
C31: Game Theory. A¢ liate Exam, December 2005: Answers

1. a) Consider a game in strategic form, G. De�ne a strictly
dominated strategy. Show that if player i has a strictly dominated
strategy si; then si cannot be played in any Nash equilibrium of the
game G:
b) Consider a Cournot oligopoly with n �rms, producing a homo-

geneous product. The market price P = 100 � Q; where Q is total
quantity. Firms are symmetric and have zero costs. Consider the
game where �rms simultaneously choose quantities, where a quantity
is any non-negative number, and seek to maximize expected pro�ts.
i) what are the strictly dominated strategies for a �rm?
ii) Solve for a symmetric Nash equilibrium. How does the market

price in this equilibrium vary with n; the number of �rms?
iii) Show or explain why there cannot be any asymmetric Nash

equilibrium in this game.

a) A strategy si is strictly dominated if there exists some other (mixed)
strategy for player i; s0i such that:

ui(si; s�i) < ui(s
0
i; s�i); for all s�i 2 S�i: (1)

Let (s�i ; s
�
�i) be a Nash equilibrium. This implies

ui(s
�
i ; s

�
�i) � ui(s0i; s��i); for any s

0

i 2 Si: (2)

But if s�i is strictly dominated, then from (1), it follows that ui(s�i ; s
�
�i) <

ui(s
0
i; s

�
�i); which contradicts (2).

b) Let Q�i be the total quantity produced by all �rms excluding �rm i:
Firm i�s pro�ts are given by

�i(qi; Q�i) = qi(100�Q�i � qi): (3)

@�i
@qi

= 100�Q�i � 2qi: (4)

Equation (4) tells us that @�i@qi
< 0 if qi > 50; irrespective of the value of Q�i;

as long as its non-negative. Therefore any output level qi > 50 is dominated by
qi = 50; since the latter gives a strictly higher payo¤ no matter what the value
of Q�i: So the strictly dominated strategies are qi:qi > 50:
ii) The �rst order condition yields

q̂i =
100�Q�i

2
: (5)
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In a symmetric equilibrium, Q��i = (n� 1)q�; which yields q� = 100
n+1 :

iii) Suppose that �rms 1 and 2 produce di¤erent outputs in equilibrium, q1
and q2: From the �rst order condition for �rm 1 we have

2q1 + q2 +
nX
j=3

qj = 100: (6)

From the �rst order condition for �rm 2 we have

2q2 + q1 +
nX
j=3

qj = 100: (7)

Subtracting these two equations from each other, we get:

q1�q2 = 0: (8)

This proves that there cannot be an asymmetric equilibrium.

Q2: Answers will be provided separately.
3. Consider the following Bayesian game. Nature chooses between

states ! and !0; where ! is chosen with probability �. Player 1 ob-
serves the state, while player 2 has no information regarding nature�s
choice. The two players then play a simultaneous move game with
payo¤s as given below, where player 1 chooses between T and B; and
2 chooses between L and R:

L R
T 2,2 1,3
B 3,1 0,0

L R
T 5,5 0,0
B 0,0 2,2

payo¤s at ! payo¤s at !0

a) Solve for the pure strategy Bayesian Nash equilibrium of this
game when � = 0:8 and � = 0:2:(There may or may not be more than
one equilibrium.)

Let a be the action played by player 2 at his single information set. At
state !0; the game played is a coordination game, and so player 1 would like to
�match�a; i.e. she would like to play T if a = L; and B if a = R:
Suppose that a = L: In this case, player 1 will play B at ! (since 3 > 2): So

the candidate equilibrium is (B; T ;L) (i.e. 1 plays B at !; T at !0 and 2 plays
L): By construction, 1 is playing optimally given 2�s strategy. 2�s payo¤ from L
at this strategy pro�le is given by

�:1 + (1� �)5 = 5� 4�: (9)

While 2�s payo¤ from R is given by

�:0 + (1� �)0 = 0: (10)

So this is an equilibrium for any value of �:
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Suppose now that a = R: In this case, player 1 will play T at ! (since
1 > 0): So the candidate equilibrium is (T;B;R). By construction, 1 is playing
optimally given 2�s strategy. 2�s payo¤ from R at this strategy pro�le is given
by

�:3 + (1� �)2 = 2 + �: (11)

While 2�s payo¤ from L is given by

�:2 + (1� �)0 = 2�: (12)

Since 2� � 2 + � for any �; this is an equilibrium for any value of �:
So for both values of �; we have two pure strategy equilibria.
b) Consider a di¤erent game where neither player observes the

realized state. Solve for the pure strategy Nash equilibria of this
game.

The game is now symmetric and the expected payo¤s of the players are now
given by

L R
T 5-3�;5-3� �; 3�
B 3�; � 2-2�;2-2�

(T;L) is a Nash equilibrium provided that

5� 3� � 3� , (13)

i.e. as long as � � 5
6 : So this is an equilibrium for both values of � in the

question. This also implies (B;L) or (T;R) cannot be an equilibrium for these
values of �; since in the �rst case, 1 wants to deviate to T; and in the second
case, 2 wants to deviate to L:
(B;R) is a Nash equilibrium provided that

2� 2� � �; (14)

i..e as long as � � 2
3 : So this is an equilibrium if � = 0:2; but not if � = 0:8:

To summarize: when � = 0:8; there is a unique pure strategy equilibrium,
(T;L): When � = 0:2; both (T;L) and (B;R) are Nash equilibria.

4. Two players, A and B, have to decide how to divide two cakes,
X and Y: Each case is of size one, and the A�s payo¤ from a share
(x; y) (of x amount of X and y amount of Y ) is given by the utility
function

U(x;y) = x+ �y:

B�s payo¤ from a share (x; y) is given by the utility function
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V(x;y) = x+ �y:

Assume that � > 0; and � > �:
The mechanism for dividing the cake is as follows. A divides each

of the cakes, and puts them in two bundles, so that one bundle is (x; y)
and the second bundle is (1�x; 1� y); where 0 � x � 1 and 0 � y � 1: B
chooses one of the two bundles, and the remaining bundle is consumed
by A:
a) Solve for a backwards induction equilibrium. You may assume

that if B is indi¤erent between two bundles, he chooses the bundle
that A would like him to choose.
Let bundle 1 be (x; y); so that bundle 2 is (1 � x; 1 � y): Let A choose the

bundles so that
i) B always �nds it optimal to choose bundle 1, and
ii) Bundle 2 maximizes A�s payo¤ subject to this constraint.
Thus the maximization problem for A can be written as:

max
x;y

f(1� x) + �(1� y)g (15)

subject to the constraints:

x+ �y � (1� x) + �(1� y); (16)

0 � x � 1; 0 � y � 1: (17)

Since A wants to maximize his payo¤, (and since he likes more cake), he will
ensure that this constraint is satis�ed with equality.

x =
1 + �(1� 2y)

2
; (18)

Substituting the �rst constraint in the objective function, we get

U(y) =
1� �(1� 2y)

2
+ �(1� y) (19)

@U

@y
= � � � > 0: (20)

This implies that A wants to increase y up to the point that one of the non-
negativity constraints in (17) are binding. The relevant constraints are y � 1;
and x � 0:
Consider the case where � � 1: In this case, we can verify that x � 0 is the

relevant constraint (since if y = 1; V (x; y) > V (1 � x; 1 � y)): So the solution
has x = 0; y = 1+�

2� ; where the solution for y is obtained from setting x = 0 in
(??).
Consider next the case where � < 1: In this case, y � 1 is the binding

constraint, and we have x = 1��
2 ; obtained by setting x = 1 in (??).
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Note: you can also provide a more informal argument for the solution. Intu-
itively, B likes Y relatively more than A, it is e¢ cient for him to construct B�s
bundle so that the for any utility level that B gets from this bundle, the amount
of cake Y is maximal. Second, A wants to make B indi¤erent between the two
bundles.
b) Explain how the outcome would vary if B was to play the role

of dividing the cake while A chooses.
The argument is perfectly symmetric. B would make A indi¤erent between

the two bundles, and would design A�s bundle so that x is maximized, subject
to the inequality constraints, x � 1 and y � 0:
c) Is this mechanism of divide and choose a fair mechanism?
The divider has an advantage �while the chooser is indi¤erent between the

two bundles, it is easy to verify that the divider strictly prefers his own bundle
(ie. the one that the chooser does not choose).
d) Consider now an alternative divide and choose mechanism.

First A divides cake X; and B chooses one of the two shares. Then
B divides cake Y; and A chooses. Solve for the backwards induction
outcome and compare this with of the original mechanism. Which
mechanism is more e¢ cient ?
Consider the division of cake Y �rst. Irrespective of what has happened on

the division of cake X, A will choose the larger portion of cake Y. So it is optimal
for B to set y = 0:5: Now in the division of cake X, for the same reason, A must
set x = 0:5: So the division is such that both players get half of each cake. This
is fair, but ine¢ cient, since both can get a higher payo¤ at an allocation where
A gets more of X and B gets more of Y.
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