in the length of the component of a which is in the same direction
as b.

Here 0 ≤ θ < π is the angle between a and b.
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Figure 6.5: The two vectors a and b. We see that the length of the component of a which
is in the same direction as b is |a| cos θ.

Compare with the dot product formula:

a · b = |a||b| cos θ

Looks almost like the length of the component of a, but is rescaled such that we have the
symmetry:

a · b = b · a

So the dot product also gives us a rescaling of the length of the component of b in the same
direction as a. But we expected that in the first place, because of the above symmetry
rule!

Figure 6.6: This time, we would like the length of the component of b which is in the same
direction as a. That length is |b| cos θ.

Note that

a · b = |a||b| cos θ ⇒ cos θ =
a · b
|a||b|

;

which is a useful method for calculating θ if you know a and b.

Two non-zero vectors are perpendicular (orthogonal) if and only if their dot product is
zero, i.e.

a.b = 0 ⇒ |a||b| cos θ = 0

⇒ cos θ = 0

⇒ θ =
π

2
(90°)

Now consider i, j, k. These are unit vectors, and are mutually perpendicular. These two
facts combined show that, e.g.

i · i = 1, i · j = 0, etc.,
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so if you then let

a = (a1, a2, a3) (= a1i + a2j + a3k)

b = (b1, b2, b3) (= b1i + b2j + b3k),

and multiply out a · b, you obtain

a · b = a1b1 + a2b2 + a3b3.

Note:

a · a =|a||a| cos 0 = |a|2

i.e. |a| =
√

a · a.

Let’s try this with r = xi + yj + xk. Then:

|r| =
√

r · r =
√
x2 + y2 + z2,

which is consistent with the earlier formula for the magnitude of r.

Example 6.4. For

a = 6i− 3j + k

b = 4i + 2j,

calculate a · b and find the angle between the two vectors.

a.b = 6× 4 + (−3)× 2 + 1× (0) = 18.

But recall
a · b = |a||b| cos θ,

and that
|a| =

√
46, |b| = 2

√
5,

therefore

cos θ =
a · b
|a||b|

=
18

2
√

5
√

46
= 0.593.

∴ θ = cos−1(0.593) = 53.6°.

Example 6.5. Points A,B and C have coordinates (3, 2), (4,−3), (7,−5) respectively.

i Find
−−→
AB and

−→
AC.

ii Find
−−→
AB·
−→
AC.

iii Deduce the angle between
−−→
AB and

−→
AC.

i

−−→
AB = (4i− 3j)− (3i + 2j) = i− 5j,
−→
AC = (7i− 5j)− (3i + 2j) = 4i− 7j.
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ii Now for the dot product:

−−→
AB·
−→
AC = 4× 1 + (−5)× (−7) = 4 + 35 = 39.

iii To calculate the angle, note that

|
−−→
AB| =

√
12 + (−5)2 =

√
26,

|
−→
AC| =

√
42 + (−7)2 =

√
65.

Then

cos θ =

−−→
AB·
−→
AC

|
−−→
AB||

−→
AC|

=
39√

26
√

65
= 0.949 (3 d.p.),

which gives θ = 18°.

So far, we have seen one way to multiply two vectors together. However, that first way,
the dot product, spits out a number. It would be nice if there was a way to multiply two
vectors together such that the result is another vector (Guess what? There is one!)

6.3 The Cross Product

Take any two vectors a and b. Then the cross product is denoted as

a× b.

Before giving the definition, let’s consider the motivation behind it using a physics context. . .

Example 6.6 (Moments). Consider a seesaw. If I apply a force on it at some point away
from the pivot, it will turn. Also, if the force is applied farther away from the pivot, the
seesaw will turn more easily.

r = Position where the force is exerted

F = The force applied,

then the moment of F about a point O is

m = |F|d,

where
d = |r| sin θ
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is the perpendicular distance between O and the line of action of F.

∴ m = |r||F| sin θ.

In fact, the moment vector of F about O, i.e. m, is

m = r× F,

which is perpendicular to both r and F. Moreover, m points in the same direction as the
axis of rotation for the seesaw (here, m points out of the page).

Now, m = |m|, hence the magnitude of m is:

|m| = |r||F| sin θ.

Okay, now I can define the vector product:

Definition 6.3. The cross product of two vectors a and b is

a× b = |a||b| sin θ n̂,

which is a VECTOR, not a NUMBER. So try not to confuse this with the dot product.

Length of a× b : |a× b| = |a||b| sin θ.
Direction of a× b : n̂, found using the right hand rule.

n̂ is a unit vector perpendicular to a and b.

Figure 6.7: The vectors a, b and a× b. If you put your thumb on a and your index finger
on b, then your middle finger will tell you the direction of a× b.

This definition only works for 3D vectors!

Q: Now, does a× b = b× a?

A: NO!

To see this, let v = a× b and w = b× a. By definition, we will have that |v| = |v|, but
what about their directions? Well, the right hand rule shows us that v = −w. Hence

b× a 6= a× b!
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Suppose we have any two vectors a and b. If:

a = a1i + a2j + a3k = (a1, a2, a3)

b = b1i + b2j + b3k = (b1, b2, b3),

then the three components of a× b are:

a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k.

This can be conveniently represented using a 3× 3 matrix determinant:

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
i j
a1 a2

b1 b2.

A trick to calculate the determinant is to multiply along each of the six diagonal lines.
Next, add all the products corresponding to the green diagonals, and then subtract all the
products for the red diagonals. In other words,

Determinant = Sum of the green products− Sum of red products.

Example 6.7. Compute a× b, where

a = 4i− k

b = −2i + j + 3k

a× b =

∣∣∣∣∣∣
i j k
4 0 −1
−2 1 3

∣∣∣∣∣∣
i j
4 0
−2 1

= 0i + 2j + 4k− 0k− (−i)− 12j

= i− 10j + 4k.

Example 6.8. Show that i× j = k.

i× j =

∣∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣∣
i j
1 0
0 1

= 0i + 0j + 1k− 0i− 0j− 0k

= k.

Remark 6.1. A nice interpretation of the length |a×b| is that if θ is the angle between a
and b, then this is the area of the parallelogram with sides a and b, i.e.

A = |a|︸︷︷︸
Base length

|b| sin θ︸ ︷︷ ︸
Height



CHAPTER 6. VECTORS 70

Figure 6.8: A paralellogram, whose sides correspond to vectors a and b. It can be split into
two triangles.

Proof:
A = 2A1,

but

A1 =
1

2
|a||b| sin θ, [Anyone recognise this trigonometric formula?]

=
1

2
|a× b|,

hence
A = |a× b|.

�

Example 6.9 (Recycled exam question!). Find the area of a triangle with adjacent sides
given by

a = i + 2j− k

b = j + k.

Note that

i× j =

∣∣∣∣∣∣
i j k
1 2 −1
0 1 1

∣∣∣∣∣∣
i j
1 2
0 1

= 2i + 0j + k− (−i)− j− 0k

= 3i− j + k.

We want the area of the shaded region A, but

|a× b| = 2A

⇒ A =
1

2
|a× b|

=
1

2

√
32 + (−1)2 + 12

=
1

2

√
11.



Chapter 7

Numerical Methods

7.1 Introduction

In many cases the integral

I =

∫ b

a
f(x)dx

can be found by finding a function F (x) such that F ′(x) = f(x), and using

I =

∫ b

a
f(x)dx = F (b)− F (a)

which is known as the analytical (exact) solution.

But consider ∫ 1

0

√
1 + x3 dx, and

∫ 1

0
ex

2
dx.

Neither of the above integrals can be expressed in terms of functions that we know. However
both of these integrals do exist, since they both represent the area below the curves

√
1 + x3

and ex
2

between x = 0 and x = 1 (and both curves are well-behaved).

Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate
an area by computing I, but. . .

• They don’t know the equation for f(x).

• There might be no formula for f(x) at all!

Thankfully, there are some practical methods out there for calculating areas under graphs,
e.g. counting squares. But this is time-consuming and boring! Besides, there are other
methods of calculating areas which are much more accurate, even though they are still
only approximations.

71
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7.2 The Rectangular Rule

The rectangular rule (also called the midpoint rule) is perhaps the simplest of the three
methods for estimating an integral you will see in the course.

Figure 7.1: The main idea of the Rectangular Rule is that we can approximate the area
unfer a curve y = f(x) by lots of small rectangles, each with width h.

• Integrate over an interval a ≤ x ≤ b.

• Divide this interval up into n equal subintervals of length h = (b− a)/n.

• Approximate f in each subinterval by f(x∗j ), where x∗j is the midpoint of the subin-
terval.

• Area of each rectangle: f(x∗1)h, f(x∗2)h,. . . , f(x∗n)h.

∴ I =

∫ b

a
f(x)dx ≈ h [f(x∗1) + f(x∗2) + · · ·+ f(x∗n)] .

The approximation on the RHS becomes more accurate as more rectangles are used. In
fact, ∫ b

a
f(x)dx = lim

h→0
{h [f(x∗1) + f(x∗2) + · · ·+ f(x∗n)]}

Note: As h→ 0, n→∞, since h =
b− a
n

and (b− a) is fixed.

Remark 7.1. Actually, there are several different versions of the rectangular rule out there.
If you are interested, these are mentioned in Sections 5.1 and 5.2 of Thomas’ Calculus
(11th edition).

7.3 The Trapezium Rule

Another method of calculating an integral approximately is the trapezoidal (trapezium)
rule. The procedure is as follows. . .
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Again, divide the interval a ≤ x ≤ b into n equal subintervals, i.e.

a = x0 < x1 < x2 < . . . < xn−1 < xn = b,

each with length h = (b− a)/n.

Figure 7.2: The Trapezium Rule visualised. This time, the area under the curve y = f(x)
is approximated by a sum of n trapezia, instead of rectangles.

Figure 7.3: This is the first trapezium from Figure 7.2. One way to calculate its area is to
split it up into a triangle and a rectangle, calculate their areas separately, then add the two
areas together.

Area of first trapezium:A1 = Area of rectangle + Area of triangle

= f(a)h +
1

2
h(f(x1)− f(a))

=
1

2
h [f(a) + f(x1)]

Area of next trapezium:A2 =
1

2
h [f(x1) + f(x2)]

...

Area of penultimate trapezium:An−1 =
1

2
h [f(xn−2) + f(xn−1)]

Area of last trapezium:An =
1

2
h [f(xn−1) + f(b)]
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Then

I =

∫ b

a
f(x)dx ≈ Sum of all n trapezia

=
1

2
h {f(a) + f(x1) + f(x1) + f(x2) + f(x2) + · · ·

· · · +f(xn−2) + f(xn−2) + f(xn−1) + f(xn−1) + f(b)} ,

i.e.

I ≈ h

2
{f(a) + f(b) + 2 [f(x1) + f(x2) + · · ·+ f(xn−1)]} .

where

h =
b− a
n

xi = a+ ih, i = 1, 2, 3, . . . , n− 1.

Example 7.1. Estimate

I =

∫ 2

1

1

x
dx

using the trapezium rule with n = 5.

Note that we have b = 2, a = 1 and n = 5.

∴ h =
b− a
n

=
2− 1

5
=

1

5
= 0.2.

So
a = 1, x1 = 1.2, x2 = 1.4, x3 = 1.6, x4 = 1.8, b = 2,

and

I ≈ 0.2

2
{f(a) + f(b) + 2 [f(x1) + f(x2) + f(x3) + f(x4)]}

= 0.1 {f(1) + f(2) + 2 [f(1.2) + f(1.4) + f(1.6) + f(1.8)]}

= 0.1

{
1

1
+

1

2
+ 2

[
1

1.2
+

1

1.4
+

1

1.6
+

1

1.8

]}
≈ 0.6956. (4 d.p)

Figure 7.4: In the last example, we used the Trapezium Rule to estimate the area shaded in
blue.

Notes:
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• In the previous example, the analytical value is given by∫ 2

1

1

x
dx = [lnx]21 = ln 2− ln 1 = ln 2 = 0.6931 (4.d.p).

• If we used n = 10, we would have

I ≈ 0.6938,

which is even more accurate than using n = 5.

Error in using the Trapezuim Rule

Let Î be the trapezium approximation to I , then we define the error εT as

εT = Î −I .

Then it turns out that if ∣∣f ′′(x)
∣∣ ≤M for all x with a ≤ x ≤ b,

then

|εT | ≤M
(b− a)3

12n2
.

Example 7.2. What is the smallest n such that

I =

∫ 2

0
ex

2
dx

has a maximum error of 1?

We must choose n large enough such that |εT | ≤ 1. Note that

f(x) = ex
2 ⇒ f ′′(x) =

[
2 + 4x2

]
ex

2

We are interested in 0 ≤ x ≤ 2; on this interval the maximum value of f ′′(x) occurs at
x = 2, thus M = f ′′(2) ≈ 983 (rounded up). So

|εT | ≤M
(b− a)3

12n2
≤ 983

23

12n2
≈ 655

n2

i.e we need
655

n2
≤ 1 ⇒ n2 ≥ 655.

The smallest such n that satisfies this is n = 26.

7.4 Simpson’s Rule

Simpson’s Rule is yet another method of numerical integration. It is credited to Thomas
Simpson (1710-1761), an English mathematician, though there is evidence that similar
methods were used 100 years prior to him.

So far, we looked at two methods for numerical integration:
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• Piecewise constant approximation =⇒ Rectangular Rule

• Piecewise linear approximation =⇒ Trapezium Rule

• Piecewise quadratic approximation =⇒ Simpson’s Rule

For Simpson’s rule we divide a ≤ x ≤ b into an even number of subintervals n of length
h = (b− a)/n with endpoints

a = x0 < x1 < x2 < . . . < xn−1 < xn = b,

Main idea: Suppose a typical parabola Pi (i.e. ax2+bx+c) passes through three consecutive
points (xi−1, yi−1), (xi, yi), (xi+1, yi+1).

Figure 7.5: Simpson’s Rule visualised. For this method, the curve y = f(x) is approximated
using n parabolae; then the area underneath the parabolae is taken as the approximate value
of the integral.

We will not go through the derivation, but I can tell you that Simpson’s formula turns out
to be. . .

h

3
(S0 + 4S1 + 2S2) ,

where

S0 = f(a) + f(b), (7.1)

S1 = f(x1) + f(x3) + f(x5) + . . .+ f(xn−1), (7.2)

S2 = f(x2) + f(x4) + f(x6) + . . .+ f(xn−2). (7.3)

(7.4)

Observe that for all the indices that appear in S1, are odd, while those for S2 are even
(remember that as n must be even, we have that (n− 1) is odd whilst (n− 2) is even).
Meanwhile it can be shown for Simpson’s rule that if

|f (4)(x)| ≤M for all x with a ≤ x ≤ b,
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then

|εS | ≤
M(b− a)5

180n4
.

Example 7.3. Evaluate

I =

∫ 2

1

1

x
dx

using Simpson’s rule with n = 10, a = 1, b = 2.

Note that

h =
2− 1

10
=

1

10
= 0.1,

and keep track of all the values of xi and f(xi) as follows. . .

i xi f(xi) = 1/xi

0 1.0 1
1 1.1 10/11
2 1.2 5/6
3 1.3 10/13
4 1.4 5/7
5 1.5 2/3
6 1.6 5/8
7 1.7 10/17
8 1.8 5/9
9 1.9 10/19
10 2.0 1/2

Sums 1.5000000 3.459539 2.728175

i.e.

S0 = 1.500000

S1 = 3.459539

S2 = 2.728175

and therefore

Î =
h

3
(S0 + 4S1 + 2S2) = 0.693150.

Compare with the exact value

I =

∫ 2

1

dx

x
= ln 2 = 0.69314718,

hence this is correct to FIVE d.p. (Trapezium Rule was correct to 1 d.p.)

7.5 Newton’s Method for Root-Finding

In engineering, it is often required to find x such that

f(x) = 0. (7.5)
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These values of x are known as roots of f(x).

Examples:

1) x2 − 3x+ 2 = 0

2) sinx = 1
2x

3) coshx cosx = −1

All of these can be written in the form (7.5).

In this course, I will introduce you to one of the fastest methods for finding roots of
f(x). . . Newton’s Method (a.k.a. Newton-Raphson Method).

How the method works:

Let our first (initial) guess to the root be x0. Then x1 is the point where the tangent to
the curve f at x0 intersects the x-axis.

tanβ = f ′(x0) =
f(x0)

x0 − x1
,

i.e.

x1 = x0 −
f(x0)

f ′(x0)
.

Now x1 is our new guess for the root of f(x).But we might want a better guess; call this
x2. It turns out the next iteration is

x2 = x1 −
f(x1)

f ′(x1)
,

and we can repeat the procedure yet again:

x3 = x2 −
f(x2)

f ′(x2)
,

and so on. We can keep iterating until we get the desired accuracy, using the formula:

xn+1 = xn −
f(xn)

f ′(xn)
.

Example 7.4. Find the positive solution of

2 sinx = x.

First, get the original equation into the form f(x) = 0:

f(x) = x− 2 sinx

⇒ f ′(x) = 1− 2 cosx.
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Figure 7.6: In the last example, we used the Trapezium Rule to estimate the area shaded in
blue.

Figure 7.7: A plot of y = 2 sinx and y = x. The root we are after is the positive x-value at
the point where the two functions intersect.

Then, by Newton’s Method,

xn+1 = xn −
xn − 2 sinxn
1− 2 cosxn

=
2(sinxn − xn cosxn)

1− 2 cosxn
=
Nn

Dn
.

We need an initial guess, e.g. x0 = 2.

n xn Nn Dn xn+1 = Nn/Dn

0 2.00 3.483 1.832 1.901
1 1.901 3.125 1.648 1.896
2 1.896 3.107 1.639 1.896

The actual solution to 4 d.p is 1.8955.
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Advantages of Newton’s method:

• Converges very fast!

• You only need to give one initial guess (some methods require TWO).

Disadvantages:

• You need to calculate the derivative of f(x).

• Sometimes the method doesn’t converge to a root at all!

• The method is useless if your first guess is a stationary point of f(x) (because you
get a division by zero).
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Probability and Statistics

8.1 Basic Probability

For an event E, the probability of the E occurring, denoted P(E), is a number such that

0 ≤ P(E) ≤ 1.

where

P(E) = 0 =⇒ E is impossible,

P(E) = 1 =⇒ E is certain.

Example 8.1 (Rolling a die). The set of all possible outcomes is the sample space, denoted
S, i.e.

S = {1, 2, 3, 4, 5, 6} .

Let A be the event of getting an even number in one roll. Then we have

A = {2, 4, 6}

and therefore

P(A) =
3

6
=

1

2
.

Example 8.2. We randomly select 2 lightbulbs from a set of 5 bulbs (numbered 1 to 5).
The sample space consists of 10 possible outcomes:

S = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},
{2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} .

Note that |S| = 10 is the number of elements in S, also known as the cardinality of the set
S. We may be interested in the following events:

A: No faulty bulbs

B: One faulty bulb

C: Two faulty bulbs

81
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Now assume that bulbs 1, 2 and 3 are all faulty. We see that event A occurs only if we
draw bulbs 4 and 5 (i.e. outcome {4, 5}).

∴ P (A) =
1

10
.

Event B occurs if we draw {1, 4} , {1, 5} , {2, 4} , {2, 5} , {3, 4} or {3, 5}. Hence

P (B) =
6

10
.

Meanwhile, Event C occurs if we draw {1, 2} , {1, 3} , {2, 3}, and therefore

P (C) =
3

10
.

Definition 8.1. The set of all elements (outcomes) not in E in the sample space S is
called the compliment of E, usually denoted Ec or Ē.

Example 8.3. E = randomly rolled die gives an even number, i.e.

E = {2, 4, 6} ,

then Ec = randomly rolled die gives an odd number, i.e.

Ec = {1, 3, 5} .

Let A and B be two events in an experiment.

Definition 8.2. The event consisting of all the elements of the sample space that belong
to either A or B is called the union of A and B and is denoted as A ∪B.

Figure 8.1: A Venn diagram. The union A ∩B is shaded in green.

Definition 8.3. The event consisting of all the elements of the sample space that belong
to both A and B is called the intersection of A and B and is denoted as A ∩B.

Example 8.4. Suppose that we are rolling a die, then consider the following events:

A: The die gives a number not smaller than 4.

B: The die gives a number that is a multiple of 3.
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Figure 8.2: A Venn diagram. The intersection A ∪B is shaded in green.

A = {4, 5, 6} , B = {3, 6} ,

then
A ∪B = {3, 4, 5, 6} , A ∩B = {6} .

Definition 8.4. Events A and B are said to be mutually exclusive events if they have no
element in common, i.e. if

A ∩B = {} = ∅,

where the symbol ∅ denotes the empty set. It has no elements, so the cardinality of the
empty set is zero.

The Axioms of Probability

1. For any event E in a sample space S,

0 ≤ P (E) ≤ 1.

2. For the entire sample space S, we have P (S) = 1.

3. If A and B are mutually exclusive events, then

P(A ∪B) = P(A) + P(B).

Fact: If A and B are any events, then

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Fact:
P(E) = 1− P(Ec).

i.e. the probability of E occurring is 1 − (the probability of E not occurring).

Example 8.5 (Rolling a die again!). The event space is

S = {1, 2, 3, 4, 5, 6}

with P(1) = 1/6, P(2) = 1/6, etc.
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A: The event that an even number is given.

P(A) = P(2) + P(4) + P(6) =
1

2
.

B: The event that a number greater than 4 turns up.

P(B) = P(5) + P(6) =
1

3
.

Example 8.6. Five coins are tossed simultaneously. What is the probability of obtaining
at least one head?

Note: There are in total 25 = 32 possible outcomes, only one of which has no heads.
Therefore

P(At least one head) = 1− P(No heads)

= 1− 1

32
=

31

32
.

Example 8.7. The probability that a person watches TV is P(T ) = 0.6; the probability
that the same person listens to the radio P(R) = 0.3. The probability that they do both is
0.15. What is the probability that they do neither?

Using the addition law,

P(T ∪R) = P(T ) + P(R)− P(T ∩R)

= 0.6 + 0.3− 0.15 = 0.75.

∴ P(They do neither) = 1− P(T ∪R) = 0.25.

Conditional probability

Often it is required to find the probability of an event B given that an event A has already
occurred. This is known as the conditional probability of B given A, and is denoted P(B|A).

The intuition behind this is that A gives a “reduced sample space”, and therefore

P(B|A) =
P(A ∩B)

P(A)
.

Example 8.8 (Conditional Probability). The probability P(A) that it rains in Manchester

on July 15th is 0.6, while the probability P(A ∩B) that it rains there on both the 15th

and 16th is 0.35. Given that it rains on the 15th, what is the probability that it rains on
the next day?

Note: B is the event that it rains in Manchester on July 16th. We need to find P(B|A),
and using the formula for conditional probability :

P(B|A) =
PA ∩B

P(A)
=

0.35

0.6
=

7

12
= 0.583. (3 d.p)
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Example 8.9. A fridge contains 10 cans of lager, three of which are “4X” (to be avoided).
Robb selects 2 cans at random. Find the probability that none of the selected cans are
“4X”.

Let A = First can selected is not 4X,

B = Second can selected is not 4X.

We will look at two different cases. . .

1 The case with replacement, i.e. Robb puts the first can back in the fridge before
choosing the second. Then

P(A) = P(B) =
7

10
,

and

P(A ∩B) =
7

10
× 7

10
= 0.49.

2 Sampling without replacement, i.e. the first can is NOT put back in the fridge.
Then. . .

P(A) =
7

10
, and P(B|A) =

7× 1

10× 1
=

6

9
=

2

3
.

∴ P(A ∩B) = P(A) P(B|A) =
7

10
× 2

3
=

14

30
≈ 0.47.

8.2 Random Variables

Sometimes engineers must work with a variable X whose (real) value is subject to variations
due to chance (randomness). We call X a random variable.

So X can take on a set of possible different values, each with a corresponding probability.
We can say that for each possible value a, for

X = a the probability of this value is P(X = a).

We can then say that the probability that X assumes any value within the range:

1. b < X < c is P(b < X < c)

2. X ≤ c is P(X ≤ c)

3. X > c is P(X > c).

Actually,
P(X ≤ c) + P(X > c) = P(All possible values of X) = 1,

or equivalently,
P(X > c) = 1− P(X ≤ c).
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Example 8.10. Let

X = Score obtained when I roll a fair die..

Then. . .

P(X = 1) =
1

6
, P(1 ≤ X ≤ 2) =

1

3
,

P(1 < X < 2) = 0, P(X < 0.5) = 0.

In this example, our random variable is discrete. Random variables can also be continuous,
but we will only discuss discrete ones in this course.

Let x1, x2, . . . be the possible values ofX, each with probabilities

P1,P2, . . .

Then we can consider a probability distribution function (p.d.f) for f(x).

Note that the condition
∑

j f(xj) =
∑

j Pj = 1 is necessary.

Example 8.11 (Rolling one die). By sketching the p.d.f, we can visualise the distribution
of the random variable X. . .

Figure 8.3: The p.d.f. for rolling one die. Observe that the probabilities for the scores 1 to
6 are all the same (and add up to one). Moreover, the p.d.f. shows that there is no chance
of scoring 7, 8, 9, . . .

This particular example is a uniformly distributed random variable.

Example 8.12 (Rolling two dice). There are 36 possible outcomes, all with a probability
of 1

36 . Let’s define the random variable X as:

X = Sum of the numbers obtained by rolling two dice.

x 2 3 4 5 6 7 8 9 10 11 12

f(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Example 8.13. Suppose X = {0, 1, 2, 3}, and the following two distributions are:
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Figure 8.4: The p.d.f. for rolling two dice. Unsurprisingly, there is zero chance of gaining
a sum of thirteen!

i f(x) = 1
8(1 + x)

ii f(x) = 1
10(1 + x).

Only one of these is a valid p.d.f. Which one, and why?

Answer: (ii) is valid, but (i) is not.
Why: Need

∑
j f(xj) = 1. Only (ii) satisfies it.

Definition The mean, expectation or expected value µ of a discrete p.d.f:

[(E(X) =] µ =
∑
j

xjf(xj) = x1f(x1) + x2f(x2) + · · · .

Example 8.14 (Expected value for rolling a fair die). Recall that

f(xj) =
1

6
when j = 1, 2, . . . , 6

⇒ µ = 1× 1

6
+ 2× 2

6
+ . . .+ 6× 6

6
= 3.5.

Granted, we can’t gain a score of 3.5 if we roll the die only once. But that is not what
µ means. Actually, µ represents the average “score” you would get if you rolled the die
many times.

Example 8.15. A stranger shows you a game where you draw a ball out of a bag. There
are 6 white balls and 4 blue balls in the bag.

• If the ball is white, you win 40p.

• If the ball is blue, you lose 80p.

Afterwards, the ball is replaced. What are your expected winnings? And is it worth playing
that game?

Let X = winnings obtained after drawing the ball out.

When X = 40 (x1) P(x1) =
6

10
,

X = −80 (x2) P(x2) =
4

10
.
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Therefore for the expected value

⇒ µ = x1 P(x1) + x2 P(x2) = 40× 6

10
+ (−80)× 4

10
= −8p.

∴ After playingn games you can expect to lose 8n pence!

Better off to NOT play this game.

Definition The variance of a distribution, denoted σ2 (or Var(X)) is defined by

σ2 = Var(X) =
∑
j

(xj − µ)2f(xj)

= (x1 − µ)2f(x1) + (x2 − µ)2f(x2) + · · · .

Shortcut: σ2 = E(X2)− µ2, where E(X2) is the mean for X2.E(X2) =
∑
j

f(xj)x
2
j .


Can interpret σ2 as a measure of the spread of the data. Specifically, it is the expected
square deviation of X from the mean µ.

Example 8.16 (Coin toss). Let 1 and 0 denote heads and tails respectively. It is easy to
show that

µ = 0× 1

2
+ 1× 1

2
=

1

2
,

but what is the variance?
Take the shortcut. . .

σ2 =

(
02 × 1

2
+ 12 × 1

2

)
−
(

1

2

)2

=
1

2
− 1

4
=

1

4
.

8.3 The Binomial Distribution

Start by conducting an experiment (trial) with only two outcomes. They can be labelled
“success” or “failure”, and their repective probabilities are p and q = 1− p.

E.g. Scoring a 6 from a die roll: p = 1
6 , q = 5

6 .

Then if the trial is repeated a fixed number of times (n), define a new discrete random
variable:

X = Number of successes in n trials.

We assume four conditions:

1. The trial must only have two outcomes
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2. Fixed number of trials

3. The probability of success must be the same for all trials

4. The trials are independent.

Example 8.17. Find the probability of 0,1,2,3,4 successes in an experiment consisting of
up to 4 repeated trials with probability of success p (∴ q = 1− p).

Number of Trials 1 2 3 4

Number of Successes

0 q q2 q3 q4

1 p 2pq 3pq2 4pq3

2 0 p2 3p2q 6p2q2

3 0 0 p3 4p3q

4 0 0 0 p4

Generally, we can consider the p.d.f. f(x) = P(X = x). Then the probability of x successes
in n trials is

P(X = x) =

(
n

x

)
pxqn−x,

where
(
n
x

)
is the binomial coefficient, and the p.d.f. corresponds to the Binomial Distribu-

tion.

Recall that (
n

x

)
=

n!

x!(n− x)!

These binomial coefficients represent the number of ways of choosing x objects from a set
of n objects.

Example 8.18. We roll a die 56 times. What is the probability of getting at least three
sixes?

Define a random variable X as

X = Number of sixes thrown in 56 trials.

Then we say that

X ∼ B

(
n = 56, p =

1

6

)
Then we want

P(≥ 3) = 1− P(X = 0, 1 or 2)

1−

[(
5

6

)56

+

(
56

1

)(
5

6

)55(1

6

)
+

(
56

2

)(
5

6

)54(1

6

)2
]

Note: It is perfectly fine to leave your answer in this form!
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Example 8.19. A factory produces plenty of board pens. However, 10% of the pens are
defective. If I open a random box containing twenty board pens, what is the probability
that:

i Exactly 3 pens are defective?

ii More than 3 pens are defective?

(Answer to 3 decimal places)

First, if X = number of faulty pens in a box of 20,

X ∼ B(20, 0.1)

i We want

P(X = 3) =

(
20

3

)
(0.1)3(0.9)17 ≈ 0.190.

ii This is P(X ≥ 3), i.e.

P(X ≥ 3) = 1− P(X ≤ 2)

= 1−
[
0.920 +

(
20

1

)
(0.1)(0.9)19 +

(
20

2

)
(0.1)2(0.9)18

]
≈ 0.323.

Mean and variance of B(n, p)

Since

f(x) =

(
n

x

)
pxq1−x,

it turns out that

Mean: µ =

n∑
x=0

xf(x) =

n∑
x=0

(
n

x

)
pxqn−xx = np

Variance: σ2 = npq = np(1− p).

So for the board pen example, µ = 2, σ2 = 1.8.

8.4 The Poisson Distribution

Consider the following scenarios:

i Number of phone calls arriving at a call centre per hour.

ii Number of cars crossing a bridge per hour.
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iii Number of faults in a length of cable.

These problems require a distribution that involves an average rate µ. Actually, there is
one - it is the Poisson distribution, and its p.d.f. is:

P(X = x) =
e−µµx

x!
,

where X = 0, 1, 2, . . . , to ∞.

Example 8.20. On average, 240 cars per hour pass a check point, and a queue forms if
more than three cars pass through in a given minute.

What is the probability of a queue forming in a randomly selected minute?

Average number of cars per minute =
240

60
= 4 = µ.

Let
X = Number of cars passing at a randomly selected minute.

Then X ∼ Po(4), and we require

P(X ≥ 3) = 1− P(0 ≤ X ≤ 3)

1− [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]

= 1− 0.4331 = 0.5669.

One important use of the Poisson distribution is to APPROXIMATE the Binomial distri-
bution, because Poisson is easier to compute.

Recall that for binomial,

f(x) =

(
n

x

)
pxqn−x.

Then if you let p −→ 0 and n −→∞ with µ = np fixed and finite,

f(x) −→ Po(µ).

Moreover, the Poisson distribution has mean µ and variance µ.

Example 8.21. A factory produces screws. The probability that a randomly selected
screw is defective is given by p = 0.01.

In a random sample of 100 screws, what is the probability that there will be more
than two defective screws?

Let A = More than two defective screws

⇒ AC = At most 1 defective.

P(AC) =

(
100

0

)
(0.01)0(0.99)100 +

(
100

1

)
(0.01)1(0.99)99

+

(
100

2

)
(0.01)2(0.99)98.
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After spending ages on your calculator, you finally get

⇒ P(A) = 1− P(AC) ≈ 0.0794. (3 s.f.)

Alternative: Poisson approximation. As n is large and p small, we have

µ = np = 1, ∴ 1 out of 100 defective on average.

⇒ P(AC) ≈ e−1

(
10

0!
+

11

1!
+

12

2!

)
= ×5

2
e−1 ≈ 0.9197,

and
P(A) = 1− P(AC) ≈ 0.0803. Close to the binomial result!
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