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1. INTRODUCTION

In 1971, Shapley and Shubik studied a two–sided market where the

agents are buyers and sellers and one good is present in indivisible units.

Each seller owns a unit of the indivisible good and each buyer needs exactly

one unit. Differentiation on the units is allowed and therefore a buyer might

place different valuations on the units of different sellers. This model is

known as the assignment game. Apart from the original paper, the reader

is referred to Shubik (1985) and Roth and Sotomayor (1990) for a general

presentation.

Under the assumption that side payments among agents are allowed,

and identifying utility with money, Shapley and Shubik proved that the core

of the assignment game (that is to say the set of efficient outcomes that

no coalition can improve upon) is always nonempty and can be identified

with the set of competitive equilibria of the market.

Recently, further research has been made into the classical assignment

game of Shapley and Shubik, and this is the framework of our paper.

Hamers et al. (2002) prove that every extreme core allocation of an as-

signment game is a marginal worth vector.

The present paper is mainly devoted to a generalization of marginal

worth vectors, introducing what we call reduced marginal worth vectors

and proving that they coincide with the set of extreme core allocations

of the assignment game. We are looking for a global characterization of
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the extreme core points of the assignment game, as Shapley did for convex

games, and this is the difference with Hamers’ work.

In his seminal paper devoted to convex games, Shapley (1971) intro-

duced the marginal worth vectors for the general framework of cooperative

games with transferable utility. In each one of these vectors, which are all

efficient, each player is paid his marginal contribution to his set of predeces-

sors according to a fixed permutation over the player set. It is well known

that the set of marginal worth vectors coincides with the set of extreme

points of the core only when the game is convex. As assignment games are

not always convex, the above coincidence does not hold in general.

Our reduced marginal worth vectors are inspired in the classical marginal

worth vectors with the difference that, for a fixed permutation on the player

set, a reduction of the game is performed before each player is paid her

marginal contribution to her set of predecessors. Moreover, for convex

games, reduced marginal worth vectors will coincide with the marginal

worth vectors, which provides a unified approach to the class of convex

games and the class of assignment games with regard to the extreme core

allocations.

A first reduction of a game was introduced by Davis and Maschler (1965)

and since then reduced games have become a useful instrument for the

analysis of several solutions for cooperative games, as is the case of Peleg’s

characterization of the core (1986). The reduction of an assignment game

is used in Owen (1992) who shows that it may not be another assignment
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game, and in fact not even superadditive. This lack of superadditiveness

has been the main difficulty in reaching our results.

Besides the work of Hamers et al. (2001), which has already been cited,

Thompson (1980, 1981) analyzes efficient algorithms to compute the ex-

treme core allocations not only for assignment games but also for transport

games. There is another nice paper about the extreme core allocations of

the assignment game, by Balinski and Gale (1987), which has inspired our

work. They show how to check, by means of the connectedness of a graph,

whether a core allocation is an extreme point. Moreover an upper bound

for the number of extreme core allocations in the core of the assignment

game is given and proved to be attainable. Also an attainable lower bound

is provided under nondegeneracy conditions. A case of degeneracy in an

assignment game is the Böhm-Bawerk’s horse market where, in absence of

product differentation, each buyer places the same value on any horse and,

as noted in Shapley and Shubik (1971), the core consists on a line segment

with two extreme allocations: one of them is optimal for the buyers and

the other one is optimal for the sellers.

These two particular extreme core allocations (the sellers–optimal core

allocation and the buyers–optimal core allocation) exist not only in the

above particular market but in any assignment game (Shapley and Shubik,

1971).

The paper is organized as follows. Section 2 presents the formal model,

the necessary notations and the expression of the core in terms of an opti-
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mal assignment. We also analyze the reduced assignment game. Roughly

speaking, although not being an assignment game, it turns out to have some

properties similar to those of the assignment game. The core is nonempty,

in each extreme core allocation there is a player who reaches his or her

marginal contribution and, on the other hand, each marginal contribution

is attainable in the core.

Section 3 is devoted to the analysis of the structure of the core of the

successively reduced assignment game, which turns out to be very similar

to that of the core of the assignment game. This section contains the main

technical results to reach the charactarization theorem of Section 4.

In Section 4, we introduce the reduced marginal worth vectors and

note that, if any of them belongs to the core it must be an extreme core

allocation. This is why they are good candidates to become extreme core

allocations. The main result of this paper is the characterization of the

set of extreme core allocations of the assignment game as the whole set of

reduced marginal worth vectors (theorem 2).

2. THE FORMAL MODEL

Assignment games were introduced by Shapley and Shubik (1971) as

a model for a two–sided market with transferable utility. The player set

consists of the union of two finite disjoint sets M ∪ M ′ , where M is

the set of buyers and M ′ is the set of sellers. We will denote by n the

cardinality of M ∪M ′ , n = m + m′ , where m and m′ are, respectively,
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the cardinalities of M and M ′ . The worth of any two–player coalition

formed by a buyer i ∈ M and a seller j ∈ M ′ is w(i, j) = aij ≥ 0 . This

real numbers can be arranged in a matrix and determine the worth of any

other coalition S ∪ T , where S ⊆ M and T ⊆ M ′ , in the following way:

w(S ∪ T ) = max{
∑

(i,j)∈µ aij | µ ∈ M(S, T )} , being M(S, T ) the set

of matchings between S and T . A matching (or assignment) between S

and T is a subset µ of S × T such that each player belongs at most to

one pair in µ . It will be assumed as usual that a coalition formed only by

sellers or only by buyers has worth zero. We say a matching µ is optimal

if for all µ′ ∈ M(M,M ′) ,
∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij . Moreover, we say

a buyer i ∈ M is not assigned by µ if (i, j) 6∈ µ for all j ∈ M ′ (and

similarly for sellers).

The assignment model constitutes a class of cooperative game with

transferable utility (TU). A TU game is a pair (N, v) , where N = {1, 2, . . . , n}

is its finite player set and v : 2N −→ R its characteristic function satis-

fying v(∅) = 0 . A payoff vector will be x ∈ Rn and, for every coalition

S ⊆ N we shall write x(S) :=
∑

i∈S xi the payoff to coalition S (where

x(∅) = 0 ). The core of the game (N, v) consists of those payoff vectors

which allocate the worth of the grand coalition in such a way that every

other coalition receives at least its worth by the characteristic function:

C(v) = {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N } . A game

(N, v) has a nonempty core if and only if it is balanced (see Bondareva,

1963 or Shapley, 1967). From the standard classical convex analysis, we
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know the core is a bounded convex polyhedra. As a consequence, it has a fi-

nite number of extreme points, where we say x ∈ C(v) is an extreme point

if y, z ∈ C(v) and x = 1
2y + 1

2z imply y = z , and, moreover, the core is

the convex hull of its set of extreme points. The serch of characterizations

of the extreme core allocations is therefore important.

The subgame related to coalition S , v|S , is the restriction of mapping

v to the subcoalitions of S . A game is said to be superadditive when for

all disjoint coalitions S and T , v(S∪T ) ≥ v(S)+v(T ) holds. Notice that,

from the definition, assignment games are always superadditive. Balanced

games might not be superadditive but they always satisfy superadditive

inequalities involving the grand coalition. A well known class of balanced

and superadditive games is the class of convex games. A game (N, v) is

convex if and only if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all pair of

coalitions S and T .

The marginal contribution of player i ∈ N in the game v , bv
i = v(N)−

v(N \ {i}) is an upper bound for player’s i payoff in the core of the game.

In general this upper bound might not be attained. However, there are

balanced games with the property that all players can attain their marginal

contribution in the core. This is the case of convex games and will also be

the case of assignment games.

Shapley and Shubik proved that the core of the assignment game (M ∪

M ′, w) is nonempty and can be represented in terms of an optimal match-
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ing in M ∪M ′ . Let µ be one such optimal matching, then

C(w) =























































ui ≥ 0, for all i ∈ M ; vj ≥ 0, for all j ∈ M ′

ui + vj = aij if (i, j) ∈ µ

(u, v) ∈ RM×M′
ui + vj ≥ aij if (i, j) 6∈ µ

ui = 0 if i not assigned by µ

vj = 0 if j not assigned by µ .























































(1)

Moreover, if for all i ∈ M , ui = max(u,v)∈C(w) ui and ui = min(u,v)∈C(w) ui ,

while for all j ∈ M ′ , vj = max(u,v)∈C(w) vj and vj = min(u,v)∈C(w) vj ,

it happens that all players on the same side of the market achieve their

maximum core payoff in the same core allocation, while all players in the

opposite side achieve their minimum core payoff. As a consequence, there

are two special extreme core allocations: in one of them, (u, v) , each buyer

achieves his maximum core payoff and in the other one, (u, v) , each seller

does.

Demange (1982) proves that this maximum payoff of a player in the core

of the assignment game is his marginal contribution, ui = bw
i = w(M ∪

M ′)−w(M ∪M ′ \ {i}) for all i ∈ M and vj = bw
j = w(M ∪M ′)−w(M ∪

M ′ \ {j}) for all j ∈ M ′ . The same result was stated by Leonard (1983).

The reader will also find Demange’s proof in the monograph by Roth and

Sotomayor (1990).

Therefore, the following one is a property assignment games have in

common with convex games. Another one will be stated later.
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Property 1. All marginal contributions are attained in the core of the

assignment game.

The two mentioned extreme core allocations of the assignment game

are not, in general, the only ones. In 1987, Balinski and Gale show how to

check, in terms of the connectedness of a graph, whether a core allocation

of an assignment game is in fact an extreme point. From this result follows

that in each extreme core point of an assignment game there is a player

who receives a zero payoff.

The reduction of a game is a well known concept in the general frame-

work of coperative TU games. Let v be an arbitrary cooperative game

with player set N and suppose some subset of players, T ⊆ N , is given.

For a fixed vector x ∈ RN\T , members of coalition T can reconsider their

cooperative situation by means of a new game with player set T where the

worth of coalitions in T is reevaluated taking into account the worth they

could achieve by joining players outside T and paying them according to

x . This is the reduced game of (N, v) on coalition T at x , defined by

Davis and Maschler (1965):

vT
x (S) =































0 if S = ∅

max∅⊆Q⊆N\T {v(S ∪Q)− x(Q)} if ∅ 6= S ⊂ T

v(N)− x(N \ T ) if S = T

For our purposes, it will be very important to take the special case where

T = N \{i} , for some player i ∈ N and xi = bv
i = v(N)−v(N \{i}) . This

10



is what we will call the i–marginal game and denote by vi . Marginal games

were introduced in Núñez and Rafels (1998), showing their importance to

analyze the extreme core allocations.

Definition 1. Given a cooperative game (N, v) and a player i ∈ N

its i–marginal game is (N \ {i}, vi) where vi(∅) = 0 and for all ∅ 6= S ⊆

N \ {i} ,

vi(S) = max{v(S ∪ {i})− bv
i , v(S)} ,

Notice first that vi = vN\{i}
bv

i
, since vi(N \{i}) = v(N \{i}) . Denoting

by x−i the restriction of x to coalition N\{i} , some relationships between

the core elements of (N, v) and those of its marginal games (N \ {i}, vi)

are already known. From the reduced game property (RGP) of the core

elements (Peleg, 1986), if x ∈ C(v) and xi = bv
i for some player i ∈ N ,

then x−i ∈ C(vi) . In fact, this relationship is also valid for extreme

core elements and, together with a sort of converse property, will play an

important role throughout this paper. For the sake of comprehensiveness,

we state next proposition 2, the proof of which can be found in Núñez and

Rafels (1998). To do this, we will denote by x = (x−i; xi) ∈ RN the payoff

vector which allocates to each player the same payoff as in x−i ∈ RN\{i}

and xi ∈ R to player i .

Proposition 1. Let (N, v) be an arbitrary cooperative game,

1. If x ∈ Ext(C(v)) and xi = bv
i for some i ∈ N , then , x−i ∈

Ext(C(vi)) .
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2. If x−i ∈ Ext(C(vi)) and v(i) ≤ bv
i , then x = (x−i; bv

i ) ∈ Ext(C(v)) .

Notice that for balanced games, conditions v(i) ≤ bv
i , for all i ∈ N ,

always hold and thus

n
⋃

k=1

Ext+k(C(vk)) ⊆ Ext(C(v)) , (2)

where Ext+k(C(vk)) denotes the set of x ∈ Rn such that x−k ∈ Ext(C(vk))

and xk = bv
k . In general, this inclusion is strict, but for some classes of

games we get an equality. This is the case of assignment games.

Proposition 2. Let (M ∪M ′, w) be an assignment game, then

Ext(C(w)) =
n
⋃

k=1

Ext+k(C(wk)) .

Proof. Taking x ∈ Ext(C(w)) , let us prove that there exists k ∈ M ∪

M ′ such that xk = bw
k . Recall first that, from Thompson (1981) and

Balinski and Gale (1987), there exists i′ ∈ M ∪M ′ such that xi′ = 0 . If

this player i′ is not assigned in any optimal matching of M ∪ M ′ , then

bw
i′ = 0 = xi′ . Otherwise assume, without loss of generality, that i′ ∈ M

and is assigned to j′ ∈ M ′ by an optimal matching µ of M ∪M ′ . Then,

being x a core allocation, x(M ∪ (M ′ \ {j′})) ≥ w(M ∪ (M ′ \ {j′})) and,

on the other hand, as xi′ = 0 ,

x(M∪(M ′\{j′}) =
∑

(i,j)∈µ
(i,j) 6=(i′,j′)

(xi+xj) =
∑

(i,j)∈µ
(i,j) 6=(i′,j′)

aij ≤ w(M∪(M ′\{j′}) ,

as {(i, j) ∈ µ | (i, j) 6= (i′, j′)} is an assignment in M ∪ (M ′ \ {j′}) .
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Combining both inequalities, we obtain

x(M ∪ (M ′ \ {j′})) = w(M ∪ (M ′ \ {j′}))

and, by efficiency, xj′ = bw
j′ .

We have just proved that for any x ∈ Ext(C(w)) there exists a player

k ∈ M ∪ M ′ such that xk = bw
k . By the RGP of the extreme points

of the core (part 1 of Proposition 1), x−k ∈ Ext(C(wk)) and then x ∈

Ext+k(C(wk)) .

Notice that the above equality also holds for convex games and thus this

is another property convex games and assignment games have in common.

Property 2. In each extreme core allocation of the assignment game

there is a player who is paid his marginal contribution.

Unfortunately, the reduction of an assignment game may not be an-

other assignment game. This was already pointed out by Owen (1992) and

remains true even for the particular reduced game which is the i–marginal

game. Take for instance M = {1, 2} , M ′ = {3, 4, 5} and w(i, j) = aij

given by the matrix

3 4 5

1

2

5 3 3

4 3 2

In the above example, the optimal matching µ is {(1, 3), (2, 4)} , and

the core is the convex hull of three extreme points which are (3,2,2,1,0),

(4,3,1,0,0) and (3,3,2,0,0).
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Let us now reduce the game on coalition M ∪M ′ \{4} at bw
4 = w(M ∪

M ′) − w(M ∪ (M ′ \ {4})) = 1 . The marginal game for player i = 4 is

(M∪M ′\{4}, w4) and is not superadditive ( 2 = w4(12) < w4(1)+w4(2) =

4 ) and hence it cannot be an assignment game. Although not being an

assignment game, w4 still has a nonempty core. As x = (3, 2, 2, 1, 0) ∈

C(w) and x4 = bw
4 = 1 , by part 1 of Proposition 1, x−4 = (3, 2, 2, 0) ∈

C(w4) . In fact, as each player can be paid his marginal contribution in

the core of the assignment game (property 1), all marginal games of an

assignment game are balanced. In the sequel, by extending the above

property to all successive reduced games we will prove balancedness holds

for them all.

3. THE REDUCED ASSIGNMENT GAMES

If the reduced games had been assignment games, by applying Proposi-

tion 2 to the successive reduced games, we would obtain a natural method

to express all extreme core allocations of the assignment game. In fact we

will achieve the same result, in spite of them not being assignment games.

For a given ordering θ = (i1, i2, . . . , in) on the player set N = {1, 2, . . . , n} ,

we denote by vin the in–marginal game of v and by vinin−1 = (vin)in−1

the in−1–marginal game of vin . Recursively, vinin−1···ik+1ik = (vinin−1···ik+1)ik

is the ik–marginal game of the game vinin−1···ik+1 . The restriction of

x ∈ Rn to coalition N \ {i1, . . . , ik} will be denoted by x−i1i2···ik .
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This section is mainly devoted to the study of the core of the successive

reduced assignment game wknkn−1···ks , for s ∈ {2, . . . , n} , in order to prove

the characterization of the extreme core allocations of the assignment game

in Section 4. Roughly speaking, we want to prove that all these games have

a nonempty core and they also have Property 1 (page 9) and Property 2

(page 13) in common with the assignment game.

The proof of balancedness of this successive reduced game will be done

by an induction argument which will be prepared along several technical

lemmas.

From now on, given an optimal matching µ in (M ∪ M ′, w) and an

ordering θ = (k1, k2, . . . , kn) of the player set, for any s ∈ {1, 2, . . . , n} ,

this notation will be used: let Is = M ∩ {kn, kn−1, . . . , ks}, Js = M ′ ∩

{kn, kn−1, . . . , ks} , Ms = M \ Is , M ′
s = M ′ \ Js and µs = {(i, j) ∈ µ |

i ∈ Ms , j ∈ M ′
s} .

Notice that µs is the restriction to the player set Ms ∪ M ′
s of the

optimal matching µ fixed for the grand coalition M ∪M ′ .

The first one is a technical Lemma which will be used in next Lemma

2 to give a description of the core of the successive reduced assignment

game wknkn−1···ks in terms of a fixed optimal matching for the player set

M ∪M ′ of the original game w .

Lemma 1. Let µ be an optimal matching for the assignment game

(M ∪M ′, w) , θ = (k1, k2, . . . , kn) an ordering in the player set and s ∈
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{2, . . . , n} . If C(wknkn−1···kr ) 6= ∅ for all r ∈ {s, . . . , n} , and we take

∀i ∈ Ms , αs
i := maxkl∈Js{0, aikl − bwkn···kl+1

kl
}

∀j ∈ M ′
s , βs

j := maxkl∈Is{0, akli − bwkn···kl+1

kl
} ,

(3)

then

1. For all i ∈ Ms not assigned by µ , αs
i = 0 .

1’. For all j ∈ M ′
s not assigned by µ , βs

j = 0 .

2. For all i ∈ Ms not assigned by µs , but assigned to kl ∈ Js by µ , it

holds αs
i = aikl − bwknkn−1···kl+1

kl
.

2’. For all j ∈ M ′
s not assigned by µs , but assigned to kl ∈ Is by µ , it

holds βs
j = aklj − bwknkn−1···kl+1

kl
.

Proof. Notice first that, by hypothesis, there exists x = (u, v) ∈ C(wkn···ks)

and, as C(wkn···kr ) 6= ∅ , for s + 1 ≤ r ≤ n , by completing x with the

corresponding marginal contributions, from part 2 of Proposition 1, we get

a core element of the assignment game, that is

(x; bw
kn

, bwknkn−1

kn−1
, . . . , bwknkn−1···ks+1

ks
) ∈ C(w) . (4)

By the description (1) of the core of an assignment game, if µ is an

16



optimal matching for M ∪M ′ , then,

(i) ui + vj = aij , for all (i, j) ∈ µs ,

(ii) ui + bwknkn−1···kl+1

kl
= aikl if (i, kl) ∈ µ ,

(iii) bwknkn−1···kl+1

kl
+ vj = aklj if (kl, j) ∈ µ ,

(iv) ui + vj ≥ aij for all (i, j) ∈ Ms ×M ′
s , (i, j) 6∈ µs ,

(v) ui + bwknkn−1···kl+1

kl
≥ aikl for all i ∈ Ms and kl ∈ Js ,

(vi) bwknkn−1···kl+1

kl
+ vj ≥ aklj for all kl ∈ Is and j ∈ M ′

s ,

(vii) ui ≥ 0, vj ≥ 0 for all i ∈ Ms and j ∈ M ′
s ,

(viii) ui = 0 for all i not matched by µ ,

(ix) vj = 0 for all j not matched by µ .

To prove 1, if i ∈ Ms is not matched by µ , then from (v) and (viii),

0 = ui ≥ aikr − bwknkn−1···kr+1

kr
, for all kr ∈ Js , and then αs

i = 0 .

To prove 2, if (i, kl) ∈ µ , then, from (ii), (v) and (vii) follows that

ui + bwknkn−1···kl+1

kl
= aikl
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ui + bwknkn−1···kr+1

kr
≥ aikr , for all kr ∈ Js

ui ≥ 0 ,

and consequently αs
i = aikl − bwknkn−1···kl+1

kl
. The corresponding proofs for

j ∈ M ′
s are left to the reader.

The constants αs
i and βs

j will play an important role in the core of the

reduced game wknkn−1···ks .

Lemma 2. Let µ be an optimal matching for the game (M ∪M ′, w) ,

θ = (k1, k2, . . . , kn) an ordering in the player set, and s ∈ {2, . . . , n} .

If C(wknkn−1···kr ) 6= ∅ for all r ∈ {s, . . . , n} , then

C(wkn···ks) =







































































ui ≥ αs
i , for all i ∈ Ms

vj ≥ βs
j , for all j ∈ M ′

s

(u, v) ∈ RMs×M′
s ui + vj = aij if (i, j) ∈ µs

ui + vj ≥ aij if (i, j) 6∈ µs

ui = αs
i if i not matched by µs

vj = βs
j if j not matched by µs







































































(5)

where αs
i , for all i ∈ Ms , and βs

j , for all j ∈ M ′
s , are defined in (3).

Proof. (⊆ ) We have just seen that if (u, v) ∈ C(wknkn−1···ks) , the nine

conditions listed in the proof of Lemma 1 hold. From conditions (v) and

(vii), we get ui ≥ αs
i for all i ∈ Ms and from conditions (vi) and (vii) we

get vj ≥ βs
i for all j ∈ M ′

s . From (i) and (iv) we get ui + vj = aij if

(i, j) ∈ µs and ui + vj ≥ aij if (i, j) 6∈ µs . Moreover, by Lemma 1 above,

if i is not matched by µs , then ui = αs
i and if j is not matched by µs ,

vj = βs
j . Therefore, this first inclusion is proved.
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(⊇ ) Conversely, take (u, v) ∈ RMs×M ′
s satisfying all constraints defin-

ing the set in the right hand side of the equality we want to prove. By

Lemma 1, as C(wknkn−1···kr ) 6= ∅ , for all r ∈ {s, . . . , n} , αs
i = 0 if

i not matched by µ and αs
i = aikl − bwknkn−1···kl+1

kl
if (i, kl) ∈ µ for

some kl ∈ Js . Similarly, βs
i = 0 if j not matched by µ and βs

j =

aklj − bwknkn−1···kl+1

kl
if (kl, j) ∈ µ for some kl ∈ Is . Now it is straight-

forward to see that ((u, v); bw
kn

, bwkn

kn−1
, . . . , bwknkn−1···ks+1

ks
) ∈ C(w) , as it

fulfills all core constraints in description (1). Finally, by the reduced game

property of the core elements, (u, v) ∈ C(wknkn−1···ks) .

It is well known that for any extreme point of the core of an assignment

game there is a player with zero payoff (see Balinski and Gale (1987)). We

now prove a similar property for the extreme core allocations of the reduced

assignment game wknkn−1···ks . The result is that in every extreme core

element there is a player who receives his lower bound in the representation

of the core of Lemma 2.

Lemma 3. Let (M∪M ′, w) be an assignment game, θ = (k1, k2, . . . , kn)

an ordering in the player set and s ∈ {2, . . . , n} . If C(wknkn−1···kr ) 6= ∅

for all r ∈ {s, . . . , n} , then for all x = (u, v) ∈ Ext(C(wknkn−1···ks)) there

exists either i ∈ Ms such that xi = αs
i or j ∈ M ′

s such that xj = βs
j .

Proof. We shall consider two different cases. If there exists i∗ ∈ Ms

such that i∗ is not matched by µs , then for any x ∈ C(wknkn−1···ks) , by

Lemma 2, xi∗ = αs
i∗ . Similarly, if there exists j∗ ∈ M ′

s not assigned in
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µs , then xj∗ = βs
j∗ .

Otherwise, all players in Ms are assigned to players in M ′
s (and vice–

versa). Assume ui > αs
i for all i ∈ Ms and vj > βs

j for all j ∈ M ′
s . Then

we can choose ε > 0 such that if we define x̄ , ȳ ∈ RMs×M ′
s ,

x̄i = ui + ε and ȳi = ui − ε for all i ∈ Ms ,

x̄j = vj − ε and ȳj = vj + ε for all j ∈ M ′
s ,

then x̄ and ȳ belong to the core of the reduced assignment game. Notice

that you can choose ε such that x̄i ≥ αs
i for all i ∈ Ms , x̄j ≥ βs

j for all

j ∈ M ′
s . On the other hand if (i, j) ∈ Ms×M ′

s , then x̄i + x̄j = ui +vj . As

(u, v) ∈ C(w) , x̄i + x̄j ≥ aij if (i, j) 6∈ µs and x̄i + x̄j = aij if (i, j) ∈ µs .

The same argument follows for vector ȳ and then, taking the same ε > 0

for both vectors, we obtain x̄, ȳ ∈ C(wknkn−1···ks) and x = 1
2 x̄+ 1

2 ȳ , which

contradicts x = (u, v) being an extreme point of C(wknkn−1···ks) .

The above property allows us to prove that in each extreme allocation of

the core of a successive reduced assignment game there is a player receiving

his marginal contribution.

Lemma 4. Let (M∪M ′, w) be an assignment game, θ = (k1, k2, . . . , kn)

an ordering in the player set and s ∈ {2, . . . , n} . If C(wknkn−1···kr ) 6= ∅

for all r ∈ {s, . . . , n} , then, for all x ∈ Ext(C(wknkn−1···ks)) there exists

k ∈ Ms ∪M ′
s such that xk = bwknkn−1···ks

k .

Proof. By the above Lemma, we can assume, without loss of generality,

that there exists i∗ ∈ Ms such that xi∗ = αs
i∗ . Take µ an optimal match-
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ing for M ∪M ′ in the game w . We now consider two cases, depending on

whether player i∗ is matched by µs or not.

Case 1: Assume i∗ not matched by µs .

As x ∈ C(wknkn−1···ks) , then

x(Ms ∪M ′
s) = wknkn−1···ks(Ms ∪M ′

s)

and

x((Ms \ {i∗}) ∪M ′
s) ≥ wknkn−1···ks((Ms \ {i∗}) ∪M ′

s) . (6)

On the other hand,

x((Ms\{i∗})∪M ′
s) =

∑

(i,j)∈µs

(xi+xj)+
∑

i∈Ms\{i∗}
i not matched by µs

xi +
∑

j∈M′
s

j not matched by µs

xj .

By Lemma 1 and the core description of lemma 2,

x((Ms\{i∗})∪M ′
s) =

∑

(i,j)∈µs

aij+ãp1kl1
−bw

knkn−1···kl1+1

kl1
+· · ·+ãpqklq

−bw
knkn−1···klq+1

klq

where p1, p2, . . . , pq are players in (Ms \ {i∗}) ∪M ′
s assigned to players

kl1 , kl2 , . . . , klq in Is ∪ Js , and we assume l1 > l2 > · · · > lq , and

ãprklr
=















aprklr
if pr ∈ M

aklr pr if pr ∈ M ′ .
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Now,

x((Ms \ {i∗}) ∪M ′
s) =

∑

(i,j)∈µs
aij +

∑q
r=1(ãprklr

− bwknkn−1···klr+1

klr
) ≤

w((Ms \ {i∗}) ∪M ′
s ∪ {kl1 , kl2 , . . . , klq})−

∑q
r=1 bwkn···klr+1

klr
≤

wkn···kl1+1((Ms \ {i∗}) ∪M ′
s ∪ {kl1 , kl2 , . . . , klq})−

∑q
r=1 bwkn···klr+1

klr
≤

wkn···kl1 ((Ms \ {i∗}) ∪M ′
s ∪ {kl2 , . . . , klq})−

∑q
r=2 bwkn···klr+1

klr
≤

.......

wkn···klq+1((Ms \ {i∗}) ∪M ′
s ∪ {klq})− bw

kn···klq+1

klq
≤

wkn···klq ((Ms \ {i∗}) ∪M ′
s) ≤ wkn···ks((Ms \ {i∗}) ∪M ′

s)

where all these inequalities follow from the definition of marginal game,

that is, vi(S) ≥ v(S) and vi(S) ≥ v(S ∪ {i}) − bv
i , for all S 6= ∅ not

containing player i . Therefore,

x((Ms \ {i∗}) ∪M ′
s) ≤ wkn···ks((Ms \ {i∗}) ∪M ′

s) .

We have then obtained, from (6) and the above inequality, that

x((Ms \ {i∗}) ∪M ′
s) = wknkn−1···ks((Ms \ {i∗}) ∪M ′

s) ,

so, by efficiency,

x∗i = wknkn−1···ks(Ms∪M ′
s)−wknkn−1···ks((Ms\{i∗})∪M ′

s) = bwknkn−1···ks

i∗ .

Case 2: Player i∗ is matched by µs to j∗ ∈ M ′
s .
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By (3), αs
i∗ = maxkl∈Js{0, ai∗kl − bwknkn−1···kl+1

kl
} and thus there are two

possibilities.

• If xi∗ = αs
i∗ = 0 , then on one hand, being x a core element, x(Ms ∪

M ′
s) = wknkn−1···ks(Ms∪M ′

s) and x(Ms∪(M ′
s\{j∗})) ≥ wknkn−1···ks(Ms∪

(M ′
s \ {j∗})) .

On the other hand, by using the same reasoning and notation as in Case

1, we obtain

x(Ms ∪ (M ′
s \ {j∗})) =

x((Ms \ {i∗}) ∪ (M ′
s \ {j∗})) =

∑

(i,j)∈µs, (i,j) 6=(i∗,j∗) aij +
∑q

r=1

(

ãprklr
− bwknkn−1···klr+1

klr

)

≤

w((Ms \ {i∗}) ∪ (M ′
s \ {j∗}) ∪ {kl1 , kl1 , . . . , klq})−

∑q
r=1 bwkn···klr+1

klr
≤ · · · ≤

wkn···ks((Ms \ {i∗}) ∪ (M ′
s \ {j∗})) ≤ wkn···ks(Ms ∪ (M ′

s \ {j∗})) ,

where the last inequality holds by monotonicity of wknkn−1···ks .

We have then proved that

x(Ms ∪ (M ′
s \ {j∗})) = wkn···ks(Ms ∪ (M ′

s \ {j∗}))

and, by efficiency, xj∗ = bwknkn−1···ks

j∗ .

• If xi∗ = αs
i∗ = ai∗kl∗ − bwknkn−1···kl+1

kl∗
for some kl∗ ∈ Js , there are again

two possibilities. If there exists i′ ∈ Ms such that (i′, kl∗) ∈ µ , then xi′ =
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αs
i′ and, as i′ is not assigned in M ′

s , by case 1 we have xi′ = bwknkn−1···ks

i′ ,

so there is a player who is paid his marginal contribution.

Otherwise, there is no i ∈ Ms assigned to kl∗ . Then, as x ∈ C(wknkn−1···ks) ,

x(Ms ∪ (M ′
s \ {j∗})) ≥ wknkn−1···ks(Ms ∪ (M ′

s \ {j∗})) . On the other hand,

by an argument similar to the one above,

x(Ms ∪ (M ′
s \ {j∗})) =

x((Ms \ {i∗}) ∪ (M ′
s \ {j∗})) + xi∗ =

∑

(i,j)∈µs, (i,j)6=(i∗,j∗) aij +
∑q

r=1(ãprklr
− bwknkn−1···klr+1

klr
) + ai∗kl∗ − bwkn···kl∗+1

kl∗
≤

w(Ms ∪ (M ′
s \ {j∗}) ∪ {kl1 , kl2 , . . . , klq} ∪ {kl∗})−

∑q
r=1 bwkn···klr+1

klr
− bwkn···kl∗+1

kl∗
≤

≤ · · · ≤

wkn···ks(Ms ∪ (M ′
s \ {j∗}))

We have then proved that

x(Ms ∪ (M ′
s \ {j∗})) = wkn···ks(Ms ∪M ′

s \ {j∗}))

and, by efficiency, we get xj∗ = bwknkn−1···ks

j∗ .

We will now focus in the structure of the core of the reduced assignment

game.

Recall that the core of an assignment game has a particular structure
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with two special extreme points. One of them gives each seller her maxi-

mum possible payoff in the core (and so each buyer gets then his minimum

possible payoff inside the core), while the other extreme gives each buyer

his maximum possible payoff in the core (and so each seller gets his mini-

mum possible payoff in the core). The next lemma states that this property

is preserved in the core of the reduced assignment game.

For all s ∈ {2, . . . , n} define

us
i = max{ui | (u, v) ∈ C(wknkn−1···ks)}, for all i ∈ Ms ,

vs
j = max{vj | (u, v) ∈ C(wknkn−1···ks)}, for all j ∈ M ′

s ,

us
i = min{ui | (u, v) ∈ C(wknkn−1···ks)}, for all i ∈ Ms ,

vs
j = min{vj | (u, v) ∈ C(wknkn−1···ks)}, for all j ∈ M ′

s .

(7)

Lemma 5. Let (M∪M ′, w) be an assignment game, θ = (k1, k2, . . . , kn)

an ordering in the player set and s ∈ {2, . . . , n} . If C(wknkn−1···kr ) 6= ∅

for all r ∈ {s, . . . , n} , then (us, vs) and (us, vs) are extreme core alloca-

tions of wknkn−1···ks .

Proof. Notice first that if (u, v), (u′, v′) ∈ C(wknkn−1···ks) and you de-

fine for all i ∈ Ms

u∗i = min{ui, u′i} and u∗i = max{ui, u′i}

and for all j ∈ M ′
s

v∗j = min{vj , v′j} and v∗j = max{vj , v′j}

it is easy to prove that (u∗, v∗), (u∗, v∗) ∈ C(wknkn−1···ks) . We will prove

it only for the point (u∗, v∗) .
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Let us fix an optimal matching µ of M ∪M ′ . As (u, v) and (u′, v′)

are in the core, by Lemma 2, u∗i ≥ αs
i and v∗j ≥ βs

j , for all i ∈ Ms ,

j ∈ M ′
s . Moreover, either u∗i + v∗j = ui + v∗j ≥ ui + vj ≥ aij or u∗i + v∗j =

u′i + v∗j ≥ u′i + v′j ≥ aij .

If (i, j) ∈ µs , then ui + vj = aij and u′i + v′j = aij . Notice that if

ui ≥ u′i , then vj ≤ v′j and as a consequence u∗i +v∗j = u′i +v′j = aij . And

if ui ≤ u′i , then vj ≥ v′j and u∗i + v∗j = ui + vj = aij .

Lastly, if there exists i ∈ Ms not assigned in µs , then, again by Lemma

2, ui = u′i = αs
i , which implies u∗i = u∗i = αs

i .

Therefore, (u∗, v∗) ∈ C(wknkn−1···ks) . Now, from the classical ar-

gument done by Shapley and Shubik (1971), it follows that (us, vs) ∈

C(wknkn−1···ks) , and in fact it is clear to see that it is an extreme core

allocation.

Following Roth and Sotomayor (1990), we will now see that the max-

imum payoff of a player in the core of the successive reduced assignment

game is his marginal contribution. In fact, what we find is that the reduced

assignment game also satisfies property 2 : all marginal contributions are

attained in the core of the reduced assignment game, which will be crucial

for our purposes.

Lemma 6. Let (M∪M ′, w) be an assignment game, θ = (k1, k2, . . . , kn)

an ordering in the player set and s ∈ {2, . . . , n} . If C(wknkn−1···kr ) 6= ∅

for all r ∈ {s, . . . , n} , then
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1. For all i′ ∈ Ms , us
i′ = bwknkn−1···ks

i′ ;

2. For all j′ ∈ M ′
s , vs

j′ = bwknkn−1···ks

j′ .

Proof. We shall only prove the statement for all player i′ ∈ Ms , as by

a similar argument the reader will obtain the result for all players j′ ∈ M ′
s .

From Lemma 5 we know there exists (us, vs) ∈ Ext(C(wknkn−1···ks))

such that for all i ∈ Ms and all j ∈ M ′
s ,

us
i = max{ui | (u, v) ∈ C(wknkn−1···ks)} and vs

j = min{vj | (u, v) ∈ C(wknkn−1···ks)} .

Take then i′ ∈ Ms and µ an optimal matching in M ∪ M ′ . We now

consider different cases:

Case 1: If i′ not assigned in Ms ∪ M ′
s by µs , then from Lemma 2

us
i′ = αs

i′ and, by the proof of case 1 of Lemma 4, αs
i′ = bwknkn−1···ks

i′ .

Case 2: Otherwise i′ is matched by µs to j1 ∈ M ′
s .

Let x be the allocation of the assignment game obtained by completing

(us, vs) with the corresponding marginal contributions:

x = (xk)k∈M∪M ′ = ((us, vs); bw
kn

, bwkn

kn−1
, · · · , bwknkn−1···ks+1

ks
) .

By the balancedness hypothesis and repeatedly applying Proposition 1, x

is a core allocation, in fact an extreme point of C(w) .

Construct an oriented graph with vertices M∪M ′ and two kind of arcs:

given (i, j) ∈ M ×M ′ , if (i, j) ∈ µ , then i −→ j and if xi + xj = aij but

(i, j) 6∈ µ , then j −→ i .

Let T be the set of i ∈ M that can be reached from i′ through an

oriented path. We will assume i′ ∈ T . Let S be the set of j ∈ M ′ that
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can be reached from i′ through an oriented path. Notice that, under the

assumptions of case 3, neither T nor S are the empty set, as i′ ∈ T and

j1 ∈ S . Moreover, all oriented paths starting at i′ pass through j1 .

i’ - j1 - i1 - j2 - i2 - . . . - js - is - · · ·
���* ���*

HHHj
HHHj

���*

HHHj

We first prove that

for all i 6∈ T , and all j ∈ S , xi + xj > aij . (8)

Assume on the contrary that there exists i 6∈ T and j ∈ S such that

xi + xj = aij (recall x ∈ C(w)) . If (i, j) ∈ µ , then, being j ∈ S , there

exists ı̃ ∈ T such that ı̃ −→ j , but then (̃ı, j) ∈ µ and contradicts µ

being a matching. On the other hand, if (i, j) 6∈ µ , then j −→ i and as

j ∈ S , we get i ∈ T in contradiction with the hypothesis.

We now claim that “there exists an oriented path c starting at i′ and

ending either at id ∈ M not matched by µ to a player in M ′
s , or at

jd+1 ∈ S such that xjd+1 = 0 , in such a way that, in both cases, all

j ∈ M ′ in the path belong to M ′
s ”. The proof of this claim will consider

several cases.

If there exists some l ∈ {s, . . . , n} such that kl ∈ S , by definition of set
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S it is known to exist a path c = (i′, j1, i1, j2, . . . , jd, id, kl) connecting i′

with kl . Take then the path c = (i′, j1, i1, j2, . . . , jd, id) . If jt ∈ M ′
s for

all t ∈ {1, 2, . . . , d} , this is the path claimed. Otherwise take t∗ = min{t ∈

{1, 2, . . . , d} | jt 6∈ M ′
s} and notice that t∗ > 1 as j1 ∈ M ′

s . Take then the

path c = (i′, j1, . . . , jt∗−1, it∗−1} .

Assume kl 6∈ S for all l ∈ {s, . . . , n} .

• If there exists id ∈ T not matched by µ to some player in M ′
s , then

there is a path c = (i′, j1, . . . , jd, id) with the properties claimed.

• Otherwise, all i ∈ T are matched by µ to some player in M ′
s . We will

prove that there exists k ∈ S such that xk = 0 .

Assume xk > 0 for all k ∈ S . We then can choose ε > 0 such that the

payoff x′ ∈ RM∪M ′
belongs to C(w) , where

x′k = xk + ε k ∈ T

x′k = xk − ε k ∈ S

x′k = xk k 6∈ S ∪ T .

You only have to take 0 < ε < xk for all k ∈ S and ε < xi + xj − aij

for all j ∈ S and i 6∈ T , which is possible by claim (8). Then x′k ≥ 0 for

all k ∈ M ∪M ′ and x′i + x′j ≥ aij for i ∈ M \ T and j ∈ S . Moreover,

if i ∈ T and j 6∈ S , x′i + x′j = xi + xj + ε ≥ aij . On the other hand, for

i ∈ T and j ∈ S , or i ∈ M \T and j ∈ M ′ \S , x′i +x′j = xi +xj . Notice

that only in the two cases i ∈ T and j ∈ S , or i ∈ M \T and j ∈ M ′ \S ,

it is possible to have (i, j) ∈ µ and thus all core constraints are satisfied.

29



- If there exists some kl ∈ T , take l∗ = max{l ∈ {s, . . . , n} | kl ∈ T } . If

l∗ < n , then for all l∗ ≤ l ≤ n , x′kl
= xkl = bwknkn−1···kl+1

kl
, and that

implies, by RGP of the core, x′−knkn−1···kl∗+1
∈ C(wknkn−1···kl∗+1) .

But then

x′kl∗
= xkl∗ + ε > xkl∗ = bwknkn−1···kl∗+1

kl∗

which contradicts the fact that every player payoff in the core is

bounded above by his marginal contribution. Notice that if l∗ = n ,

then x′kn
= xkn + ε = bw

kn
+ ε > bw

kn
and the same contradiction is

reached in C(w) .

- Otherwise, kl 6∈ S ∪ T for all l ∈ {s, . . . , n} and then x′kl
= xkl =

bwknkn−1···kl+1

kl
for all l ∈ {s, s+1, . . . , n} . Now, as x′ ∈ C(w) , by the

RGP of the core, x′−knkn−1···ks
∈ C(wknkn−1···ks) . But x′k < xk = vs

k

for all k ∈ S , in contradiction with the definition of (us, vs) .

Once proved the claim, take an oriented path starting from i′ and

ending either at id ∈ M not assigned in M ′
s or at jd+1 ∈ S with xjd+1 =

0 , and such that all j ∈ S being in the path belong to M ′
s . Let this path

be c = (i′, j1, i1, j2, . . . , jd, id) or c = (i′, j1, i1, j2, . . . , jd, id, jd+1) .

Define a matching µ′ in Ms ∪M ′
s in the following way:

µ′ =















(it, jt) t ∈ {1, . . . , d}

it ∈ Ms















∪















(i, j) ∈ Ms ×M ′
s (i, j) ∈ µs and

i 6∈ {i′, i1, . . . , id}















(9)
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Then, on one hand, being (us, vs) ∈ C(wknkn−1···ks) ,

∑

i∈Ms, i 6=i′
us

i +
∑

j∈M ′
s

vs
j ≥ wknkn−1···ks((Ms \ {i′}) ∪M ′

s) .

On the other hand, {A1, A2, A3} is a partition of Ms \ {i′} where

A1 = {i1, i2, . . . , id} ∩Ms

A2 = {i ∈ Ms \ {i′, i1, . . . , id} | i matched by µs}

A3 = {i ∈ Ms \ {i′, i1, . . . , id} | i not matched by µs}

and {B1, B2, B3, B4} is a partition of M ′
s if c = (i′, i1, . . . , id) and of

M ′
s \ {jd+1} otherwise, where

B1 = {jt ∈ {j1, . . . , jd} | it ∈ Ms}

B2 = {jt ∈ {j1, . . . , jd} | it 6∈ Ms}

B3 =















{j ∈ M ′
s \ {j1, . . . , jd} | j matched by µs} if c = (i′, j1, i1, . . . , id)

{j 6∈ {j1, . . . , jd, jd+1} | j matched by µs} if c = (i′, j1, i1, . . . , id, jd+1)

B4 =















{j ∈ M ′
s \ {j1, . . . , jd} | j not matched by µs} if c = (i′, j1, i1, . . . , id)

{j 6∈ {j1, . . . , jd, jd+1} | j not matched by µs} if c = (i′, j1, i1, . . . , id, jd+1) .

By the above partitions,

∑

i∈Ms, i 6=i′ u
s
i +

∑

j∈M ′
s
vs

j =

∑

it∈A1
jt∈B1

(us
it

+ vs
jt

) +
∑

i∈A2
j∈B3

(i,j)∈µs

(us
i + vs

j) +
∑

i∈A3
us

i +
∑

jt∈B2
vs

jt
+

∑

j∈B4
vs

j + [vs
jd+1

] ,

where the term in brackets, [ ], is only considered when c = (i′, j1, . . . , id, jd+1)

( and then vs
jd+1

= 0 ).
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By definition of matching µ′ in (9), and taking into account that players

in A2 are matched by µs to players in B3 (and similarly, players in B3

only can be matched by µs to players in A2 ),

∑

it∈A1
jt∈B1

(us
it

+ vs
jt

) +
∑

i∈A2
j∈B3

(i,j)∈µs

(us
i + vs

j) =
∑

(i,j)∈µ′
aij .

A player p ∈ A3 is either unmatched by µ , and in this case us
p = 0 , or

matched by µ to a player kl ∈ Js , and then, by Lemma 1 and Lemma 2,

us
p = apkl − bwkn···kl+1

kl
. Similarly, if p ∈ B4 , then p is either unmatched

by µ , and then vs
p = 0 , or matched by µ to a player kl ∈ Is . In this

case, again by Lemma 1 and Lemma 2, vs
p = aklp − bwkn···kl+1

kl
.

A player jt ∈ B2 is such that it ∈ Is , that is to say, it = kl for

some l ∈ {s, . . . , n} . As jt and it are connected by an arc, we get

aitjt = xit +xjt = bwknkn−1···kl+1

kl
+vs

jt
and thus vs

jt
= aitjt−bwknkn−1···kl+1

kl
.

Notice finally that, if j ∈ B4 , j cannot be matched by µ to a player

it , for t ∈ {1, . . . , d} . The reason is that if t < d , it is matched by µ

to jt+1 , while id is either not assigned to a player in M ′
s or assigned to

jd+1 when c = (i′, i1, . . . , id, jd+1) .

Let us now denote by p1, p2, . . . , pq the players in A3∪B2∪B4 in such

a way that pr is matched by µ to klr and l1 > l2 > · · · > lq . Define also

ãprklr
=















aprklr
if pr ∈ M

aklr pr if pr ∈ M ′ .
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Now, by all the above remarks,

∑

i∈Ms, i 6=i′ u
s
i +

∑

j∈M ′
s
vs

j =

∑

(i,j)∈µ′ aij +
∑q

r=1

(

ãprklr
− bwknkn−1···klr+1

klr

)

≤

w((Ms \ {i′}) ∪M ′
s ∪ {kl1 , kl2 , . . . , klq})−

∑q
r=1 bwkn···klr+1

klr
≤

wkn···kl1+1((Ms \ {i′}) ∪M ′
s ∪ {kl1 , kl2 , . . . , klq})−

∑q
r=1 bwkn···klr+1

klr
≤

wkn···kl1 ((Ms \ {i′}) ∪M ′
s ∪ {kl2 , . . . , klq})−

∑q
r=2 bwkn···klr+1

klr
≤

.......

wkn···klq+1((Ms \ {i′}) ∪M ′
s ∪ {klq})− bw

kn···klq+1

klq
≤

wkn···klq ((Ms \ {i′})) ∪M ′
s) ≤ wkn···ks((Ms \ {i′}) ∪M ′

s)

where all these inequalities follow from the definition of marginal game.

We thus have

∑

i∈Ms, i 6=i′
us

i +
∑

j∈M ′
s

vs
j = wknkn−1···ks((Ms \ {i′}) ∪M ′

s)

which, by efficiency, means that us
i′ = bwknkn−1···ks

i′ .

Next theorem states that the successive reduced assignment games have

a nonempty core and in each extreme core allocation there is a player who is

paid his marginal contribution. Moreover, each player attains his marginal
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contribution in the core. To sum up, property 1 and property 2 hold for

the successively reduced assignment game.

Theorem 1. Let (M∪M ′, w) be an assignment game and an arbitrary

ordering θ = (k1, k2, . . . , kn−1, kn) in the player set. Then, for all s ∈

{2, . . . , n} :

1. C(wknkn−1···ks) 6= ∅

2. For all x ∈ Ext(C(wknkn−1···ks)) there exists k ∈ Ms∪M ′
s such that

xk = bwknkn−1···ks

k .

3. For all i′ ∈ Ms , us
i′ = bwknkn−1···ks

i′ ; and for all j′ ∈ M ′
s , vs

j′ =

bwknkn−1···ks

j′ ,

Proof. Since w is an assignment game, it is well known that C(w) 6= ∅

(Shapley and Shubik, 1971). Take θ = (k1, . . . , kn) an arbitrary ordering

in M ∪M ′ . By Property 2, given kn there exists x ∈ C(w) , such that

xkn = bw
kn

. Now by the reduced game property of core elements, x−kn ∈

C(wkn) , which proves the marginal game C(wkn) is balanced.

Assume iteratively that given s + 1 ∈ {3, . . . , n} , C(wknkn−1···kr ) 6=

∅ for all r ∈ {s + 1, . . . , n} . By Lemma 5 and Lemma 6 there exists

x = (us+1, vs+1) and y = (us+1, vs+1) , both in C(wknkn−1···ks+1) , such

that if ks ∈ Ms+1 then xks = bwknkn−1···ks+1

ks
and if ks ∈ M ′

s+1 then

yks = bwknkn−1···ks+1

ks
. In any case, there is a core element z where player

ks gets his marginal contribution in the game wkn···ks+1 . Again, by the
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reduced game property for core allocations, z−ks ∈ C(wknkn−1···ks+1ks)

and thus the game wkn···ks+1ks is also balanced. Now statement 2 follows

from Lemma 4.

Once we know the successive reduced games are all balanced, from

Lemma 5 it is obtained that they all have a buyers–optimal core allocation,

(us, vs) , and a sellers–optimal core allocation (us, vs) (see equalities (7)).

Moreover, from Lemma 6, in the core allocation of the successive reduced

assignment game which is optimal for one side of the market, each agent on

this side attains his marginal contribution in the corresponding game.

4. THE EXTREME CORE ALLOCATIONS

For each ordering θ = (i1, i2, . . . , in−1, in) , the reduced marginal

worth vector rmv
θ is a vector in Rn where each player receives her

marginal contribution to her set of predecessors, and a reduction of the

game is performed in each step (Núñez and Rafels, 1998):

(rmv
θ)in = v(i1, . . . , in−1, in)− v(i1, . . . , in−1) = bv

in
,

(rmv
θ)in−1 = vin(i1, . . . , in−1)− vin(i1, . . . , in−2) = bvin

in−1
,

...
...

(rmv
θ)ik = vinin−1···ik+1(i1, . . . , ik)− vinin−1···ik+1(i1, . . . , ik−1) = bvinin−1···ik+1

ik
,

...
...

(rmv
θ)i2 = vinin−1···i3(i1, i2)− vinin−1···i3(i1) = bvinin−1···i3

i2 ,

(rmv
θ)i1 = vinin−1···i2(i1) = bvinin−1···i2

i1 .

Reduced marginal worth vectors are inspired in the marginal worth
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vectors where, given an ordering θ = (i1, i2, . . . , in) on N , each player

receives his marginal contribution to the set of his predecessors in the cor-

responding subgame, (mv
θ)ik = v(i1, . . . , ik−1, ik) − v(i1, . . . , ik−1) for all

k ∈ {1, 2, . . . , n} .

From the definition of marginal game it follows vin···ik+1(i1, . . . , ik−1) =

vin···ik(i1, . . . , ik−1) and so it is straightforward to see that reduced marginal

worth vectors are always efficient, rmv
θ(N) = v(N) ,

As it happens with marginal worth vectors, when a reduced marginal

worth vector is a core allocation, then it is an extreme one (Núñez and

Rafels, 1998). It is then easy to understand that the reduced marginal

worth vectors of a given game are good candidates to become some of its

extreme core allocations. The core of convex games is the convex hull of

the whole set of marginal worth vectors (Shapley, 1971, and Ichiishi, 1981).

Clearly, if the game is convex the reduced marginal worth vector rmv
θ

coincides with the marginal worth vector mv
θ . However, convex games are

not the only games in which the set of extreme points of the core coincide

with the set of reduced marginal worth vectors. Other classes with this

property can be found in Núñez and Rafels (1998). We can now state and

prove that this is also the case of the assignment game. The proof relies

on Theorem 1 of the previous section.

Theorem 2. Let (M ∪ M ′, w) be an assignment game, then the ex-
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treme core allocations are the reduced marginal worth vectors:

ExtC(w) = {rmw
θ }θ∈Sn

where Sn is the set of all orderings over the player set M ∪M ′ .

Proof. Take x ∈ Ext(C(w)) , by Theorem 1 there exists kn ∈ M ∪M ′

such that xkn = bw
kn

. Now, by RGP for the extreme core points, x−kn ∈

Ext(C(wkn)) . Again by Theorem 1 there exists kn−1 ∈ (M ∪M ′) \ {kn}

such that xkn−1 = bwkn

kn−1
. By repeating the process, in a finite number

of steps, we get an ordering θ = (k1, k2, . . . , kn−1, kn) ∈ Sn such that

x = rmw
θ .

Conversely, take x = rmw
θ for some θ = (k1, k2, . . . , kn) , which means

that xkl−1 = bwknkn−1···kl

kl−1
for all l ∈ {2, . . . , n} and xkn = bw

kn
. In the

one–player game wknkn−1···k2 , xk1 = bwknkn−1···k2

k1
= wknkn−1···k2(k1) ∈

Ext(C(wknkn−1···k2)) . From Theorem 1, C(wknkn−1···k3) 6= ∅ , and then,

by Proposition 1, we get (xk1 ; b
wknkn−1···k3

k2
) ∈ Ext(C(wknkn−1···k3)) . By

repeatedly applying Theorem 1 and Proposition 1, we get x = rmw
θ ∈

Ext(C(w)) .
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