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1 Introduction

In recent years a growing number of theories have highlighted the importance of

private information in understanding many important real-world issues. For exam-

ple, Morris and Shin (2000) and Corsetti, Dasgupta, Morris and Shin (2001) stress

the role played by private information when analysing currency crises. Postlewaite

and Vives (1987), Goldstein and Pauzner (2000) and Chari and Jagannathan (1988)

analyse bank runs in a private-information set-up. In a di®erent class of mod-

els Banerjee (1992), Bikhchandani, Hirschleifer and Welch (BHW,1992) and a.o.

Chamley and Gale (CG,1994) analyse investment behaviour when all investors pos-

sess some private information concerning the pro¯tability of an investment option.

They show how in their set-up everyone can end up investing when actually no one

should have done so. Avery and Zemsky (1998) modify BHW's model to explain

price bubbles in ¯nancial markets...

All the papers mentioned above crucially assume that everyone possesses some in-

formation concerning "the realized state of the world" (which determines the prof-

itability of investing, attacking the currency, running to the bank, ...). If everyone

could truthfully exchange their private information, they would be able to take their

payo®-relevant action on the basis of more information and achieve a higher payo®1

(and this is even true in Avery and Zemsky's explanation of ¯nancial bubbles).

Where does private information then come from? Stated di®erently, why should we

rule out pro¯table preplay communication? Moreover, those models seem at odds

with casual observations of everyday life in which a lot of private information is

simply transmitted through cheap talk. For example, in a recent Financial Times

interview Mr. Dan Peterson, CEO of a telecommunications ¯rm pictured himself

as an optimist when talking about the growth potential of his sector by declar-

ing: "An economic slowdown does not presage a slowdown in the pace of technical

innovation."2 Similarly, Mr. Didier Bellens, chief executive of the RTL Group, drew

a gloomy picture of the European advertising market by asserting that it would

probably grow by just two per cent in 2001.3 Some institutions are even specialised

1For example in Morris and Shin's account of currency crises players would bene¯t from truthful
revelation by enabling them (i) to attack the currency in the "right" state of the world and (ii) to
increase the probability of launching a successful attack by coordinating their actions.

2See Financial Times, July the 18th, 2001
3At that time it was generally believed that it would grow by eight per cent. See Financial

Times, June the 19th, 2001.
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in collecting and summarising the opinions of a large number of market participants.

For example, the Munich-based IFO institute for economic research releases a quar-

terly index re°ecting the business con¯dence of the average German investor. Similar

institutions are also at work in the other developed economies. Some economists are

aware of this tension between our theoretical assumptions and casual observations

of everyday life. For example, Robert Schiller (1995) while discussing the current

theories of herd behaviour wrote:

Human behavior common to all human societies involves a tendency for

an idle free-°owing exchange of ideas and thoughts; we call this "con-

versation". (p.183)

Obviously, the examples I listed above all raise one natural question: Why should

investors truthfully reveal their private information? How credible is Mr. Bellen's

pessimism? Cheap talk can be ruled out on the basis of competition e®ects4. How-

ever, competition e®ects are absent in the papers I mentioned in my ¯rst paragraph.

Pro¯table preplay communication can also be ruled out by the claim that every

game of cheap talk always possesses a pooling (or babbling) equilibrium. However,

as argued by Farrel and Rabin (1996), it remains to be seen whether the pooling

equilibrium constitutes a natural focal point in a game of cheap talk. This last

claim would actually be more convincing if one could show that, were we to allow

for preplay communication, the game of cheap talk would then be characterised

by a unique pooling equilibrium. Conversely, if one could show the existence of a

separating equilibrium (e.g. an equilibrium in which an optimistic player sends the

message "I am an optimist", while a pessimistic player sends the message "I am a

pessimist") this should enable us to address more ambitious questions like: "What

could be done (if anything) to promote e±cient exchange of private information?"

and "Does the ability of the sender in°uence her incentives for truthful revelation?"

This paper addresses the questions and concerns raised in this paragraph.

I introduce therefore cheap talk in two di®erent investment models. First, I add

cheap talk to a static investment model. All players must take an investment de-

cision and possess a private, imperfect signal concerning the future state of the

world. Investment is only pro¯table in the good state. For the sake of simplicity, I

assume that the returns of the investment project only depend on the state of the

world. Hence, for e±ciency reasons one would want to have all players truthfully

4For example, cheap talk does not work in a Cournot-duopoly because one ¯rm always wants
to send a message in the hope to reduce the output of the other ¯rm.
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exchanging their signals. In the ¯rst stage one randomly drawn player (the sender)

is asked to divulge her private information (i.e. her signal) to the other players (the

receivers). In the second stage all players decide whether to invest or not. Second, I

add cheap talk to a dynamic investment model. The set-up of this dynamic model is

similar to the one described above except that in the second stage players now play

a waiting game similar to the one studied in CG and Chamley (1997). Players can

invest in two periods. In the second period, everyone observes how many players

invested in the ¯rst period, and, those who haven't invested at time one, decide then

whether to carry out their investment plans or not.

Two main conclusions can be drawn out of this paper. First, I show how the credibil-

ity of cheap talk statements may be adversely a®ected when investors can postpone

their investment decisions. Second, I show how, in the dynamic investment model,

an informational cascade can help in restoring separating equilibria.

My ¯rst main conclusion rests on the comparison between proposition (2) and propo-

sition (3). Proposition (2) summarises the main result drawn out of my static invest-

ment model and states that, independently of the cost of the investment project,

there always exists a separating equilibrium. The intuition is straightforward: if

the sender is optimistic (pessimistic) she will, independently of her message, (not)

invest in the second stage. Therefore she cannot gain by deviating. Unfortunately,

this insight does not hold anymore once we work with a dynamic investment model

in the second stage. In particular, proposition (3) shows that, for high enough an

investment cost, the unique equilibrium is then the pooling one. Stated di®erently,

for high enough an investment cost, it is without loss of generality to assume away

e±cient preplay communication. The intuition behind this result goes as follows:

in my model expected payo®s are driven by the relative number of optimists in the

economy (the higher the proportion of optimists in the population, the higher the

probability that the world is in the good state). At time two all players observe

the number of period-one investments and use this knowledge to get an "idea" of

the proportion of optimists in the economy. This updating process depends on the

period-one investment strategies5 (which on their turn are a®ected by the message

sent in the ¯rst period). Both sender's types want to send the message which would

allow them to get the "best possible idea" about the proportion of optimists in the

5For example, upon observing k period-one investments, players compute di®erent posteriors if
pessimists invested (at time one) with zero probability and optimists with a probability equal to
one, than if pessimists invested with the same probability as the optimists.
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population. From Blackwell's value of information theorem (1951), we know that

inferring the proportion of optimists in the economy on the basis of the period-one

investments is easier, the higher the probability with which optimists invest, and the

lower the probability with which pessimists invest (and this is true for both sender's

types). If the investment cost is high enough, pessimists will - independently of the

sender's message and strategy - never invest in the ¯rst period. Therefore, both

sender's types want to send the message which makes the optimists invest with as

large a probability as possible. Thus both sender's types share the same preferences

over the optimists' actions, and therefore no information can be transmitted through

cheap talk.

My second main conclusion is summarised in proposition (4) which states that a

separating equilibrium exists for low-cost projects6. In the separating equilibrium

all players invest at time one whenever the sender announces "I am an optimist"

(i.e. an informational cascade7 in which everyone invests is ignited by the arrival of

a favourable message). In my model this informational cascade induces a pessimist

to send the message "I am a pessimist": if she were to deviate and sent instead

the message "I am an optimist", she wouldn't be able to learn anything about the

proportion of optimists in the population and would never invest. My analysis also

permits me to draw some positive and normative conclusions. In particular, I show

that subsidising investments may promote exchange of private information by in-

creasing the range of parameter values in which a separating equilibrium exists. I

also show that a more able sender has more incentives to truthfully reveal her pri-

vate information than a less able one.

Obviously, this is not the ¯rst paper to investigate the credibility of cheap talk

statements. In a seminal paper Crawford and Sobel (1982) already analysed the

issue of information transmission through cheap talk. However, in their model the

receiver chooses an action which in°uences both player's payo®s after having re-

ceived a message from the informed sender. In my model the sender ¯rst sends a

message and then plays a (waiting) game with the receivers. Farrel (1987, 1988,

1989) and Baliga and Morris (2000) also assume that both players play a game after

having received or sent a message. However, they consider a very di®erent game:

6Obviously, proposition (4) is based on the model in which investors face a dynamic investment
decision.

7All players - irrespective of their private information - take the same action at time one. By
de¯nition, this is an informational cascade.
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in Farrel (1987,1988) and Baliga and Morris the communication stage is followed

by a coordination game, while in Farrel (1989) both players engage in a bargaining

game after the communication stage. As I consider a (very) di®erent game8, I also

get very di®erent results: Crawford and Sobel have shown how the credibility of

cheap talk statements are undermined when the sender and the receiver have dif-

ferent preferences over the optimal action, Baliga and Morris argued that positive

spillovers impede information exchange, while I show how the possibility of post-

ponement may destroy incentives for truthtelling (and how informational cascades

help in restoring these incentives).

This paper also belongs to the literature on informational cascades (see a.o. Baner-

jee (1992), Bikhchandani, Hirschleifer and Welch (BHW,1992), Chamley and Gale

(1994), Zhang (1995),...). In those papers an informational cascade develops as

a consequence of the early arrival of some public information. In my paper this

causality is reversed: it is the anticipation of a future informational cascade which

induces the early arrival of some public information (i.e. the signal of the sender

which, in the separating equilibrium, gets truthfully transmitted through words). A

similar, though di®erent, mechanism can be found in Zhang (1995). In that paper

the occurence of an informational cascade reduces a player's gain of waiting and

thereby induces her to invest early. However, in his paper the occurence of a future

informational cascade only in°uences the time at which the player with the most

precise signal invests. Absent this informational cascade the player with the most

precise signal would be the ¯rst to invest anyway (and the remaining players would

exactly infer the precision of her signal out of the timing of her investment decision).

Therefore, in Zhang's paper the informational cascade does not cause the arrival of

public information.

This paper is organised as follows. In section two, I present my two-stage game.

In the third section, I take the players' posteriors as given and I solve for equi-

librium strategies in the waiting game. I next compute equilibrium strategies in

the sender-receiver game (section four). I ¯rst analyse a benchmark case in which

players cannot postpone their investment decisions (section 4.1). Next, I compute

equilibrium strategies when the communication stage is followed by the dynamic

investment game. In section 4.2, I ¯rst show how the credibility of cheap talk may

be undermined when players can postpone their investment decisions (proposition

8To the best of my knowledge, this is the ¯rst paper to add communication to a war-of-attrition
type model.
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(3)). Next, I show how this credibility can be restored by an informational cascade

(proposition (4)). Section ¯ve analyses the robustness of proposition (4). Final

comments are summarised in the sixth and ¯nal section.

2 The model

Assume that a population of N ¸ 5 risk neutral players must decide whether to in-
vest in a risky project or not. The value of the investment project, V, can take two

values: V 2 f1; 0g. The cost of the investment project is denoted by c. The state of
the world is described by £ 2 fH;Lg. if £ = H the good state prevails and V = 1.

If £ = L, the economy is in a bad state and V = 0 (P (£ = H) = P (£ = L) = 1
2
).

Each player receives a private, conditionally independent signal concerning the re-

alised state of the world. Formally, player l's signal sl 2 fh; lg (l = 1; :::; N) where
P (hjH) = P (ljL) = p > 1

2
. In this paper, I assume that:9

A1: 1¡ p < c < p

A1 implies that a player who received signal h is - a priori - willing to invest, because

P (Hjh) = p > c. Henceforth, I call a player who received a good (bad) signal an (a)
optimist (pessimist). A player who received a bad signal computes P (Hjl) = 1¡ p.
I analyse the following two-stage game:

-1) The state of nature is realised and all players receive their signals,

0) One randomly drawn player (henceforth player i) is asked to report her signal.

Her message, ŝi 2 fh; lg, is made public to all the other players,
1) All players make their investment decisions,

2) All players observe how many persons invested in period one, and those who

haven't invested yet make their investment decisions,

3) All players learn the true state of the world. Payo®s are received and the game

ends.

In the ¯rst stage (time zero) player i (= the sender) in°uences the posteriors with

which the remaining players (= the receivers) will compute equilibrium strategies in

the second stage (time one and two). Henceforth we denote the second stage as the

9Actually, all my results carry through as long as c 2 [ (1¡p)2
(1¡p)2+p2 ; p]. For the sake of expositional

clarity, I decided to restrict attention to the parameter range c 2 (1¡ p; p).
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waiting game. At time one, all players must choose an action from the set finvest,
waitg. At time two all players who waited at time one must choose an action from
the set finvest, not investg. Each player only possesses one investment opportunity,
so a period-one investor cannot invest in a second project at time two. Investments

are irreversible. If a player does not invest in any of the two periods, she gets zero.

Call k 2 f0; 1; :::; Ng the number of players who invest in the ¯rst period. ± denotes
the discount factor.

ht (t = 0; 1; 2) denotes the history of the game at time t. h0 = f;g. h1 = ŝi and

h2 = (ŝi; k). Ht denotes the set of all possible histories at t. H =
S2
t=0Ht. A

symmetric behavioural strategy for the receivers is a function ¤ : fh; lg£H ! [0; 1]

with the interpretation that ¤(sj; ht) represents the probability with which player

j (j = 1; 2; :::; N and j 6= i) invests at date t, given sj and ht. By assumption each
player can only invest once. Therefore we impose the following restriction on ¤(¢): if
aj1 = invest, then ¤(sj; h2) = 0 (where a

j
1 denotes the action undertaken by player j

at time one). By assumption, no one can invest at time zero, therefore ¤(sj ; h0) = 0.

A behavioural strategy for the sender is a function ¤s : fh; lg£H ! [0; 1]. ¤s(¢; h0)
represents the probability that player i sends ŝi = h. ¤s(¢; h1) (¤s(¢; h2)) represents
the probability that player i invests at date one (two). As before, ¤s(¢; h2) = 0 if
ai1 =invest.

In this model, players are solely interested in the relative number of optimists (as

compared to the number of pessimists) in the population. Call n the random num-

ber of optimists in our population. The higher n (for any ¯xed N), the higher

P (Hjn) and the higher the expected gain from investing. As expected payo®s are

driven by n, instead of explicitly specifying beliefs concerning each players' type

contingent on the history of the game, we use the probability assessments ®(¢)
and ®s(¢) when de¯ning our relevant equilibrium concept. A probability assess-

ment for the receivers is a function ® : fh; lg £ H £ f0; 1; 2; :::; Ng ! [0; 1] with

the interpretation that ®(sj; ht; n) represents the probability that n players are op-

timistic given ht and sj . Similarly, a probability assessment for the sender is a

®s : fh; lg £H £ f0; 1; :::;Ng ! [0; 1] where ®s(si; ht; n) represents the probability

that n players are optimistic given ht and si. A perfect Bayesian equilibrium (PBE)

is a (¤¤(¢);¤¤s(¢); ®¤(¢); ®¤s(¢)) such that:
(i) no player can gain by choosing a ¤(¢) (¤s(¢)) di®erent from ¤¤(¢) (¤¤s(¢)) given
the other players' strategies and given ®¤(¢) (®¤s(¢)), and
(ii) ®¤(¢) and ®¤s(¢) are computed via Bayes' law whenever possible.
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As mentioned before, at time zero player i in°uences the posteriors with which the

receivers compute their equilibrium strategies in the waiting game. To simplify our

notations from now on x denotes the probability with which an optimistic sender

sends message ŝi = h (i.e. x = ¤s(h; h0)). Similarly, to simplify notations, from

now on we replace ¤s(l; h0) by y. Remind that y represents the probability with

which a pessimistic sender strategically sends a favourable message (even though

she's a pessimist). Assume player j is an optimist (j = 1; 2; :::; N and j 6= i). At
time one player j revises her posterior by computing q = P (Hjsj = h; ŝi; x; y). As-
sume x = 1 and y = 0. In this case an optimistic sender always sends a favourable

message, while a pessimist always sends an unfavourable one. If player i were to

truthfully reveal her good signal at time zero, the remaining optimists would com-

pute P (Hjh; ŝi = h; 1; 0) = q. If the contrary were to happen at time zero, optimists
would compute P (Hjh; ŝi = l; 1; 0) = q. q cannot lie outside of the range [q; q], and
- depending on x, y and ŝi - can take any value between [q; q]. In a similar fashion

q¼ denotes a pessimist's posterior probability that £ = H and q¼ 2 [q¼; q¼].

I ¯rst characterise equilibrium behaviour in the waiting game for any possible poste-

riors, next I analyse player i's incentives to truthfully report her private information

given that she correctly anticipates how her message is going to a®ect posteriors. A

more general version of this waiting game has already been analysed by Chamley

and Gale (1994) and by Chamley (1997). My next section summarises their main

results in an intuitive way.

3 Strategic waiting

To simplify notations we will mostly replace ¤(h; h1) by ¸. Similarly, we use ¸¼
instead of ¤(l; h1). As mentioned earlier, in this model the ex ante gain of investing

is only determined by n, the number of optimists in the population. Unfortunately,

by postponing one's investment decision, players observe k instead of n. Hence, at

time two all players who waited at time one face an inference problem: on the basis

of k they must try to get "as precise an idea" about n. The inference of n out of k

depends on ¸ and ¸¼. This is logical: for instance observing k = 0 when ¸ = ¸¼ = 0

is less bad than observing k = 0 when ¸ = 1 and ¸¼ = 0 (in the former case you

observe no investments when you never expected to see any, while in the latter case

you learn for sure that no optimist is present in the economy).
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In equilibrium, the informational gain of waiting must be o®set by the discounting

cost. To characterise equilibrium behaviour we thus need an expression for the gain

of waiting. I ¯rst show the existence of a PBE in which ¸¼ = 0 and ¸¤ 2 [0; 1).
Assume player j is an optimist. What is player j's (undiscounted) gain of waiting

given that ¸¼ = 0 and that ¸ 2 [0; 1]? If she waits, by assumption she observes

the number of period-one investors. Upon observing k, she would then compute

P (Hjq; k; ¸)10 and would invest at time two i® P (Hjq; k; ¸) ¸ c. Hence, for a given
k player j's payo® equals Maxf0; P (Hjq; k; ¸) ¡ cg. Of course, player j cannot a
priori know how many players will invest at time one. Therefore, whenever ¸¼ = 0,

player j's ex ante gain of waiting (net of discounting costs), W (q; ¸), equals:

W (q; ¸) =
N¡1X
k=0

Maxf0; P (Hjq; k; ¸)¡ cgP (kjq; ¸) (1)

To understand equation (1) assume ¯rst that ¸ = 0. Then P (k = 0jq; ¸ = 0) = 1.
At time two, player j would compute P (Hjq; 0; 0) = q. This is logical, player j

would, independently of n, always observe zero period-one investments. Hence, if

¸ = 0, it's as if she doesn't receive any additional information concerning the re-

alised state of the world. Therefore she has no reason to change her posterior and

P (Hjq; 0; 0) = q. Therefore W (q; 0) = q ¡ c.

Next assume that ¸ = 1. Then, in the next period player j learns how many

optimists are present in the population (i.e. k = n ¡ 111). At time two player j
computes P (Hjn), and invests i® P (Hjn) ¸ c. As before, player j cannot ex ante
know how many optimists are present in the economy, and therefore:

W (q; 1) =
NX
n=1

Maxf0; P (Hjn)¡ cgP (njq) (2)

Lemma 1 8N ¸ 5, 8q 2 [q; q] and under A1, W (q; 1) > q ¡ c,
Proof: See appendix.

The intuition behind lemma 1 goes as follows. We can rewrite the gain of investing

as follows:

q ¡ c =X
n

P (Hjn)P (njq)¡ c

10From now on, whenever ¸¼ does not appear as a conditioning variable in P (¢j¢), this means
that ¸¼ is assumed to equal zero.
11By assumption player j is an optimist who waited at time one when the other optimists invested

with probability one. Therefore k = n¡ 1.
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Suppose ¸ = 1 and assume that player j decides to wait at time one and then to

invest unconditionally (i.e. to invest at time two independently of n). The above

equality merely states that investing at time one is payo®-equivalent (net of dis-

counting costs) to unconditionally investing at time two. Equation (2) learns us

that waiting (when ¸ = 1) is equivalent to making an optimal conditional second-

period investment decision. Suppose player i truthfully sent a favourable message

at time zero. Then player j knows that n cannot take a value lower than two be-

cause player j is also assumed to be an optimist. If P (Hjn = 2) is higher or equal
than c, then the optimal conditional second-period investment decision always coin-

cides with unconditionally investing at time two. This means that q ¡ c is equal to
W (q; 1). Hence, W (q; 1) will only be strictly greater than q ¡ c i® P (Hjn = 2) < c.
In this model all players possess a signal of the same precision and P (£ = H) = 1

2
.

Therefore, 8 c 2 (1 ¡ p; p) it takes three pessimists to refrain an optimist, having
received a favourable message from player i, from investing (and therefore N must

be greater or equal than ¯ve).

To focus on the interesting parameter range, I assume that:

A2: q¡c
W (q;1)

< ± < 1

Lemma 2 Under A2, q ¡ c < ±W (q; 1), 8q 2 [q; q]
Proof: See appendix

The ¯rst inequality of A2 puts a lower bound on the discount factor ± such that

player j, for all her possible posteriors, faces a positive option value of waiting (i.e.

if player j expects all the optimists to invest, then she rather waits). The ¯rst

inequality ensures thus that ¸¤ < 1. The second inequality ensures that ¸¤ > 0

(whenever q > c).

Equation (1) is increasing in ¸. To see this compare the following two "scenar-

ios". In scenario one all optimists randomise with probability ¸0, in scenario two
all optimists randomise with probability ¸ < ¸0. Call k0 (k) the number of players
investing at time one when optimistic players invest with probability ¸0 (¸). Now,
having n ¡ 1 players investing with probability ¸ is ex ante equivalent to the fol-
lowing two-stage experiment: ¯rst let all n ¡ 1 players invest with probability ¸0.
Next let all k0 investors re-randomize with probability ¸

¸0 . Therefore the statistic k is

generated by adding noise to the statistic k0. Therefore k0 is a su±cient statistic for
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k. From Blackwell's value of information theorem (1951) we know that this implies

that W (q; ¸0) ¸ W (q; ¸). It can be shown that 8¸; ¸0 2 [0; ¸c];W (q; ¸) = W (q; ¸0),
while 8¸; ¸0 2 [¸c; 1];W (q; ¸0) > W (q; ¸).

Intuitively, ¸ captures the ex ante amount of information produced by the optimists.

The higher ¸, the easier one can infer n out of k (this can best be seen by comparing

the two polar cases where ¸ = 0 and ¸ = 1 (see above)) and thus the higher the ex

ante gain of waiting. We know enough to state:

Proposition 1 Chamley (1997)

1) 8q 2 [c; q], 9 a PBE in which ¸¤¼ = 0 and ¸¤ 2 [0; 1).
2) Whenever ¸¤¼ = 0, ¸

¤ is strictly increasing in q in the range [c; q].
3) If c · q¼, there exist two stable equilibria. In the ¯rst one ¸¤¼ = 0 and ¸¤ 2 (0; 1).
In the second one ¸¤¼ = ¸

¤ = 1.

Proof: See Chamley (1997). Point 2 corresponds to lemma 4 in Chamley's paper.

The graph below illustrates the intuition behind point one.

-

6

¸c ¸¤

q ¡ c

±(q ¡ c)

±W (q; 1) ±W (q; ¸)

10 ¸

Graph 1: Existence of a PBE in which ¸¤ 2 [0; 1).

In equilibrium the gain of waiting must be equal to the gain of investing, i.e. q¡c =
±W (q; ¸¤). If ¸ = ¸c, ±W (q; ¸c) = ±[q¡c] < q¡c. If ¸ = 1, by A2, ±W (q; 1) > q¡c.
By monotonicity, whenever q > c there exists a unique ¸¤ which makes the optimists
indi®erent between investing and waiting12. The intuition behind point 2 of the

proposition above can best be explained on the basis of the following graph:

12¸¤ is computed under the assumption that players can only invest in two periods. As shown
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6

a¸¤ ¸¤
0

q ¡ c

q0 ¡ c ±W (q; ¸)

±W (q0; ¸)

0 ¸

Graph 2: The e®ect of a change in q on ¸¤.

Suppose player j ¯rst anticipates that £ = H with probability q. As before, graph

two shows the existence of a unique ¸¤ where the gain of investing equals the gain of
waiting. Assume now that for some exogenous reason player j becomes "more op-

timistic" in the sense that she now anticipates that £ = H with probability q0 > q.
Graph two shows that the comparison between ¸¤ and ¸¤

0
depends on the relative

strength of two opposing e®ects. On the one hand, an increase in q increases an op-

timist's gain of investing, which, wereW (q; ¸) to remain una®ected by the change in

q, would increase ¸ from ¸¤ to point a in graph two. On the other hand, an increase
in q also leads to an increase in the gain of waiting. This second e®ect decreases

¸ from point a until the point ¸¤
0
. The relative strength of both e®ects ultimately

depends on how the shift of the gain of waiting compares to the one of the gain of

investing. Chamley (1997) shows that the ¯rst e®ect always dominates the second

one and thus that ¸¤
0
> ¸¤.

The intuition behind this result mainly lies in the presence of a discount factor in the

model. An increase in q increases W (q; ¸) for two di®erent reasons: (i) it increases

the likelihood that P (Hjq; k; ¸) > c and thus that player j will get a non-zero ex-
pected utility and (ii) it increases her expected gain of investing whenever player j

does so. However, the presence of ± in front of W (q; ¸) (and not in front of q ¡ c)
dampens this increase in W (q; ¸).

The intuition behind point 3 of proposition (1) goes as follows: assume c · q¼ < q.
Given these posteriors, ¸¤¼ = ¸

¤ = 1 constitutes a PBE in the waiting game. This is
easy to see. Suppose player j decides to wait until period two. Then 8n, player j
in CG this is without loss of generality. Indeed, they have shown that having the possibility to
wait only one period or to wait an in¯nite number of periods leaves the equilibrium strategies
una®ected. They coined this insight as the one-step property.
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would always observe N¡1 investments at time two. In other words, the investment
actions become completely uninformative, there is no informational gain of waiting

while its discounting cost (independently of sj) is positive. Therefore, if q¼ ¸ c,

it's a PBE for everyone to invest at time one. The intuition why another PBE

exists in which ¸¤¼ = 0 and ¸
¤ 2 (0; 1) relies on points one and two of proposition

(1). If ¸¼ = 0, then from point one we know that there exists a unique ¸¤ such
that optimists are indi®erent between investing and waiting. Point two implies that

q¼ ¡ c < ±W (q¼; ¸¤), and therefore ¸¤¼ = 0.

4 Cheap Talk.

We now analyse player i's incentives to truthfully reveal her private information at

time zero. In equilibrium, the sender knows how her message a®ects all players' pos-

teriors and consequent equilibrium behaviour. As usual, a separating equilibrium is

a PBE in which x¤ = 1 and y¤ = 0 or x¤ = 0 and y¤ = 1. A pooling equilibrium is

a PBE in which x¤ = y¤.

How should the reader think about player i? In our opinion one may interpret her

in two ways. First, one may interpret player i as a "guru" whose opinion concerning

investment matters is asked by the media. Second, given my assumptions one would

want to introduce an opinion poll (instead of just interviewing one player) at time

zero. Unfortunately, the game of cheap talk becomes analytically intractable when

one introduces other players at time zero. Therefore one can also interpret my model

as one explaining "the economics of opinion polls" under the simplifying assumption

that the size of the opinion poll equals one. We ¯rst analyse a benchmark case in

which players cannot postpone their investment decisions.

4.1 Benchmark Case: No Waiting

Assume we change the timing of the game in the following sense:

-1) The state of nature is realised and all players receive their signals,

0) One randomly drawn player (henceforth player i) is asked to report her signal.

Her message, ŝi 2 fh; lg, is made public to all the other players,
1) All players make their investment decisions,

2) All players learn the true state of the world. Payo®s are received and the game

ends.

14



The proposition below summarises player i's incentives to truthfully reveal her pri-

vate information through cheap talk.

Proposition 2 If players cannot postpone their investment decisions, there exists

an in¯nite number of PBE's in which x¤ 6= y¤.
Proof: Assume the sender is optimistic. By A1, independently of her message and

of the other players' strategies, it will be optimal for her to invest at time one. This

is a game of cheap talk. Therefore the sender's utility is only a®ected by her action

and not by the message she sent. Therefore,

E(Uijai1 = invest; ŝi = h) = p¡ c = E(Uijai1 = invest; ŝi = l) (3)

where E(Uijai1 = invest, ŝi = ¢) denotes player i's expected utility given that she
invests at time one and that she sent the message ŝi = ¢. Therefore there exists a
PBE in which the optimistic sender sends the message ŝi = h with any arbitrary

probability x¤. The same reasoning applies to a pessimistic sender: independently
of her report and of the other player's strategies she will not invest at time one.

Therefore, she always receives zero and there exists a PBE in which she sends the

message ŝi = h with any arbitrary probability y
¤. Q.E.D.

Proposition (2) is not a very surprising nor a very interesting result. However, it

permits us to know which one's of my future results will be fundamentally driven

by the assumption that players can postpone their investment plans.

4.2 Equilibrium behaviour when players can postpone their
investment decisions

I ¯rst state and prove a negative result.

Proposition 3 If c 2 (1
2
; p), there does not exist a PBE in which x¤ 6= y¤.

Proof: See appendix

Proposition (3) basically states that for "high-cost" projects, no information can be

transmitted through cheap talk: as the message ŝi = h is as likely to come from an

optimistic sender as from a pessimistic one, posteriors are una®ected by the sender's

message. The intuition for the inexistence of a PBE in which x¤ 6= y¤ goes as follows:
player i only possesses a noisy signal concerning the realised state of the world and
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is primarily interested in knowing n (and this is true for an optimistic as well as for

a pessimistic sender). Point two of proposition (1) states that if player i succeeds to

increase q, this will enable her (whenever ¸¼ remains equal to zero) to get a "better

idea" of n after observing k. Stated di®erently, the higher q, the higher player i's

gain of waiting (provided that ¸¼ remains equal to zero). If c >
1
2
= q¼, then ¸

¤
¼

will -independently of x, y and ŝi - always be equal to zero. Therefore both sender's

types want to send the message which yields the largest increase in q and therefore

the pessimist loses if she were to reveal her negative private information.

It is instructive to contrast proposition (3) with proposition (2). In this paper I

assume that the returns of the investment project are una®ected by the number of

investing players. Despite this absence in competition e®ects, no information can be

transmitted through words because the sender wants to send a message to ease her

second-period-inference problem. This insight should be robust to the introduction

of positive network externalities (i.e. the returns of the investment project increase

with the number of investors)13. Therefore, I believe this insight provides a rationale

for the "ad hoc" private-information assumption present in the papers I mentioned

in the ¯rst paragraph of this paper. As many of those papers consider static invest-

ment decisions (or, alternatively, assume that players cannot choose when to invest)

one may believe that those models are fragile with respect to the introduction of

cheap talk. However, as proposition (3) shows, one cannot think about information

exchange without acknowledging that investors always have the possibility to wait

and invest in the future.

Luckily, this paper also possesses a more "optimistic" result which is summarised

below:

Proposition 4 if c 2 (1¡ p; 1
2
], there exists a separating equilibrium. In the sepa-

rating equilibrium, ¸¤¼ = ¸
¤ = 1, whenever player i sends a favourable message.

Proof: For the sake of concreteness, assume players compute their posteriors under

the assumption that x¤ = 1 and y¤ = 0. I ¯rst analyse how equilibrium behaviour

in the ensuing waiting game is in°uenced by the message sent by player i.

Assume ŝi = h. If sj = l, player j's posterior q¼ =
1
2
. Note that by assumption

1
2
¸ c, so pessimists now also face a positive gain of investing. If sj = h, player j
13See Melissas (2000) for the same model with a small amount of positive network externalities.
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computes q > p.

From point 3 of proposition (1), we know that in the continuation game there exists

a PBE in which ¸¤¼ = ¸
¤ = 1. Note that all receivers possess some public (i.e. the

favourable message sent by player i) and some private information (i.e. their sig-

nals). All players, independently of their signals, rely on the public information by

investing at time one. This behaviour is identical to the one followed by the players

inside an informational cascade in BHW's and Banerjee's (1992) model. In those

models all players also possess some public (i.e. the action(s) of the ¯rst mover(s))

and private information (i.e. their signals) and they, independently of their signals,

all adopt the same action. Therefore, I call the PBE in the continuation game in

which ¸¤¼ = ¸
¤ = 1 an informational cascade.

Assume now that ŝi = l. In that case P (Hjsj = l; ŝi = l; 1; 0) = q
¼
< 1 ¡ p < c

and it's a dominant strategy for pessimists to wait at time one. Optimists compute

P (Hjsj = h; ŝi = l; 1; 0) = q = 1
2
. As 1

2
¸ c, optimists still face a positive gain

of investing. From proposition (1) we know there exists a PBE in the continuation

game in which ¸¤¼ = 0 and ¸
¤ 2 [0; 1) (¸¤ only equals zero when c = 1

2
).

I now analyse player i's incentives to reveal her private information, given that she

correctly anticipates how her message in°uences equilibrium investment probabili-

ties in the ensuing waiting game.

Assume ¯rst that player i is a pessimist. If she sends a favourable message, ¸¤¼ =
¸¤ = 1, everyone invests and player i computes P (Hjl; k = N ¡ 1; ¸¤¼ = ¸¤ = 1) =
1¡ p. This is logical: in an informational cascade one cannot learn a player's type
by observing her action. Therefore, the sender's observation of the informational

cascade should not a®ect her posterior probability that £ = H. As 1 ¡ p < c, she
refrains from investing in both periods and gets zero. If she sends ŝi = l, ¸

¤
¼ = 0 and

optimists randomise with probability14 ¤(sj = h; ŝi = l) ¸ 0. In that case player

i will be able to "get a better idea" of n upon observing k and her payo® equals

±W (1¡ p;¤¤(h; l)), where

W (1¡ p;¤¤(h; l)) =
N¡1X
k=0

Maxf0; P (Hjl; k;¤¤(h; l))¡ cgP (kjl;¤¤(h; l))

14I use here ¤(¢) instead of ¸ to denote investment probabilities in order to emphasise that ¸¤
depends on the message sent by player i.
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As ±W (1¡ p;¤¤(¢)) ¸ 0 a pessimist cannot gain by deviating.

Suppose now that player i is optimistic. If she sends a favourable message, ev-

erybody invests in the ¯rst period and she doesn't learn anything. As player i is

optimistic she also faces a positive gain of investing. If she invests at time one, she

gets p¡ c. If she waits, she gets ±(p¡ c). As ± < 1, it's optimal for her to invest at
time one and her gain of sending message h equals p¡ c.

However, an optimist's gain of sending an unfavourable message also equals p ¡ c.
This can best be illustrated on the basis of the following graph:

-

6

¤¤(h; l)

±W (p;¤¤(h; l))

a

p¡ c

±W (p; ¸)

10 ¸

Graph 3: An optimist's optimal time 1 action after a deviation.

To understand graph 3, ¯rst note that an optimist's payo® of sending an un-

favourable message equals maxfp ¡ c; ±W (p;¤¤(sj = h; ŝi = l))g. p ¡ c denotes
her payo® of investing at time one, given that she sent an unfavourable message.

±W (p;¤¤(sj = h; ŝi = l)) denotes her payo® of waiting given that she sent an un-
favourable message. Call a the probability with which optimists must invest to make

player i indi®erent between investing and waiting. If our game would not possess a

communication stage then all optimists would anticipate that £ = H with proba-

bility p and they would then invest at time one with probability a. As the optimists

received an unfavourable message, they anticipate that £ = H with a probability

equal to q = 1
2
< p. From point 2 of proposition (1), we know that ¤¤(h; l) < a

(because 1
2
< p). From Blackwell's Theorem follows that ±W (p;¤¤(¢)) < p ¡ c.

Therefore, if an optimist were to deviate and sent message l, it would still be opti-

mal for her to invest at time one. Thus an optimist, independently of her report,
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always gets p ¡ c and she cannot gain by deviating. Therefore, if c 2 (1 ¡ p; 1
2
], a

separating equilibrium exists. Q.E.D.

Proposition (4) is not trivial. Both sender's types share the same preferences over

the receivers' actions in the sense that both of them want the optimists to invest

with a higher probability and the pessimists to remain quiet. We would therefore

not expect to ¯nd the existence of a separating equilibrium.

In proposition (4) a separating equilibrium is fundamentally driven because: (i) both

sender's types face di®erent opportunity costs of waiting and (ii) sending a favourable

message creates an informational cascade. An optimist believes the investment

project is good. For her "time is money" and she is only willing to postpone her

investment plans (with probability one) if pessimists don't invest and if optimists

invest with a probability higher than a. Unfortunately these two aims cannot be

simultaneously achieved by none of the two messages. Therefore, she is indi®erent

between reporting ŝi = l and ŝi = h and she always invests at time one. A pessimist

believes the investment project is bad. She is unwilling to invest unless she observes

"relatively many" optimists investing at time one. If the pessimist were to deviate

and sent a favourable message, an informational cascade would occur, she wouldn't

receive any payo®-relevant information and she would get zero. Hence, it is the

informational cascade which ultimately induces a pessimist to send an unfavourable

message. If ¸¤¼ would always be equal to zero (as is the case in CG where pessimists
do not have an investment option and can therefore not invest15), a pessimist would

never want to send a negative message because - if this message were to be believed

- this would reduce ¸¤.

4.3 How important is the informational cascade to elicit
private information?

Proposition (4) highlights a PBE in which an informational cascade induces a pes-

simist to truthfully reveal her private information. A natural question arises: does

there exist another PBE in which x¤ 6= y¤ and in which (¸¤¼; ¸¤) 6= (1; 1) whenever
player i sends a favourable message? If this were the case one may object that the

informational cascade only acts as a truthtelling device in a PBE of my game, but

that there exist another PBE (or possibly many other PBE's) in which x¤ 6= y¤

and in which revelation (or possibly partial revelation) of private information is not

15Or as is the case for "high-cost" investment projects.
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driven by the fact that pessimists "fear" the occurence of an informational cascade.

My next proposition deals with this objection.

Proposition 5 x¤ 6= y¤ if and only if ¸¤¼ = ¸¤ = 1 whenever the sender sends a
favourable message.

Proof: First, I show that if x¤ 6= y¤ ) ¸¤¼ = ¸¤ = 1 whenever player i sends a

favourable message.16 By contradiction, assume there exists a PBE in which x¤ > y¤

and in which (¸¤; ¸¤¼) 6= (1; 1) whenever ŝi = h. If player i sends a favourable mes-
sage, there are two possibilities:

(i) P (Hjl; ŝi = h; x¤ > y¤) < c
(ii) P (Hjl; ŝi = h; x¤ > y¤) ¸ c

In case (i) it's a dominant strategy for the pessimists to wait at time one and there-

fore ¸¤¼ = 0. However, from the proof of proposition (3) we know that this implies

that x¤ cannot be di®erent from y¤.

In case (ii) from proposition (1) we know that the ensuing waiting game is char-

acterised by two symmetric, stable equilibria. In the ¯rst equilibrium, ¸¤¼ = 0 and
¤¤(h; h) 2 (0; 1). In the second equilibrium ¸¤¼ = ¸¤ = 1. Assume player i antic-

ipates that if she were to send a favourable message, in the waiting game players

would invest with probabilities ¸¤¼ = 0 and ¤¤(h; h) 2 (0; 1). As before, from the

proof of proposition (3) we know that, as ¸¤¼ = 0, this implies that x¤ cannot be
di®erent from y¤ because a pessimist never wants to reveal her unfavourable infor-
mation.

I now show that if ¸¤¼ = ¸
¤ = 1 whenever the sender sends a favourable message )

x¤ 6= y¤. Assume there exists a PBE in which ¸¤¼ = ¸¤ = 1 whenever ŝi = h and

in which x¤ = y¤. As x¤ = y¤, this implies that P (Hjl; ŝi = ¢; x¤ = y¤) = 1 ¡ p
(a pessimist's posterior is not a®ected by the message sent by player i in a pooling

equilibrium). Under A1, it's then a dominant strategy for each pessimist to wait at

time one. Therefore ¸¤¼ cannot be di®erent from zero, a contradiction. Q.E.D.

16From now on I will assume that "a favourable message" equals "message h". Of course this is
without loss of generality.
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4.4 Some normative and positive implications of proposi-
tion (4)

In my previous two propositions I highlighted the importance of an informational

cascade to induce truthful revelation of private information. In this section I argue

that this insight bears some positive and normative consequences. I ¯rst analyse

the consequence of an investment subsidy on the incentives for truthful revelation.

Denote by b > 0 a subsidy granted to each investor. My next proposition shows

that subsidising investments encourages truthful revelation of private information.

Proposition 6 8c 2 (1 ¡ p; 1
2
+ b], 9 a separating equilibrium. The range of pa-

rameter values in which a separating equilibrium exists is increasing in the subsidy.

Proof: De¯ne c0 as c0 = c ¡ b. Obviously, our players now base their investment
decisions on c0 instead of c. A PBE in the continuation game in which ¸¤¼ = ¸

¤ = 1
exists if and only if P (Hjl; ŝi = h; 1; 0) ¸ c0. All players possess a signal of the same
precision and P (£ = H) = P (£ = L) = 1

2
. Therefore, P (Hjsj = l; ŝi = h; 1; 0) = 1

2
.

Therefore, a separating equilibrium exists as soon as c0 · 1
2
or as soon as c · 1

2
+ b.

Q.E.D.

The intuition behind proposition (6) is simple. Proposition (4) teaches us that a

separating equilibrium exists if the cost of the investment project is "low enough".

If c is "too high" then - independently of the message sent - pessimists always face a

negative gain of investing (and the continuation game can then impossibly be char-

acterised by a PBE in which ¸¤¼ = 1). Proposition (6) rests on the observation that
a subsidy, by "arti¯cially" reducing the investment cost, may induce everyone to

invest at time one (after having received favourable news from the sender), thereby

discouraging a pessimist to send a favourable message.

I now address a di®erent question: "How does the sender's ability in°uence her

incentives for truthful revelation?" So far I assumed that the sender was "as able"

as the receivers in the sense that all players possess a signal of the same precision.

One may ¯nd it more natural to endow player i with a more precise signal. After all,

in my model she can be interpreted as a guru and people typically think of them as

being better informed investors (that's the reason why they appear in the media).

There is a straightforward way to allow for a better informed sender. Let's assume

that player i's signal is drawn from the distribution: P (hjH) = P (ljL) = r and

P (ljH) = P (hjL) = 1 ¡ r (where 1 > r > p). The higher r, the "smarter" or the
better informed the sender. My main result is summarised below:
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Proposition 7 8c 2 (1¡p;minfp; (1¡p)r
(1¡p)r+p(1¡r)g), 9 a separating equilibrium. This

range of parameter values cannot decrease in the precision of the sender's signal.

Proof: A PBE in the continuation game in which ¸¤¼ = ¸
¤ = 1 exists if and only if

P (Hjl; ŝi = h; 1; 0) ¸ c. This posterior probability is now computed as:

P (Hjl; ŝi = h; 1; 0) = P (H; ŝi = hjl; 1; 0)
P (ŝi = hjl; 1; 0) =

(1¡ p)r
(1¡ p)r + p(1¡ r)

If c 2 (1 ¡ p; (1¡p)r
(1¡p)r+p(1¡r)), then there exists a PBE in the continuation game in

which ¸¤¼ = ¸¤ = 1. The reader can now easily see that there exists a separating

equilibrium if c 2 (1 ¡ p;minfp; (1¡p)r
(1¡p)r+p(1¡r)g) (the proof is identical to the one I

outlined when proving proposition (4)). Q.E.D.

The intuition behind proposition (7) is also simple. As I showed in proposition (4)

and (5), a separating equilibrium only exists if ¸¤¼ = 1 after the arrival of some

positive information. In other words, a separating equilibrium only exists if the

sender can make the pessimists change their minds. Proposition (7) therefore rests

on the intuitive idea that the "smarter" the sender (or the more precise her private

information), the "easier" it will be for her to make the pessimists change their

minds. If the sender cannot convince the remaining pessimists to invest at time one

(either because the sender is commonly perceived to be "stupid" or because of a

high investment cost) then she doesn't want to reveal any unfavourable information

because this will worsen her second-period inference problem.

5 How robust is proposition (4)?

I ¯rst check how proposition (4) is altered if the player's types were drawn out of a

richer distribution. Next, I explain how my results are a®ected if one were to add a

small amount of network externalities in the model.

5.1 Multi-type setting

This subsection is divided in two parts. First, I analyse the case where only the

sender's type is drawn from a richer distribution. Next, I discuss the more general

case where all players' types are drawn from a richer distribution.
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5.1.1 The case of an uninformed sender

Let's assume that with some probability ² player i does not possess any private

information.17 More speci¯cally, assume that P (si = hjH) = P (si = ljL) = p ¡ ²
2
;

P (si = ÁjH) = P (si = ÁjL) = ² and P (si = ljH) = P (si = hjL) = 1¡ p¡ ²
2
(where

²
2
2 (0; 1¡ p]). Player i's message is now 2 fl; Á; hg. Throughout this subsection, I

assume that c 2 (1¡ p; 1
2
].

In this set-up there exists a semi separating-pooling equilibrium in which the l-type

and the Á-type both send the same message (say, message ŝi = Á) and the h-type

sends a di®erent message (say, message ŝi = h). To prove this, I ¯rst explain how in

equilibrium player j computes her posteriors given the di®erent sender's strategies.

First, assume player j is an optimist. Upon receiving the message ŝi = Á, she

computes:

P (Hjsj = h; ŝi = Á; only l-type and Á-type send message Á) > 1

2

Next, assume player j is a pessimist, she computes:

P (Hjsj = l; ŝi = Á; only l-type and Á-type send message Á) < 1¡ p (4)

Similarly, if player i sends ŝi = h, a pessimist computes:

P (Hjsj = l; ŝi = h; only h-type sends message h) > 1

2

From the previous section we know that a pessimistic sender strictly prefers to send

message ŝi = Á rather than message ŝi = h. Consider now a sender who doesn't

possess any information. What is her expected gain of sending message ŝi = h? In

that case from the previous section we know that it's a PBE (in the continuation

game) for everyone to invest at time one. As player i faces a positive gain of

investing, she gets 1
2
¡ c ¸ c. What is her expected gain of sending message ŝi = Á?

Upon receiving message ŝi = Á, from (4) follows that it's a dominant strategy for

pessimists to wait at time one. Optimists compute P (Hjsj = h; ŝi = Á; ¢) and invest
with probability ¤¤(h; Á). If player i invests she gets 1

2
¡ c. If she waits, she gets

±W (1
2
;¤¤(h; Á)). From my previous section we know that the following equalities

17Note that, for simplifying reasons, I still assume that sj 2 fh; lg (j 6= i), i.e. only the sender
may be uninformed.
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and inequality are satis¯ed:18

gain send h =
1

2
¡ c = ±W (1

2
; a) < ±W (

1

2
;¤¤(h; Á)) = gain send Á

Therefore it's optimal for her to wait at time one and she strictly prefers to send

message ŝi = Á.

Finally, from the previous section we also know that an optimistic sender cannot

gain by deviating neither. The proposition below summarises the insight present in

this subsection:

Proposition 8 If there exists a probability ² 2 (0; 2(1¡ p)] of player i being unin-
formed, then 8c 2 (1 ¡ p; 1

2
], there exists a semi separating-pooling equilibrium. In

that equilibrium ¸¤ = ¸¤¼ = 1 whenever player i sends a favourable message.

Two conclusions can be drawn out of my last proposition :

(i) the separating equilibrium highlighted in proposition (4) is driven by the assump-

tion that the sender can either be an optimist or a pessimist,

(ii) however this does not mean that the insight present in proposition (4) is worth-

less. After all, the occurence of an informational cascade along the equilibrium path

is also stressed in proposition (8). My last proposition shows that one should not in-

terpret proposition (4) as follows: "Informational cascades induce all possible types

of players to truthfully reveal their private information". Instead, proposition (4)

should be interpreted as: "Informational cascades put an upper limit above which

some types of players don't want to misrepresent their information".

5.1.2 All players' types are drawn from a richer distribution

Proposition (1) highlights the existence of an equilibrium entailing a large aggregate

investment activity with a low amount of learning. Chamley (1997) and Chamley

(2000) shows that one needs to impose very little assumptions to recover this kind of

equilibrium (which he calls the "high activity equilibrium") in a more general model.

Unfortunately analysing a model where players' types are drawn from a continuous

distribution is a complex task and I doubt whether any analytical results can be

18In the equation above a 2 (0; 1) denotes the probability with which optimists must invest
at time one to make an uninformed sender indi®erent between investing and waiting. As ² > 0,
P (H jsj = h; ŝi = Á; ¢) > 1

2 . By point 2 of proposition (1) we know that this implies that a <
¤¤(h; Á). By Blackwell's value of information theorem we know that this implies the inequality
present in the equation above.
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obtained along these lines. However, a priori it's not clear why the insight present

in proposition (8) shouldn't be robust in a more general model. If player i' s signal

were above a certain threshold value19 she would - irrespective of her message -

invest at time one and could not gain by misrepresenting her private information.

If player i' s signal were below a certain threshold value, she wouldn't want to

send too favourable a message to the remaining players out of fear that this would

ignite an equilibrium (in the continuation game) with a large investment activity

and low learning. It is also not clear why the insights present in propositions (6)

and (7) should not be robust in a more general model. As shown by Chamley,

the high activity equilibrium only exists for low cost projects (and a subsidy still

arti¯cially lowers the investment cost even if signals were drawn from a continuous

distribution). Similarly, it should be easier for a "smart" sender to ignite the high

activity equilibrium by sending a favourable message.

5.2 Positive network externalities

In the model I analysed in section four, an optimist is indi®erent between sending

ŝi = h or ŝi = l. In both cases she invests at time one and gets p¡ c. Therefore my
game of cheap talk is also characterised by an in¯nite number of semi separating-

pooling equilibria in which x¤ 2 (0; 1] and y¤ = 0 (as the optimistic sender is indif-
ferent between sending ŝi = h or ŝi = l, she may as well randomise over these two

messages). The pessimist, however, strictly prefers to send an unfavourable message

(if c < 1
2
). In Melissas (2000), I analysed the same model as the one outlined in

sections 3 and 4 except that I worked under the following technological assumption:

A3: The investment generates a revenue equal to 1 if £ = H and if at least two

players invested. If only one player invests then the investment generates a revenue

equal to ° < 1 (where ° is close to 1) if £ = H.

Unfortunately, the computational complexity of the model increases considerably

when working under A3. However under A3, I showed that an optimist then strictly

prefers to send a favourable message because by doing so she minimises the proba-

bility of getting ° instead of 1. Intuitively, assumption A3 introduces some positive

network externalities in the model. As the optimist then wants to be imitated, her

19If players' types are drawn from a continuous distribution, players would adopt cut-o® strate-
gies (see Chamley (2000)): a player possessing a signal below a certain threshold value s¤ waits
(with probability one), while all players possessing a signal above s¤ invest.
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expected gain of sending ŝi = h is strictly greater than the one of sending ŝi = l.

Therefore under A3, my game of cheap talk is only characterised by separating and

pooling equilibria.

6 Conclusions

In this paper I introduced cheap talk in an investment model with information ex-

ternalities. I ¯rst showed how information transmission via words may be impeded

when players can postpone their investment decisions and I argued that this may

justify why some models (which I listed in the ¯rst paragraph of this paper) assume

away any e±cient preplay communication. From propositions (3), (4) and (5) we

know that the problem in my game comes from the pessimist (an optimist always

invests in the ¯rst period and therefore cannot gain by misrepresenting her private

information). A pessimist is reluctant to divulge her bad information because this

worsens her inference problem. Therefore she only truthfully reveals her bad in-

formation if she learns more (or does not learn less) by doing so. As she doesn't

learn anything upon observing an informational cascade (which occurs whenever the

sender sends a favourable message) revelation of bad information is compatible with

maximising behaviour. Hence in this paper informational cascades induce players to

transmit payo®-relevant information through cheap talk. Finally, I argued that in

my context subsidising investments encourages truthtelling and that "smart" peo-

ple have more incentives to truthfully reveal their private information than "stupid"

ones.
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Appendix

Proof of lemma (1):

As explained in the paper q ¡ c < W (q; 1) as soon as there exists an n such that:
P (Hjn) < c. Assume player j anticipates that £ = H with probability q = q. This

posterior can only be generated if (i) sj = h, (ii) player i send a favourable message

and (iii) x = 1 and y = 0 (or x = 0 and y = 1). Therefore if q = q, n cannot take a

value lower than two. Now:

P (Hjn = 2) = C2Np
2(1¡ p)N¡2

C2Np
2(1¡ p)N¡2 + C2N(1¡ p)2pN¡2

where C2N represents the number of possible combinations of two players out of a

population of N players. It can easily be shown that 8N1 > N2 ¸ 2:
p2(1¡ p)N1¡2

p2(1¡ p)N1¡2 + (1¡ p)2pN1¡2 <
p2(1¡ p)N2¡2

p2(1¡ p)N2¡2 + (1¡ p)2pN2¡2

From statistical textbooks (see e.g. De Groot (1970)) we know that in my set-up

P (Hjn) is driven by the di®erence between the good and the bad signals in the
population.20 Therefore if N ¸ 5, P (Hjn = 2) · 1¡ p which is strictly lower than
c by A1. Assume now that q < q, meaning that player j puts a strictly positive

probability on either one of the following two events: (i) player i is an optimist

and (ii) player i is a pessimist. In case (i), n cannot be lower than two and the

analysis above goes through. In case (ii) n cannot be lower than one and if N ¸ 5,
P (Hjn = 1) < P (Hjn = 2) · 1¡ p. Q.E.D.

Proof of lemma (2):

Call ¸¤(q) (¸¤(q)) the probability with which optimists must invest such as to make
a player who anticipates that £ = H with probability q (q) indi®erent between

investing and waiting. From proposition (1) and under A2, we know that: ¸¤(q) <
¸¤(q) < 1. Therefore 8q < q:

q ¡ c = ±W (q; ¸¤(q)) < ±W (q; 1)
Q.E.D.

20For example, P (H jn = 1; N = 3) = P (H jn = 2; N = 5) = 1 ¡ p. In both cases: #pessimists
¡# optimists = N ¡ n¡ n = 1.
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Proof of proposition (3):

First note that q¼ = P (Hjl; ŝi = h; 1; 0) = 1
2
. Therefore, independently of x, y and

ŝi, q¼ is always strictly lower than c. Hence it's a dominant strategy for pessimists

to wait at time one. By contradiction, assume there exists a PBE in which x¤ 6= y¤.
Without loss of generality assume that x¤ > y¤. Assume player i is a pessimist. Is
her gain of sending message l higher than (or equal to) her gain of sending message

h? Upon receiving message ŝi = h, an optimist computes:

P (Hjh; ŝi = h; x¤ > y¤) > p > P (Hjh; ŝi = l; x¤ > y¤)
From point 2 of proposition (1), this implies that21:

¤¤(sj = h; h1 = ŝi = h) > ¤¤(sj = h; h1 = ŝi = l)

Player i's gain of sending message l, E(U jŝi = l), equals:
E(U jŝi = l) = maxf±W (1¡ p;¤¤(sj = h; h1 = ŝi = l)); 0g

where:

W (1¡ p;¤¤(¢)) =
N¡1X
k=0

maxf0; P (Hj1¡ p; k;¤¤(¢))¡ cgP (kj1¡ p;¤¤(¢))

Player i's gain of wrongfully sending message h equals:

E(U jŝi = h) = maxf±W (1¡ p;¤¤(sj = h; h1 = ŝi = h)); 0g
As P (Hjh; ŝi = h; x¤ > y¤) > p, it follows that optimists face a strictly positive

expected gain of investing at time one. Therefore, ¤¤(sj = h; h1 = ŝi = h) > 0.

Therefore

±W (1¡ p;¤¤(sj = h; h1 = ŝi = h)) > 0 (5)

This is easy to see: as ¤¤(¢) > 0, there exists a (very small but nonetheless) strictly
positive probability that all the N¡1 remaining players are optimists and will invest
at time one. As N ¸ 5, this implies that:

P (Hjsi = l; k = N ¡ 1;¤¤(¢)) > c
and player i then faces a strictly positive gain of investing.

21Below, I replaced ¸¤ by its more general counterpart ¤¤(¢). This was done to explicitly show
that the period-one strategies depend on the message sent.
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There are now two possibilities:

(i) ±W (1¡ p;¤¤(sj = h; h1 = ŝi = l)) = 0, and
(ii) ±W (1¡ p;¤¤(sj = h; h1 = ŝi = l)) > 0
In case (i), from inequality (5) follows that E(U jsi = l; ŝi = h) > E(U jsi = l; ŝi = l).
In case (ii) from Blackwell's theorem follows that:

±W (1¡ p;¤¤(h; ŝi = h)) > ±W (1¡ p;¤¤(h; ŝi = l))

Hence, in both cases a pessimist strictly prefers to send a favourable message. Q.E.D.
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