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strained set of rules satisfying strategy profness, individual rationality
and weak e�ciency - a mild requirement of ex-post e�ciciency. We

prove that decent rules are implemented by the Filtered Demands
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1 Introduction

ex-ante
interim

ex-post

social choice rule

ex-ante interim
ex-post ex-ante

ex-post vice-versa
ex-post

weak e�ciency (WE).

It is well known that in environments where agents have private information
and act strategically, achieving non-dictatorial �rst best allocations is often
impossible. This is true in dominant strategy settings, as well as in Bayesian
ones. How e�cient can a given incentive compatible be?
When addressing this question, it is important to distinguish between the
rules that do well in the sense, those that do well in the ,
and the ones that do well . A rule that does well , might do
very poorly , and .
In this paper we investigate rules that satisfy an e�ciency prop-

erty which we call We take a simple environment: a
bargaining problem where two agents must share a unit of surplus and have
private reservation shares (agents’ types). This problem is easily transformed
into bilateral trade or into the problem of sharing the cost of a public good.
In the bargaining context, possible outcomes are de�ned as all feasible divi-
sions of the surplus union the disagreement point. The agents preferences
over outcomes are determined by concave utilities over net surplus - the ex-
cess between an agents’ share and her (privately known) reservation share.
A rule is a social choice function, assigning shares of the surplus to the agents,

2

For dominant strategy environments see Hurwicz [1972], Gibbard ]1973], Satterthwaite
[1975], Green and La�ont [1977]. For Bayesian environments see Myerson and Satterth-
waite [1983]. Corchon [1996] presents a uni�ed treatment. In economic environments with
quasi-linear preferences it has even been shown that requiring only Bayesian incentive
compatibility doesn’t provide any improvement in e�ciency, as compared to the dominant
strategy incentive compatibility. See Williams [1999] and Mookherjee and Reichelstein
[1992].
A non-cooperative game of incomplete information can be divided into three temporal

stages. At the stage each agent knows only the distributions of types of all agents,
including himself. At the stage each agent knows her own type but still knows
only the distribution of types of her opponents. At the stage the types of all agents
are common knowledge.
More precisely, in the bilateral trade context, the problem can be translated into one

where the buyer has a valuation of the good and the seller has a cost of producing the
good. Similarly, in the cost-sharing of a public good, the problem is translated into one
where agents have private valuations of the public good and have to share its cost.
In the language of social choice, the agents preferences lie in the restricted domain de-

termined by each pair of concave utilities over net surplus. Thus agents private information
on preferences is equivalent to private information on reservation values.
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ex-post
decent bargaining

rules

net surplus rule

ex-ante

posted split

ex-ante

This is unrelated to decency as a constraint on the behavior of agents as in Herrero
and Corchon [2003].
This follows from inexistence of e�cient strategy-proof mechanisms which is implied

by Myerson and Satterthwaite [1982].
In the context of bilateral trade Hagerty and Rogerson [1987] call these mechanisms

posted-price mechanisms. The revelation principle for dominant strategies (see Corchon
[1996]) allows us to identify rules with direct mechanisms that implement them.

possibly in a probabilistic way, for each pair of reports on reservation shares.
Weak e�ciency imposes that whenever agents’ reservation shares are com-
patible, the probability that all the surplus is allocated is strictly positive.
We focus on rules satisfying weak e�ciency and the strongest incentive re-
quirements, strategy proofness and individual rationality. We call the
rules that are Pareto optimal in this constrained set the

.
We fully characterize decent rules for all environments where agents have

concave utilities; thus we do not require risk-neutrality. Decent rules are
always probabilistic, the probability of implementing the disagreement point
being the tool to elicit truthful revelation. An important characteristic of
the decent rules is that the outcomes depend non-trivially on agents’ reports.
Our characterization implies that, whenever it exists, the decent rule is always
unique. We prove that a decent , a rule in which shares and
probabilities depend only on 1 (the sum of the revealed types) is necessarily
one where agents obtain their reservation plus a �x portion of the revealed
net surplus. Furthermore, we completely identify the class of utilities for
which such decent rule exists: it includes utilities with constant relative risk
aversion (CRRA), but does not include for example, exponential utilities.
For the domain of risk-neutral preferences, Hagerty and Rogerson [1987]

prove in the context of bilateral trade, that any strategy proof mechanism
yields the same total surplus than a mechanism whose operation is
independent of agents’ reports. Such mechanisms, in the bargaining context
we call them mechanisms, operate in the following way. First, a
distribution function is announced, and a split of pie is selected according to
a random draw from that distribution. The split is then announced publicly,
and if both agents agree to it, it is implemented. Otherwise the agents get
their disagreement payo�s. It is easy to see that to maximize payo�s
the posted split should be selected with a degenerate distribution; for any
given distribution of agents’ types, the mechanism must pick the split that

3
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ex-post
ex-ante

The characterizations of strategy proof rules by Barber�a and Jackson [1995] and
Sprumont [1991] are also related. Barber�a and Jackson [1995] show that in two-person
economies strategy proofness and individual rationality imply that trade is at �xed pro-
portions. For the division problems with single peaked preferences, when the disagreement
is not an alternative, Sprumont [1991] proves that the uniform rule is the unique rule that
is e�cient, symmetric and strategy proof.
See Section 7 for concrete examples.
See Hurwicz [1983], Jackson and Palfrey [2001] and Rubinstein and Wolinsky [1992]

for discussions on the problem of enforceability of mechanisms. On renegotiation see for
instance Maskin and Moore[1999].

maximizes expected gains from trade. Because the decent mechanism is
necessarily probabilistic, under risk neutrality it must yield the same

payo�s as a posted split rule with a non-degenerate distribution. This
payo� equivalence no longer holds under risk aversion. In fact, if agents are
su�ciently risk averse, the ex-ante payo�s of the decent rule dominate those
of any posted split rule.
In general, the decent rule does not maximize the sum of expected payo�s.

However, designing ex-ante optimal rules requires knowledge of the distrib-
ution of agents’ types. Without this information, the e�ciency of rules that
are not weakly e�cient - posted split rules, for example - will depend on luck
alone, and their ine�ciency can be severe. A decent mechanism, although
possibly not optimal , will always be decent in terms of e�ciency,
regardless of the distribution of agents’ types.
Another reason we may be interested in the decent rule is that implement-

ing a social choice rule requires strong commitment by the agents. They have
to obey the mechanism, and abstain from renegotiating the outcomes, even if
it is revealed that mutually agreeable improvements were possible. Posted
split rules do not account for such renegotiation considerations because they
operate at the stage. In other words, in a posted split mechanism it
may well happen that the two agents have mutually compatible shares which
are not compatible with the announced division. Thus, the agents might be
inclined to renegotiate. But if the outcomes can be renegotiated , and
the agents know it , this will change the agents’ incentives. Weak e�-
ciency can be interpreted as a weak requirement on renegotiation-proofness.
The motivation for weak e�ciency is most apparent when a bargaining

rules are interpreted as the direct revelation implementation of equilibria
in dynamic bargaining games among impatient agents. In these settings,
the probability of disagreement is equivalent to delay. Weak e�ciency is

4
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Another way to address this is the following. If an agent wished a strategy proof
mechanism that gave her as much as possible for all her types and in any possible draw of
the opponent’s types, then a decent rule is what she should subscribe to. It should thus
come as no surprise that the more risk averse the agents are, the more e�cient are the
decent rules. See also the remark in Section 6.
By the �rst order condition, all the regular equilibria of the FD game are belief-

independent, hence they are ex-post equilibria (see Ledyard[1978] or Bergemann and Mor-
ris [2001] ). The informational assumption that we need is the conditional independence
of beliefs, also called the spanning property.

then the property that an agreement occurs, sooner or later, when types are
compatible and never otherwise. In a decent mechanism, agents agree as soon
as possible, while the correct incentives are preserved. We formalize this
interpretation in the second part of the paper, where we provide a natural
dynamic game implementing decent rules. We call this game the

(FD) game.

The FD game is the simplest possible bargaining game in continuous
time, its main feature being that the information �ow between the agents is
minimized. It can be envisioned as a market with a completely closed order
book where both agents keep posting their demands. In continuous time, the
agents keep sending their changing demands (they have a common discount
function) to a central agent, . The Filter’s role is to record these
messages secretly, making them public only when the agreement is possible.
Then the game ends with the agents obtaining their agreed shares. Thus, the
agents recognize how much net surplus is available only when they reach an
agreement, and at that moment they share all the remaining surplus. Hence,
at no moment of agreement can they renegotiate to a better outcome .
In the FD game we de�ne an equilibrium in regular strategies as a Bayesian

equilibrium which is undominated and in which the agents’ strategies satisfy
some smoothness requirements. We prove that the regular Bayesian equi-
libria of the FD game implement precisely all the decent rules. The proof
is implied by our result that no common prior is needed to play a regular
equilibrium in the FD game. The implementation result that we obtain is
quite strong. First, there is a one-to-one correspondence between the regular
equilibria of the FD game and the decent rules. Second, the FD game is
in a way more general than the decent mechanisms. To construct a decent
mechanism, the designer (as well as both agents) has to know the restricted
domain of preferences (i.e. the forms of the utilities of both agents, but not

5
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See Ausubel, Cramton and Denekere [2002] for an excellent survey and references.
See Theorem 1 in Ausubel and Denekere [1992].

their private types). On the other hand, in the FD game, only the agents
need to know the forms of each other’s utility functions. The implemen-
tation via the FD game proves that the best design for a dynamic game
implementing a strategy-proof, weakly e�cient rule is to completely restrict
the communication between the agents.
The FD game also provides a strong link to the literature on non-cooperative

bargaining games with incomplete information. While a great deal is known
about the bargaining games where two agents alternate o�ers, and there is
one-sided incomplete information, characterizing the set of equilibria with
two-sided incomplete information has remained an elusive task. When im-
patient agents bargain non-cooperatively over time, agreements are delayed
because e�cient equilibria are impossible under two-sided incomplete infor-
mation. In such bargaining process, agents must learn what aspirations are
reasonable before they are ready for an agreement; learning requires commu-
nication and time. But learning is a double-edged sword. On one hand, as
agreements are more easily attained when the parties know well the limits
of what is agreeable, it is important that the agents credibly communicate
what they cannot accept. On the other hand, when an agent learns of her
opponent’s readiness for agreement, such knowledge may increase the agen-
t’s aspirations. In these circumstances, rational learning actually shrinks the
room for agreement instead of widening it. Thus, when the agents bargain
face to face, directly exchanging proposals and replies, the scope for useful
credible communication is severely limited or inexistent. For instance, sep-
arating equilibria in stationary strategies exhibit the undesirable property
that, in the limit as the time interval between the o�ers vanishes, the prob-
ability of agreement vanishes too. Thus, when bargaining is face to face,
a smooth learning process conducive to agreement is di�cult, if not utterly
impossible. Our results demonstrate what can be attained when face to face
bargaining is either ruled out, or the agents are cognitively constrained and
are cannot update their beliefs. Thanks to the Filter, bargainers learn only
what their opponent cannot yield. Over time, learning smoothly decreases
players’ aspirations.
The idea of drastically �ltering communication has previously been ex-

plored in Jarque, Ponsat�i and S�akovics [2003]. There, instead of the present
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2 Decent Bargaining Rules

set of bargaining alternatives

i , �
i j

i j i i , x , x ,
x.

A
A � � � d

s ,

i A u � s
u .

If we drop the regularity requirement in the equilibria of the FD game, then the set
of Bayesian equilibria also contains the equilibria which are similar to those in Jarque,
Ponsat�i, and Sakovics[2003]; if an agent believes that the opponent will only concede in
discrete steps, then it only makes sense to concede at the complementary splits.

assumption that every division is possible and that concessions must be
smooth, it is assumed that concessions must take place in discrete steps.
Thus, only a few intermediate agreements can be reached. This characteristic
is often a natural feature in realistic situations. However, the discretization
of the set of partitions of the surplus comes at the expense of great tech-
nical problems. The set of equilibria is very large; they all depend on the
distribution of types, and their existence and e�ciency performance cannot
be established without the detailed information about the distribution of
types.
The rest of the paper is organized as follows. In Section 2 we formally

describe the mechanism design problem. We de�ne and characterize decent
rules. In Section 3 we present the Filtered Demands game. In Section 4 we
characterize its equilibria. In Section 5 we show that the equilibria of the
FD game implement decent rules and that all decent rules are attained via
the FD game. For environments of CRRA utilities we explicitly compute
the equilibrium. In Section 6 we illustrate our results with an application
to bilateral trade. In Section 7 we provide some welfare comparisons. In
Section 8 we conclude and discuss the extensions. Most of the proofs are in
the Appendix.

Two agents, = 1 2, bargain over a unit of surplus. Denote by the share
of the good that gets allocated to . Index will always indicate the agent
other than , i.e. = , for = 1 2. To denote a vector ( ) we will write

The , , is the set feasible divisions union
the disagreement point. Formally, = + 1 . An agents
type [0 1] represents her reservation share, the share that leaves her
indi�erent to disagreement, and is her private information. The preferences
of agent over are represented by a utility function ( ), wherewhere
( ) is a twice di�erentiable, strictly increasing, and concave function, with

7
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Strategy Proofness (SP):

Ex post Individual Rationality (IR):

Weak Efficiency(WE)

u u d s .
A A

u u , u
Y, P

z z , z
P z Y z P z d Y, P

P z , Y z Y z , Y z
P z , Y z

i, Y z Y z Y z . Y, P
i s z U s , z

U s , z u Y z s P z .

Y, P
U s , s

U s , z , s z s s , s , i , .

Y, P
P s > u Y s s

s , , i , .

Y, P

s s < P s , s > .

probabilistic bargaining rule

strategy-proof

ex-post indi-
vidually rational

weak e�ciency

A quasi-decent bargaining rule is one that satis�es 1 to 3. A
decent bargaining rule is a Pareto optimal rule among the quasi-decent bar-
gaining rules.

This is a slight abuse of terminology. In a general framework, we should de�ne a
bargainig rule to be a social choice function, mapping pairs of utility functions into � ( ).
We will be dealing with the rules that are not manipulable in dominant strategies. Hence,
we can appeal to the revelation principle for the dominant strategy environments and
identify the set of non-manipulable social choice functions with the set of direct revelation
mechanisms that implement them. Also note in our setting, the private information is
restricted to be over a one-dimensional parameter, which is thus the only thing that an
agent reports to the mechanism.

(0) = ( ) = 0. The payo� from disagreement is normalized to 0
Agents’ preferences over � ( ), the set of lotteries over , are represented
by their expected utilities. From now on we �x = ( ).
We de�ne a ( ) to be a direct revelation

mechanism , mapping pairs of reports = ( ) into two-point lotteries
( ) ( ) + (1 ( )) . Thus the rule ( ) prescribes disagreement
with probability (1 ( )) and agreement at ( ) = ( ( ) ( )) with
probability ( ) where ( ) is the share of the surplus allocated to agent
0 ( ) 1 and ( ) + ( ) = 1 Given ( ) the expected utility of
agent of type upon reports , ( ), is

( ) = ( ( ) ) ( )

We consider the following properties of bargaining rules.

1. ( ) is if truthful re-
ports constitute a dominant-strategy equilibrium. That is: ( )
( ) for every = , all [0 1], = 1 2

2. ( ) is
if ( ) 0 implies that ( ( ) ) 0 for all

[0 1] [0 1], = 1 2

3. : ( ) satis�es if

+ 1 ( ) 0

8
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Example 2

Example 3

Example 4

Y z y , Y z y y y ,

p <
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p i p p p ,

p

u � s
� s � ,

P s
� s s s s <

,

Y s s s i ,

U z , s s � z s z s s

The �rst example shows that WE is not a trivial requirement.

( ) = ( ) = = 1 [0 1]

WE imposes an open ended constraint. Perhaps one could design a WE
mechanism as a combination of an e�cient mechanism that switches
with a slight probability to a WE mechanism. In such case, decency would
not be well de�ned. The next example hints that such switching mechanisms
fail in either WE or IR, and sometimes also in SP. A formal proof of this is
a simple consequence of Lemma 5. The fact that decency is a well de�ned
concept is a trivial consequence of Theorem 7.

˜ 0
+ + ˜= 1

+ = 1 [0 1]

Finally, we give a simple example of a decent mechanism, which provides
most of the intuition for what we do in the rest of this section. Proposition
11 generalizes the next example.

( ) =
[0 1]

( ) =
(1 ) + 1

0

( ) = (1 + ) = 1 2

( ; ) = (1 )
1

2
(1 + )

9

Consider a rule which prescribes a split at �xed shares, a posted-
split rule, and the agents divide the surplus if they both agree to such division.
Thus, , where . Clearly, such a rule
satis�es SP and IR, but does not satisfy the WE.

ex-ante

Take a rule prescribing a posted-split with probability , and
giving the whole surplus to agent with probability , where .
Such a rule satis�es SP, but doesn’t satisfy the IR. To see that WE also
fails observe that since the draw of how the surplus gets allocated is made
ex-ante, it is not true that the probability of a Pareto-e�cient outcome is
positive whenever types are compatible. Consider now the rule where �rst a
posted-split is announced, and if the agents don’t both agree to it, then with
probability the whole surplus goes to agent , , .
This rule always satis�es WE, never satis�es IR, and sometimes satis�es
SP, depending on utilities of the agents, on , and on the posted split.

Assume that the utilities of the agents are linear:
. Then for each a mechanism de�ned by

; if
; otherwise

, , is quasi-decent. To see that compute
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It is immediate to see that this quadratic function has a maximum precisely
at . Theorem 7 below will show that these are all the quasi-decent
mechanisms for this case. Hence the unique decent one is obtained by setting

.

(i) If a bargaining rule satis�es (1) and (2) then, for
, is monotonically increasing in , is monotoni-

cally decre
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Proof.

Theorem 7

Proof.

Remark 1

De�nition 8

De�nition 9

Lemma 10

See Appendix.
In the main theorem of this section we summarize the full strength of

quasi-decency.

( )

( ) (0 1]

See Appendix.

( )
( ) ( )

0 = 1 2

We already saw in Example 4 that the decent rule exists when utilities are
linear. Does it exist for any other class of utilities? We focus our search for
the decent rules among those that satisfy the following simplifying de�nitions.

( )

Thus, with some abuse of notation, a net surplus rule can be expressed
as

( ) = + ( ) = 1 2

( ) =
( ) 0
0 otherwise.

( ) =
0 1

We now show that among the quasi-decent rules, the net surplus rules
are necessarily constant net surplus rules.

11

Whenever a decent rule exists, it is unique. Moreover if
is the decent rule for a given vector of utilities, then all the quasi-decent rules
are given by , .

Observe that quasi-decent rules are invariant with respect to mul-
tiplying utilities by constants. That is, if is a quasi-decent rule for
utilities then it is also a quasi decent rule for where

.

A net surplus rule is a rule where the probability
of agreement and the share of the net surplus assigned to each agent depend
only on the net surplus.

A �xed net surplus rule is a rule for which for
some constant , .

A quasi-decent rule that is net surplus must be a constant net
surplus rule.
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( )

1

1 2 1

1 2

Proof.

Proposition 11

Proof.

i i i i i i
� D � s

i

i i i i i i

D � s D � s � �

u x Cu x C > x ,

� � �

P �
u �

u

i , , i

u � s C � s e C > ,

� , , D � � , � �

�
�

� � �

P �
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See Appendix A.
In the next proposition we fully characterize the class of utilities for which

decent �xed share mechanisms exist:

( ) = ( ) 0 [0 1]

= = =
1

2

( ) =

= 1 2

( ) = ( ) 0

(0 1] [ ]

=
+

( ) =
; + 1

0;

See Appendix A.
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It is easy to see that is increasing and concave on [0 1] if and only if (0 1]
and . Notice also that when = 0 this utility function is
( ) = ( ) which is the constant relative risk aversion (CRRA) utility. Also

note that in this case, the mechanism is a net surplus mechanism.

The decent rule exists and it is a constant net surplus rule
if and only if either of the following holds:

1. , , for every . In this case the unique
decent rule is the constant net surplus mechanism, given by

2. For agent has a utility of the form :

,

In this case a unique decent rule is the constant net surplus rule, given
by

otherwise.
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3 The Filtered Demands Game

The game.

Strategies.

Outcomes.

Filtered Demands Game

strategy of player� ., . i
s t

� ., . , , , i ,

� s , t i s t

s
t t

� s , .

� s , t t t , s ,

� s , � s , < ,
t

Suppose an agent decided to play a strategy that would at time require a share
for herself. Then it would make little sense to demand at an earlier time .
The agent might just as well stick to at . Condition 2 allows the agents to forget
about such considerations.

In this section we propose a dynamic bargaining game implementing decent
bargaining rules.

The (FD game) is a continuous-
time game. The agents send private messages claiming some share of the
good to the Filter. The Filter is a dummy player whose only role is to
receive claims, keeping them secret while they are incompatible, and to an-
nounce the agreement as soon as it is reached. As time goes by, the agents
can continuously decrease their demands at any moment. Thus the agents
revise their claims until they become mutually compatible. Then the Filter
announces that agreement has been reached, the agents receive the agreed
shares, and the game ends.

A ( ) is a function mapping her
type and time into a share,

( ) : [0 1] [0 ) [0 1] , = 1 2

Thus ( ) is the share agent of type claims for herself at 0. Strictly
speaking, a strategy is a function mapping each type and each history into
a proposal at every moment. However, given her type , the history at time
only depends on , as the agent is not able to see the proposals of her
opponent. The rules of the game are such that the following conditions have
to be satis�ed by the players’ strategies:

1. ( ) is a right continuous function of time.

2. ( ) is non-increasing in for all (0 ) and all [0 1].

The �rst condition assures that outcomes are well de�ned. The sec-
ond condition is innocuous: an agent can only observe agreement (or dis-
agreement) so it is plausible that she will either keep her initial demand or
monotonically concede to her opponent .

If two strategies are such that ( 0) + ( 0) 1 i.e.
the demands are more than compatible at = 0, then agreement between

13
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Our results are independent of the excess sharing rule, as long as it gives positive
shares to both agents.
Our results hold for any with positive density on a square [ ] [ ] 1 2

This is equivalent to the requirement that has support on [ ] [ ], and the conditional
beliefs of agents are independent. In the literature, this condition also appears as the
“spanning condition” (see for instance Mookherjee and Reichelstein[1992], p395).

types ( ) occurs at = 0 at shares ( 0) + . Given a
pair of types a strategy pro�le determines a unique outcome of the game
denoted by ( ( ) ( ) ( )), where and are the shares of
agents 1 and 2, and is the time of agreement, i.e.

( ( )) + ( ( )) 1

The static utility of agent is given by
the function ( ), satisfying the same requirements as in Section 2.
Agents discount the future exponentially. Thus upon agreement at 0,
the payo� of agent is given by

( ) = ( )

Clearly, in the event of perpetual disagreement the payo�s are zero. This is
for convenience and can be relaxed to a general class of discounting criteria
( ), where ( ) is a strictly pi
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When the support of types is [ ] , 0, the delay that a negative type is ready
to endure, rather than agree to 0 and obtain at least 0, is bounded above. In these
case stand- still PBE can be sustained only for [0 ) .

or are unobservable to the opponent; own deviation from a BE cannot be
optimal at any Hence, a formal de�nition of BE will su�ce.
Let ( ) denote the expected payo� of player of type at the

strategy pro�le when types are distributed according to :

( ) = ( ( ) ) ( )

Denote by � the set of strategies for player . A strategy pro�le constitutes
a if and only if

( ) , �

for all [0 1] = 1 2, = .
Observe that for each BE pro�le , a pro�le constructed by adding a

[0 ), i.e. ( + ) = ( ), is a BE as well, for
any . As the opponent does not concede any positive amount until ,
no concession prior to is useful . Regardless of , such strategy pro�les
are weakly dominated. In the next section we will show that the type of

player who makes the earliest relevant o�er is = 0. Type = 0 has
nothing to lose if she starts moving at 0, since she has no reason to expect
some other type to start moving any earlier. This, in turn, would provoke
other types to start moving as well. We say that a BE is if it
does not have a stand still interval.
Since types and dates take values in a continuum, and the range of strate-

gies is also a continuum, natural patterns of behavior should rule out dra-
matic changes when types change only marginally. We say that a strategy is

provided that:

1. exists and is continuous for all [0 ), [0 1];

2. exists and is continuous for all [0 ), [0 1];

3. lim ( ) is a left-continuous function of .

15
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Lemma 13

4 Equilibria in the FD Game

Ex-post Individual Rationality:

From now on, an equilibrium of the FD game is a BE in
undominated and regular strategies.

In equilibrium
for all and all .

The �rst condition means that players do not change her demand by a
positive amount in 0 time (recall that she is only allowed to increase what
she is willing to o�er to her opponent). This condition eliminates strategies
are as those described by Jarque et. al [2002], where demands are step
functions taking only �nitely many values. When condition 1 does not hold,
the agents might in a sequentially rational way believe that the opponent will
almost surely only bid �nitely many intermediate agreement points between
the two extreme agreements. Best response to such a strategy is to bid
only the complementary intermediate agreement points (since any other bid
is essentially irrelevant). The second condition requires smoothness with
respect to types. In equilibrium, it will imply that player ’s strategy is fully
separating. The last condition is roughly an indi�erence breaking rule: if
an agent of some type is at the horizon indi�erent between two concessions
to the opponent, she will concede more (see also the footnote in the proof
of Lemma 14 in the Apendix). This condition is enough to assure that the
continuity of the demands with respect to types is preserved at the time
horizon.

We will show that there is a one to one correspondence between the set of
equilibria of the FD game and the set of decent rules. First we introduce
some preliminary results that will be useful in characterizing equilibria of the
FD game. The �rst obvious observation is that agents prefer disagreement
to negative payo�s at every moment.

( )

In the next lemma we state that claimed shares asymptotically approach
the reservation values. The intuition is clear: if the agent of a given type
doesn’t reach agreement in a very long time, the opponent was probably of

16
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Lemma 14

Proof.

Lemma 15

Proof.
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Asymptotic demands:

Type Monotonicity:

Initial Condition:

This argument is only valid if the reservation demand of the ”toughest type” is very
high - that is if 1.

In equilibrium
for all .

In equilibrium, ,
, . Moreover, for each type and if

for some then

In any equilibrium it must hold that
.

a relatively high type. Thus the agent should lower her demand, and she
would only keep lowering it until her type .

lim ( ) =
[0 1]

See Appendix.
We next assert that agents with high reservation values,“tougher” agents,

never demand less than “softer” ones. Moreover, individuals with di�erent
types never make at the same time the same relevant concession (one that
instantaneously leads to an agreement with some of the opponent’s types).

0
(0 ) [0 1] 0 ( ) =

1 ( ) [0 1] 0

See Appendix.
We now discuss the optimization problem of the agents when their op-

ponent uses a strategy that is regular and strictly increasing in types. After
two lemmas deriving the initial conditions for the optimal strategies of the
agents, we state the dynamic optimization program that the agents are fac-
ing. The main proposition of this section follows. There we derive the �rst
order condition, which turns out to be belief independent.
We �rst focus on the initial conditions for the agents’ strategies. From

Lemma 15, it follows that any starts participating in the negotiations once
her demand becomes feasible with the demand of = 0. Before that moment
the agent must know that she is demanding too much to agree even with the
lowest type of the opponent. Therefore the question is: should an agent
enter in the game already at = 0 (and with what demand), or should she
wait until the �eld softens up a bit. The answer is provided by the following
lemma. We denote by ( ) the starting point of the demand of type :
( ) = lim ( ).

(0)+
(0) = 1

17
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entry time of

In equilibrium,

, for , , and all .

Notice that in any equilibrium if and only if .
Otherwise the strategy of would be strictly dominated.

In an equilibrium the type = 0 at time 0 demands a share that
will give her a positive probability of agreement in at least a very short time
- otherwise each type of every agent would know that there was some dead
delay at the start where the only thing that would happen would be that
agents would lower their demands up to the point where the lowest types
could agree. On the other hand, it could not be that she would demand a
share which would meet the demand of some type 0 of player - meaning

that (0)+ = 1. This follows from the excess pro�t sharing rule since
then an agent = 0 could pro�tably deviate by starting with a demand that
met type = 0. Then she would “rip o�” all the excess agreement pro�ts

by lowering her demand very rapidly to 1 . By making her move
fast enough it is clear that such deviation could be pro�table.
Thus for all types except the lowest type it is in equilibrium optimal to

wait with a high demand for a while. It means that there will necessarily be
delays with probability 1.
Now we de�ne the of type , ( ), as the �rst moment

that agent makes a realistic proposal. That is

( ) = inf 0 ( ) + ( ) 1 for some [0 1]

The following corollary to the above lemma establishes that ( ) is the
moment when the demand of type is compatible exactly with the lowest
type of the opponent. The proof is exactly the same as the proof of Lemma
16. The remark that follows is equally simple.

( ) = 1

0 ( ) = 1 2 = [0 1]

( ) 1

We are now ready to turn attention to the dynamic optimization. In
equilibrium, agents select a strategy aiming at the highest possible payo�,
given the type-contingent strategies of the other player. Thus agents are
picking optimal functions ( ), = 1 2. This means that agent of type
decides how her concessions of the good to the other side should optimally

change with time.

18
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Proposition 18

Proof.

Optimization Program: In equilibrium, agent of type
solves the following optimization program

s.t. (2) and de�nes .
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The corollary implies that at every instant there will be only one type reaching an
agreement with any particular type of the other agent.
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From now on, let ( ; ) be the function giving the type of agent
with whom agent of type enters in agreement at moment if pro�le
is played. We will omit in the arguments of ( ). Formally, for any
( ) [0 1] [ ( ) ), ( ) is the solution of the equation

1 = ( ( ) ) + ( ). (2)

A consequence of Lemma 15 and the implicit function theorem is that such
is well de�ned. This can also be seen from the proof of the following

proposition.

( ( ) ) ( ( ))
( )

( ) = 0 ( )

Fix the type of agent to be . When entering into negotiations
at ( ), she decides her optimal concession plan ( ) , ( ), in
order to maximize her expected discounted future payo�. Denote by ( )
the probability of type reaching agreement up to time (for simplicity we
omit the parameter in ( )). Agent is solving the following program

( ( ) ) ( )

But the possibility of reaching an agreement at some ( ) is exactly
the possibility that agent will at meet the demand of some type of agent
. For any ( ), recall that ( ) is the type of agent with whom
reaches agreement at moment . Thus ( ) is implicitly de�ned from the
relation

( ( ) ) + ( ) = 1

By de�nition and Lemma 15, ( ) = 0, and by Lemma 14

lim ( ) = 1 . Taking the derivative with respect to , we can
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First order condition:

Our manual for the calculus of variations is Elsgolts [1970].

Fix an equilibrium and a type .
For the function , satis�es the following �rst order
condition
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express

( )
=

+
.

By assumption, and are both �nite and non-positive. Hence we see
from Lemma 15, and the implicit function theorem, that for any ( ),

( ) is a well de�ned di�erentiable function of time, with 0
. In other words, at any ( ) there exists exactly one type ( ) of

player , with whom would reach agreement at that moment. These facts
have two consequences. First, the probability of reaching an agreement by
, ( ), has no mass points because the distribution of types of player has
no mass points. Second, the marginal increase in ( ), i.e. ( ), is equal
to the marginal increase of the mass of types of player , that player would
agree with by moment . Also, agent knows that before ( ) her proposals
were unrealistic, so she cannot update her beliefs until that moment. Since
is di�erentiable with respect to time, the beliefs are updated continuously

and di�erentiably from ( ) on. In other words, we have established that
at ( ) the belief of agent is exactly ( ), and at every moment ( ) =

( ( )) = ( ( )) . This completes the proof.
The optimization problem stated in Proposition 18 can be best approached

as a problem where is choosing two unknown functions ( ) and ( )
which are bound by the constraint (2), where ( ) is a given and �xed
function (the strategies of all possible types of agent ). The optimality
condition at the lower boundary of optimization is given by de�nition of
( ) - implicitly written it is ( ( )) = 0. In the following lemma we

provide the �rst order condition of the optimization program of agent , for
( ). We are omitting most of the arguments in the functions. The

arguments are: = ( ) , except when di�erentiating with respect to
, and = ( ).

( ) ( ) = 1 2

( ) = ( )
( )

+ (3)

20



�

25

{ }
→∞

�

�

25

( )

( )

j

j i

j j

t

i i

i i

i i

i i j j
� s

i i i
� s

Proof.

Proposition 20

Proof.

5 Existence of Equilibria and Implementation

General Discounting functions

Implemented Bargaining rule.
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j
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j
s i s

� s , t

i j
i

� t � .
� � t

� s , �
� t � s , t

, � s , � t

� s
� s , � s � s , � s e

�
Y, P �

Y s � s , � s , P s e .

This independence with respect to discounting could prove useful when designing
experiments.

for any given
type

must be playing a best response
to every type of the other player

Suppose that dis-
counting is given by a general function where is a strictly posi-
tive, monotonically decreasing function with , and .
Denote the equilibrium strategies for exponential discounting by .
Then the equilibrium strategies for discounting are given by

.

implements if and only if the outcome associated to is such that
and

See Appendix.
Lemma 19 yields a condition that is independent of the beliefs of player
about the types of player . This remarkable property is of importance



i ∈ ∞
∞

X, � , t
X s � s ,

� s ,

Lemma 21

Proof.

Lemma 22

Proof.

Lemma 23

Proof.

Individual Rationality:

Weak Efficiency

Strategy proofness:

dynamic
bargaining rule ( dynamic direct revelation mechanism

Equilibria of the FD game imple-
ment rules satisfying IR.

: Equilibria of the FD game implement
rules satisfying weak e�ciency.

Equilibria of the FD game implement
rules satisfying SP.

Since time plays a crucial role in the present setup, a natural interpre-
tation is that rather than selecting outcomes stochastically, bargaining rules
allocate agreements over time. We may thus view the FD game as a

and its associated ),
( ) where individuals report their type at = 0 and are instructed to
implement an agreement with shares ( ) only at date ( ) [0 ]. If
( ) = then the prescribed outcome is disagreement.
The FD game in equilibrium implements decent bargaining rules. We

will show that this is always true, independently of agents’ utilities. Clearly,
the question is whether any equilibria of FD game exist at all (the agents’
strategy sets are non-compact). We will prove that there is a one-to-one
correspondence between the set of equilibria of the FD game and the set of
decent rules. Hence, for any utilities, an equilibrium of the FD game exist if
and only if a decent mechanism exists. By the uniqueness theorem for decent
mechanisms, we know that the equilibrium of the FD game will always be
unique. All of this is summarized in the following lemmas and propositions.

This is a direct consequence of Lemma13.

Lemmas 14 and 15 imply that all pairs that produce a positive net
surplus reach agreement at a �nite date, which translates into WE.

By Lemma 19 equilibria of the FD game are belief independent.
This implies that the implemented rule must be strategy proof (see Led-
yard[1978]).
Lemma 16 then implies that the FD game implements precisely decent

rules. As we show in the next proposition, there is a one-to-one correspon-
dence between the set of the equilibria of the FD game and the set of decent
mechanisms.

22



√
� �

26

1 2

26 1

�

� �

� � �

t
� �

i i i i

i i i
t

i

s u u � e

s

�

� s , t , s � e , i , ,

Implementation:

FD-Uniqueness

Existence:

Proposition 24

Proof.

Corollary 25

Proof.

Proposition 26

Notice that at the time when 1 = + ( ( ) ) this violates our assumption
on di�erentiability of strategies, but the strategies are still di�erentiable a.e. Moreover, at
that point, the demand of agent of type is irrelevant, hence we can modify it slightly to
make it smooth.

An equilibrium of the FD game imple-
ments a decent bargaining rule. Conversely, any decent bargaining rule is
implementable as an equilibrium of the FD game.

: Whenever the equilibrium in the FD game
exists, it is unique.

calculate

The designer does not need to know this information.

If agents have CRRA utilities, then the fol-
lowing type-contingent strategies are the unique equilibrium and they imple-
ment the -constant net surplus rule :

The previous three lemmas show that the rule implemented in the
equilibrium of the FD game must be quasi-decent. Decency is then implied by
the fact that equilibria of the FD game are by de�nition undominated, hence
the probability of the Pareto-e�cient outcome is always set to be maximal.
For the converse, see the Appendix.

This is a direct consequence of Theorem 7 and the previous proposition.
These are the central results of this section. Proposition 6 shows how to

all decent rules, given one-parametric utility functions. Proposition
24 goes much further: regardless of the utilities, an equilibrium of the FD
game implements a decent bargaining rule, as long as the two agents know
each others utilities.
Unless the set of equilibria of the FD game is empty, this game must

implement a decent bargaining rule. Computing an equilibrium requires
solving self-referential equations (2) and (3). For the environments where
the decent rule is known, it is by the Proposition 24 easy to compute the
equilibria of the FD game. In the next proposition we provide the strategies
of the agents if they both have CRRA utilities. A similar exercise can be
repeated for the other cases where the decent exists and it is a constant net
surplus rule.

( ) = min 1 + = 1 2

23



�

√

�

�
�

s
t

b
t

27

1 2

�

� �

�

�

s s , b s .

1
1

1 2 1

2 1

27

Proof.
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6 Bilateral trade and ex-ante e�ciency

Risk neutrality:

Potential Welfare under uniform distributions.

To relate to our previous notation simply identify player 1 with the seller and player
2 with the buyer and set = = 1

where

and .

As-
sume that both agents are risk neutral, and that costs and valuations are
independent and uniformly distributed in .

=
+

(4)

= 1

For a proof that these strategies satisfy the FOC of the FD game see
Appendix A. The rest follows from Propositions 11 and 24, and the previous
corollary.

In this section we evaluate the ex-ante performance of the decent rule in
di�erent scenarios, and we compare it to alternative mechanisms.
To carry out this exercise we focus attention to problems of bilateral

trade: A seller can produce the good at a cost , the buyer values the good
at Upon agreement at date , on a price , the seller obtains ( )
and the buyer obtains ( )
In this context, the FD game is a closed-book dynamic double auction,

agents continuosly submit ask and bid prices, ( ) and ( ) that are
not displayed unless trade proceeds. The Filter can be interpreted as a
computer with two input nodes (one for each agent) and two output screens
where either “No trade yet” or “Trade” appear in the corresponding states
of the world.

When both agents are risk neutral individually ratio-
nal rules maximizing the ex-ante sum of payo�s subject to Bayesian incentive
compatibility and strategy proofness are known thanks to Myerson and Sat-
terthwaite [1983] and Hagerty and Rogerson [1987] respectively. We can thus
compare the expected surplus attained under these two rules to the expected
payo�s of the decent rule.

[0 1]
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1. The unconstrained potential welfare is

= ( ) =
1

6

2. Myerson and Satterthwaite [1983] prove that the optimal rule under
Bayesian incentive compatibility and individual rationality is to trade
for sure if + and abstain from trade otherwise. This yields
expected total surplus

= ( ) =
9

64

Hence, approximately 85% of the potential expected gains are
attained.

3. Hagerty and Rogerson [1987] show that under strategy proofness, the
ex-ante surplus that obtains with any given rule can be attained with
a posted-price rule. It is immediate to check that expected surplus is
maximized at the �xed price = . This yields

= ( ) = 0 125

which is 75% of .

4. Finally, the decent rule, trade at price with probability ( ) if
and only if yields expected surplus

=
+

2
( ) =

1

12

which is only of .

The next example compares decent mechanisms with posted prices when
the designer is poorly informed on the distribution of costs and values.
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u p s p s , u b p b p ,

Misspecification of the Distribution:

Risk Aversion.

The decent rule dominates posted prices:

=
0

( ) =

0

1 + +

+ 1

( ) =
1

1 + 1 1

(3 4 + 2 )
(6 27 + 60 53 + 12 + 4 )

When both agents have CRRA utilities

( ) = ( ) ( ) = ( )

the decent rule for bilateral trade implements trade at price ( ) = ( + )

= with probability ( ) = ( ) if and only if

Observe is that as the agents become more risk averse, i.e. and go to
0, the probability of trade when increases, approaching full e�ciency
in the limit. Therefore, under su�cient risk aversion, the decent mechanism
dominates the best posted price rule ex-ante.

( ) = ( ) ( ) = ( )
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Let agents be
risk neutral. Assume that the designer had no knowledge about the distrib-
ution of costs and valuations and that by the principle of insu�cient reason
he assumed that it was symmetric for both agents. He would then use the

posted-price rule. However, assume that the distributions of agents’
reservation shares were in fact asymmetric. In particular, take an , and
assume that the reservation shares of the agents were independent and their
densities had the following forms:

for

for

for

for

for

Some tedious, straight-forward calculus shows that then the gains from trade
under the posted-price rule are equal to and the gains from
trade under the decent rule are . Clearly,
for small enough, the decent rule extracts a sizeable portion of the possible
gains from trade, whereas the posted-split rule extracts almost none.

Assume
that both agents are equaly risk averse,
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7 Conclusion and Extensions

,
b > s

W
b s

dbds.

W b s dbds
� �

W
b s

b s dbds
� �

� < .

and that costs and valuations are independent and uniformly distributed in
. In the absence of incentive constraints the total surplus is maximized

when agents trade at a price whenever . This yields ex-ante payo�s

The ex-ante payo�s under the optimals posted price rule and under the decent
rule are easily computed:

It is easily checked that if then the decent mechanism performs better
ex-ante than the optimal posted price mechanism.

[0 1]

= 2
2

=
1

2
+
1

2
=

2

( + 1) ( + 2)
1

1

2

= 2
2

( ) =
2

2 (2 + 1) (2 + 2)
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We have addressed the design of mechanisms for the bargaining problem
where the disagreement points are private information. For the environments
with concave utilities, we have fully characterized bargaining rules that we
call decent - those that are Pareto Optimal in the constrained set of rules
satisfying individual rationality, weak e�ciency, and strategy proofness. We
have proved that when it exists, the decent rule is unique; by construction
we have proved the existence for a large set of utilities. We have proposed
a simple dynamic game, the FD game, which always implements the decent
rule, regardless of the agents’ utilities and discounting criterion. This im-
plementation result is due to the fact that the equilibria of the FD game do
not depend on agents’ beliefs. The game protocol itself is simple. Neither a
dictatorial principal designing complex contracts, nor strong commitments to
assure the agents’ obedience over time are required. The dynamic game thus
provides a link between the weak e�ciency and the renegotiation-proofness.
It also provides a sharp prediction to the situations of bilateral bargaining
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Appendix
5:

i) Assume ( ) satis�es IR and SP. We �rst prove monotonicity.
By strategy proofness for all and

( ) ( ( ) ) ( ) ( ( ) )
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1 2 1 2 1

1 1

1 2

1 2 1 2 1 2

1

1 1 2 1 1 2

1 2 2 1 2 1 1 2

1 2 2

1

1 2 1 2

1 2 1 2

1 2

P z , z u Y z , z z P z , z u Y z , z z

u z > z ,
P z , z P z , z Y z , z Y z , z , Y, P

Y P
s , s u Y s , s s > i ,

Y z , z z , Y z , z
u Y z , z z > P,

Y P
z , z ε > � > ,

z z �, z � P z , z P z , z > ε
P z , z P z , z ε. � z

z z
Y

P Y
Y P z , z ,

u Y z , z z > , P z , z P z , z ε
z P,

Y Y z , z Y z , z � � >

� u Y z , z z > Y z , z Y z , z
P z , z z

z
Y, P

z , z u Y z , z z
Y

z z z , z
u Y z , z z P

and
( ) ( ( ) ) ( ) ( ( ) )

Since is strictly increasing these inequalities imply that for all
( ) ( ) and ( ) ( ) so that ( ) must be
monotone.
Continuity: IR and SP imply that and must be continuous at all

( ) such that ( ( ) ) 0, for = 1 2.
We �rst show that if ( ) and is continuous at all ( )

such that ( ( ) ) 0, then so must be and vice-versa. Assume
by way of contradiction that is continuous and is discontinuous at
some ( ). Then there is an 0 such that for all 0 there is a

( + ) such that ( ) ( ) . Assume wlog that
( ) ( ) + Then for small enough, an agent of type
must be better o� reporting instead of her true type : the continuity of
implies that the possible loss in the allocated share is negligible, while a

strictly positive gain in probability of agreement is attained. Proving that
continuity of implies continuity of is analogous.
Assume that both and are discontinuous at some ( ) such that
( ( ) ) 0 and again wlog let ( ) ( ) + . To

assure that reports truthfully under such discontinuous the discontinuity
in must be such that ( ) ( )+ for some 0 in order to
assure that agent one report truthfully (note that it is possible to �nd such
by ( ( ) ) 0 and IR). Since ( ) = 1 ( ) the
discontinuity of at ( ) is such that cannot prefer to report truthfully
when facing , contradicting strategy proofness.
ii)If ( ) also satis�es weak e�ciency then it is continuous everywhere.

This follows from (i), since WE and strategy proofness imply continuity
at points ( ) s.t. ( ( ) ) = 0. To see it, observe �rst that
by monotonicity, has to be continuous in the neighbourhood of the line
+ = 1. By IR, this line is the boundary of the set of points ( ) s.t.
( ( ) ) = 0. If were discontinuous anywhere on the line, then

by same arguments as in (i) the types at the points of discontinuity could
gain by mis-representing.

6:
By the Lemma 5 quasi-decent rules are continuous and monotonic,

hence they are di�erentiable almost everywhere.
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1 2 1 2
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1 2
( )

1 1 1 2

1 1 1 1 1 2 1

1 1 1 1

1 1 1 2

1
1 1 2 1 1 1 2 1

1 2 1 1 1 2 1 1 1 2 1 2 1 2

1 1 2 1 2 1 2
1 1 1

1 1 1

1

Y, P
Y z

z � z z z � z . P s
s s s >
< P s s s <

s
z U z s , z P z , z u Y z , z s

z s Y, P

∂U s s , z

∂z
s , z .

P s , z u Y s , z s P s , z u Y s , z s
∂Y s , z

∂z

s , z i , j i � s , s Y s , s

P ,
P , � < .

P s , s < P < s , s . Y , P
s , s Y s , s Y s , s

P s , s
Y , P

P, Y
U z s , z

z > s U z s , z z
U z s , z >

dU z s , z

dz
P z , z u Y z , z s

P z , z u Y z , z s � z , z z z � z , z

� z , z z z � z , z
u Y z z

u Y z z

P z

P z

Step 1: Necessity. Consider a decent rule ( ). By individual rationality
and weak e�ciency there is no loss of generality in requiring that ( ) =
+ ( ) (1 ) where 0 ( ) 1 The condition ( ) = 0 for

all such that + 1 is necessary for individual rationality. Also,
0 ( ) 1 for + 0 is necessary for weak e�ciency.
Strategy proofness is equivalent to the requirement that for every and
the function ( ; ) = ( ) ( ( ) ) has a global max-

imum at the point = . Since ( ) must be di�erentiable (a.e.) by
Lemma 5, the necessary �rst order condition for a maximum is that

( ; )
= 0 for all

That is

( ) ( ( ) ) + ( ) ( ( ) )
( )

= 0

for all , and = 1 2, = . Substituting ( ) in ( ) yields
(1).
We now check that (0 0) = 1 is necessary. Assume by way of contra-

diction that (0 0) = 1 The monotonicity of the mechanism implies
that ( ) 1 for all ( ) Take an alternative rule ( )
where for all ( ) the sharing rules are the same ( ) = ( )

and the probabilities of agreement ( ) = are increased. It is
immediate to check that the rule ( ) still satis�es (1). Moreover, it is
strictly preferred by all types, contradicting decency of ( ).
Step 2: Su�ciency. Consider ( ; ). It is enough to show that for

all the derivative of ( ; ) w.r.t. is decreasing whenever
( ; ) 0 (deviations that give negative expected utility cannot be

pro�table). Thus compute

( ; )
= ( ) ( ( ) )+

+ ( ) ( ( ) ) [1 + ( ) (1 ) ( )]

From the �rst order condition we can express

(1 + ( ) (1 ) ( )) =
( ( ) )

( ( ) )

( )

( )
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Terms in are evaluated at ( )(1 ) and terms in evaluated at (1 ( )) (1
)).

1 1 1 2

1
1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1 2 1
( ; )

1 1

1 1

2
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((1 ) )
( 1 (1 ) )((1 ) ) +

( )
( )

1

1 2 0

1 2

1 29
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1
1

1
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dz
P z u Y z s

u Y z s u Y z , z

u Y z z

u Y z , z s >
z u
� U

U

� , .
s s

�

A B A
�

�
�

� �
, � x

u x

u x
, < � ,

� � h,

h C � .

P P w �� � � � , j i.

� �

P w �� � �� P,

P w � � � �� P.

A solution to (1) characterizes a decent rule if and only if
solves

where and ; with the following boundary conditions on

and

where is an arbitrary function de�ned on

Substituting this into the above expression we get

( ; )
= ( ) ( ( ) )

( ( ) ) ( ( ) )

( ( ) )

From here we see that whenever ( ( ) ) 0, is a
decreasing function of . This follows directly from the fact that is
increasing and concave in . Thus the local maximum of is unique, and
is also a global maximum. Similarly for .

7:
A decent rule requires a solution to (1) where remain in [0 1] Assuring

such boundedness in a neighborhood of the line = 1 uniquely selects
boundary conditions that our solution must satisfy. They are stated in the
following lemma.

= (5)

= = ( )
= 0 :

=
+

= lim
( )

( )
0 1

= =

= 0

: Write (1) as

= = (6)

Recall that = and rewrite (6) as

= ( ) ((1 ) )

= ( (1 )) ( )
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g � � �
u � � � u � � �

u � � � s , s u � � �
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Since = we obtain that must solve the second order PDE (5).
Assume that a solution to (5) exists and it is 0 ( ) = 1 for
+ = 1 then

lim
( (1 )) ((1 )(1 ))

( (1 )) + ((1 )(1 (1 ))
=

Since lim + behaves as + and since lim

= it is necessary that

lim
( ( ))

+
(1 ( ))

1

1

exists and it is �nite. This implies the �rst boundary condition ( ) =

. Di�erentiating ( 1 ) yields the boundary conditions on

and .
(of the Theorem7) The proof of the theorem is now immediate. By

Lemma 30 must solve ((5) with the appropriate boundary conditions on
the line = 0, which is non-characteristic. Whenever it exists, a solution
to such equation is unique . Thus we obtain unique functions ( ) and
( ) and then the linear PDE system for ( ) can be integrated by the

construction of . It is easy to see that ( ) is then determined uniquely up
to a multiplicative constant , setting = 1 yields a unique decent rule.

10:
It is straightforward to check that if ( ) = ( ) and ( ) =

( ) then the (1) is equivalent to

( ) =
1

( )
1

1 + ( ( ) )
(7)

and
( )

( )
= ( ( ) ) (1 ( ) ( )) (8)

where we write

( ( ) )
( ( ) ) ((1 ( )) )

( ( ) + ) ((1 ( )) )
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Consider (7). First notice that in order for ( ) to be only a function of
then the implicit equation for ( )

( ) =
1

1 + ( ( ) )

either admits a constant solution, or no solution to (7) satis�es 0 ( ) 1
In order for ( ) to be bounded at = 0 it has to be that ( ) is

the singular solution of the above equation (7), i.e. the solution satisfying
(0) = . The singular solution satis�es for every the condition ( )

= 0. Thus the only case where a singular solution exists (meaning

that such function indeed solves the di�erential equation) is the case where
( ) is the constant solving the equation = .

11:
It is trivial to check that when = , where 0, = solves

equation(1). We plug = into the equation (1) of Lemma 6 to obtain

( )
=
2

; = 1 2

By integrating this simple system we obtain the solution for ( )

( ) = , (0 ].

Now we apply Theorem 7 which proves the part of the statement for equal
utilities.
We could proceed similarly as above to show that the mechanism de�ned

by

=
+

( ) =
; + 1

0; otherwise.

is decent when the utilities are of the form

( ) = ( ) ,

(0 1] [ ]
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Now we prove that there for no other utilities there exists a constant net
surplus rule. So assume that = and take = = Then the
equation (1) simpli�es to

( ( )) ( ) ( )

[ ( )]
=
( ( )) ( ) ( )

[ ( )]

which is in fact
( )

( )
=

( )

( )
(9)

If = it is easily seen that the equation (9 ) implies = , 0.

So assume that = Then (9) implies that = 	 ( ) where 	 ( )

has the property 	 ( ) = ( ) ˜ ( ) - otherwise would necessarily be
a function of . Reversing the roles of and this means that 	 ( ) =
	 ( ) = ˜ ( ) = ˜ ( ) ˜ ( ). It is easy to see that the only class of functions
for which the last equality holds is the class ˜ ( ) = , where is a
constant. Next, we also get that in order for concavity of to hold, it has
to be that lim ( ) = . But such will only be concave in the

neighborhood of = 0 if [ 2 0]. Integrating

( )

( )
=

we obtain for 2 utilities that cannot satisfy the requirement (0) = 0.
For = 2 we obtain precisely the above class of utilities.

14
Denote ( ) = lim ( ). The proof is divided into three

steps. In step 1 we show that (1) = 1 (which holds trivially) and the
continuity at 1 imply that (0) = 0. In step 2 we show that ( ) is a
continuous function, hence it attains all values in the interval [0 1]. Finally,
in step 3 we show that the statement of the lemma is true.
Step 1: (0) = 0. Suppose this did not hold, i.e. (0) = 0

in equilibrium. Denote by (0 ) such equilibrium strategy of player ,
and by ( ) the equilibrium strategy of player , when his type is . By
individual rationality we have that (1) = 1. Also by individual rationality,
we have that ( ) is bounded below, i.e. ( ) . Since ( ) 1,
these imply that ( ) is continuous at point = 1. From continuity of
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Type � is at = indi�erent between demanding ˆand �; the former doesn’t improve
her probability of reaching an agreement since the mass of opposing types with demands
between 1 � and 1 ˆ is 0. However, by an argument similar to the proof of Step 1,
we can argue, that she doesn’t lose anything by bidding ,̂ which gives us left-continuity
of . Left-continuity of is thus essentially an assumption on how agents resolve their
indi�erence at the horizon.

around = 1 we get that there is a positive mass of types [0 1]
for which ( ) 1 . But then type 0 of agent could improve her
expected payo� by playing until some large time , and then lowering
her demand to 0, according to some strategy . To see this, notice that
and are continuous and for all , (0 ) and ( ) are non-increasing
in . Thus the support of ( ) is shrinking as time elapses. When is
very large, the support of ( ) will be very close to the ex-post belief
when no agreement has been reached. Hence is given as the moment when
the expected continuation payo� of playing , conditional on 1 ,
is lower than the expected continuation payo� of playing , conditional on

1. This establishes the contradiction. The same argument shows that
( ) is continuous in a neighbourhood of the point = 0.
Step 2. Assume thus that ( ) is discontinuous at 	 , i.e. (	 ) = ˆ

and lim = 	, where 	 .̂ Then there must exist an 	 s.t. (	 ) = 1 	,

and lim ( ) = 1 ˆ(same argument as in Step 1, and left-continuity
of and ). Take any ˆ 	 . By continuity of in , there exists an

s.t. (	 ) ˆ for all . Also, notice that (ˆ ) 	. Now �x

= 0 and take a . Then at , (	 ) ˆ+ while (ˆ ) 	

for all ˆ 	 , contradicting the continuity of in . This proves that ( )
has to be right-continuous. By assumption, ( ) is left-continuous , hence
it is continuous. In step 1 we proved that (1) = 1 and (0) = 0, so by
Rolle’s theorem it attains all values between 0 and 1.
Step 3: ( ) = for all [0 1]. Take an (0 1). By steps 1

and 2, takes all the values in the interval [0 1] and is continuous (thus
measurable), strictly positive on (0 1]. Thus we can de�ne the measure

( ) = ( ) ( ) for any mesaurable [0 1],

where ( ) denotes the usual Lebesgue measure. By strict positivity, con-
tinuity, and boundedness of ( ), is an equivalent measure to . Now
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suppose that ( ) . By equivalence of to there exists a posi-
tive mass of types s.t. ( ) (1 ( ) 1 ). To see this de�ne
= ( ) (1 ( ) 1 ) . Since and are equivalent,
( ) 0. Now repeat the same argument as in Step 1 to get a contradic-

tion. Hence indeed ( ) = .
15

i) Let ( ) = inf 0 ( ) + ( ) 1 for some [0 1] .
Then for no ( ) there exists an interval (˜ 	 )s.t. ( ) = ( )
for all (˜ 	 ).
Suppose that ( ) is strictly decreasing in at . By lemma14 it is

enough to show that for no 0 s.t. ( ) = 1 ( ) for some ,

it could hold that = 0 for ( ) for some . This so
because of the continuity of ( ) with respect to both parameters and
because ( ) is increasing in . Fix 0 and assume that ( ) =
for all [ ] 0 ( 0) 1 . Since demands with
positive probability at , there is some 0 s.t. ( ) 1 for all

and ( ): note that if ( ) 1 for all ( )

then is reaching an agreement worse than 1 with all [ ] while

the better agreement 1 is feasible with the same counterparts (that have
positive measure) only at the (negligible) cost of delaying agreement with
types (whose measure is negligible as 0). Now, since strategies
are decreasing in , ( ) 1 for all 0 and ( 0) 1

Hence any agreement in [0 ) must give at most and [ ] do not
reach any agreement in [0 ) contradicting that for each [ ] there is
and [0 ) such that ( ) = 1 ( ).

ii) ( ) 0 for all , all 0 implies 0 for all , all 0.

Recall that at time , agent maximizes

max ( ( ) ) ( ) (10)

where ( ) is the measure of types of player with whom agent reached
agreement by time . We proceed by considering a speci�c deviation of
player at time , from ( ) to 	 ( ). For any 0, we construct
	 ( ) as follows. Take 	 , and de�ne 	 ( ) as a di�erentiable
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From these two inequalities it follows that (	 ) ( ) and ( )
( ), which completes the proof.

19
We �x and economize the notation to write ( ) = ( ) and

( )
= ( ). We write the Hamiltonian

( ) = ( ( ) ) ( ( )) ( )

( ) (1 ( ( ) ) ( ))

and compute the Euler conditions for the unknown functions

= ( ( ) ) ( ) +
( )

= ( ( ) ) ( ( )) + ( ( ) )
( )

( ) +

( ) ) ( )

= ( ( ) ) ( ) +

˙
= 0

Whence we have the two Euler equations

( ( ) ) ( )) + ( ( ) ) ( ) = 0

( ( ) ) ( ) + = 0

From the second Euler equation we can eliminate and the density
also disappears from the �rst to obtain the �nal condition

( ( ( ) )) (
( )

+
( )

) + ( ) ) = 0

or equivalently

( ) = ( ( ) )
( )

+

for ( )
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20:
The strategy 	 ( ) maximizes the expected gain, that is

	 ( ) argmax (	 ( ) ) (	 ( ))
	 ( )

subject to 	 ( ) = 0

Now make a substitution ( ) = , so that ˙ ( ) = . Also, de�n-

ing ( ) = 	 ( ), we have = . Inserting all this into
the above program we see that then 	 ( ln ( ( ))) maximizes

( ) (	 ( ln ( ( ))) ) ( ( ))
( )

subject to ( ) = 0;

which completes the proof.
24:

We have already shown that the regular equilibria of the FD game
implement decent rules. What we still need to show is that by taking all
possible solutions of the �rst order condition for the FD game we get all
possible decent mechanisms. We will show this by demonstrating that the
equilibria of the FD game translate into decent rules via a simple substitution.
So take strategies ( ) and ( ) that solve

( ) ( )
+ = ( ) (11)

s.t. ( ) + ( ) = 1 (12)

Implicitly derive the relationship (12) on to get

( )
+ = (13)
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De�ne ( ) = ( ( )), where ( ) is de�ned from the rela-

tionship ( ) + ( ) = 1. Thus = , hence

=
1

(14)

Now substitute (13), (12), and (14) into (11) to obtain

( ) 1
= ( ) (15)

Since ( ) + ( ) = 1, we have that = . Now interpret the
probability of implementation as the discount due to delay, that is ( ) =

. Hence

( )
=

( )
= ( )

( )

Thus
( )

=
( )

Plugging all of this into (15) we get that ( ) and ( ) satisfy (11) if and
only if ( ), ( ), and ( ) satisfy the �rst order condition

( )
=

( )
( )

This completes the proof.
26:

Observe that the proposed strategies are regular and satisfy Lemmas
13 to 16. Therefore, to show that they constitute an equilibrium of the FD
game, it su�ces to check that they satisfy (3). Let be the constant

= , and denote ( ) = . We check (3) for , the calculus

for is analogous. Now

( ) = 1 ( )

( )
= 1 = ˙ ( )

= ˙ ( )
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so by substituting into the �rst order condition, we get

( ) ˙ + ˙ = ( )

Noticing that = . This simpli�es into

(1 )
=

˙

Deriving the analogous expression from (3) for agent 2 yields

(1 )
=

˙

Substituting and , it is immediate that (3) holds.
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