C31: Game Theory. Affiliate Exam, December 2006 (Answers)

1. a) Maximizing U(.) wrt to z, we get the first order condition

1—22=0, (1)

which implies that player 1’s best response #(y) is independent of y and
equals 0.5.

Player 2’s best response function is §(z) = x. Solving both simultaneously,
the unique NE is (0.5,0.5).

b) Solving backwards: player must choose y = x whatever the value of
x chosen by 1 in stage 1. Thus 1’s maximization problem is to choose z to
maximize:

1+x— 2% —0.5z. (2)

The solution is z* = 0.25.

Thus the subgame perfect equilibrium is : 1 chooses 0.25; 2 chooses y = =
for every value of z.

c) Player 1 realizes that any change in his own action z will result in an equal
change in his opponent’s action in (b), He therefore takes this into account. in
the simultaneous move game, a change in 1’s action cannot affect 2’s action.

2. a)For 1, M strictly dominates B. For 2, L strictly dominates R. After
these eliminations, no strategy is strictly dominated (iteratively).

b) Since a strictly dominated strategy cannot be played in any NE, pure or
mixed, we may restrict attention to {T', M} for 1 and {L,C} for 2.

(T, C) is a NE since neither player can do better by deviating. For example,
1 does worse by playing M, since 3 > 1. Similarly, 2 does worse by deviating
since 0 > —1.

(M, L) is a second NE (you need to verify this)

There are no other pure strategy NE (i.e. you need to explain why (7', L)
and (M, C) are not.

¢) In any mixed equilibrium, players will only randomize across non-strictly
dominated strategies. Let player 2 play L with prob. ¢, and C' with prob. 1—gq.

Un(T,q) = —q+3(1 —q). (3)

Ur(M,q) =0+ (1—q). (4)

Equating these payoffs one gets ¢ = %
Similarly, let 1 play T with prob. p and M with prob. (1 —p). Since p must

make 2 indifferent between his two actions, we can write down the payoff to

actions. The solution is p = %



So the Nash equilibria are the two pure strategy NE in (b) and the mixed
NE set out above.

d) examples from the lectures or the book: serving in tennis or kicking
penalties in football. Reporting a crime. You need to spell these out!
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where the last line follows from the fact that v; is uniformly distributed on
[0,1].
Differentiating the payoff function with respect to b;, we get
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This yields
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¢) For a symmetric Bayes NE, we must have:

1

ki = 77
ak;

(10)
for i = 1,2, where 7 = 1,2 and j # . That is, one must have kiky = i.

There are many solutions to this, one of which is ky = ky = %

4. a) Suppose that k = 1 or 2. Then the player whose turn it is to move can

win. This implies that if £ = 3, any move must lead to a winning position for
the other player, and is therefore a losing position. This implies that if K = 4 or
5, the player to move can ensure that the other player is in an losing position,
i.e. at kK =3. Thus 4 or 5 is a winning position. Now this implies that £k = 6
is a losing position. Continuing in this fashion, one sees that &k = 15 is a losing
position.

b) The above intuition says that if n is divisible by 3, then it is a losing
position, and otherwise it is a winning position, for the player who has to move.
This can be proved formally by induction. Suppose that one has demonstrated
that for any k < n, k is a winning position if it is not divisible by 3, and a losing



position if it is divisible. Suppose that n is divisible by and it is i’s turn to
move. Any feasible move must lead to a k' < n which is not divisible by 3, and
therefore (by the induction hypothesis) to a winning position for i’s opponent.
Thus n is a losing position. Conversely, if n is not divisible by 3, then 4 can
ensure that his opponen’s position is a k&’ < n which is divisible by 3 amd which
is a losing position. Thus we have shown that n is a losing position if and only
if it is divisible by 3.



