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1 Introduction

Many problems of social choice take the following form. There are n voters

and a set K = f1; :::; kg of objects. These objects may be bills considered by

a legislature, candidates to some set of positions, or the collection of char-

acteristics which distinguish a social alternative from another. The voters

must choose a subset of the set of objects.

Sometimes, any combination of objects is feasible: for example, if we

consider the election of candidates to join a club which is ready to admit as

many of them as the voters choose, or if we are modelling the global results

of a legislature, which may pass or reject any number of bills. It is for these

cases that Barberà, Sonnenschein, and Zhou (1991) provided characteriza-

tions of all voting procedures which are strategy-proof and respect voter’s

sovereignty (all subsets of object may be chosen) when voters’ preferences

are additively representable, and also when these are separable. For both of

these restricted domains, voting by committees turns out to be the family of

all rules satisfying the above requirements. Rules in this class are de…ned by

a collection of families of winning coalitions, one for each object; agents vote

for sets of objects; to be elected, an object must get the vote of all members

of some coalition among those that are winning for that object.

Most often, though, some combinations of objects are not feasible, while

others are: if there are more candidates than positions to be …lled, only sets of

size less than or equal to the available number of slots are feasible; if objects

are the characteristics of an alternative, some collections of characteristics

may be mutually incompatible, and others not. Our purpose in this paper is

to characterize the families of strategy-proof voting procedures when not all

possible subsets of objects are feasible, and voters’ preferences are separable

or additively representable. Our main conclusions are the following. First:
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rules that satisfy strategy-proofness are still voting by committees, with bal-

lots indicating the best feasible set of objects. Second: the committees for

di¤erent objects must be interrelated, in precise ways which depend on what

families of sets of objects are feasible. Third: unlike in Barberà, Sonnen-

schein, and Zhou (1991), the class of strategy-proof rules when preferences

are additively representable can be substantially larger that the set of rules

satisfying the same requirement when voters’ preferences are separable.

Our characterization result for separable preferences is quite negative:

infeasibilities quickly turn any non-dictatorial rule into a manipulable one,

except for very limited cases. In contrast, our characterization result for

additive preferences can be interpreted as either positive or negative, because

it has di¤erent consequences depending on the exact shape of the range of

feasible choices. The contrast between these two characterization results is

a striking conclusion of our research, because until now the results regarding

strategy-proof mechanisms for these two domains had gone hand to hand,

even if they are, of course, logically independent.

Notice that here, as in Barberà, Sonnenschein, and Zhou (1991), we could

identify sets of objects with their characteristic function, and our objects of

choice as (some of) the vertices of a k-dimensional hypercube. Barberà,

Gul, and Stacchetti (1993) extended the analysis to cover situations where

the objects of choice are Cartesian products of integer intervals, allowing for

possibly more than two values on each dimension. In there and in other con-

texts of multidimensional choice where the range of the social choice rule is

a Cartesian product, strategy-proof rules are necessarily decomposable into

rules which independently choose a value for each dimension, and are them-

selves strategy-proof (see Le Breton and Sen (1997) and (1999) for general

expressions of this important result, which dates back to the pioneering work
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of Border and Jordan (1983)).

In Barberà, Massó, and Neme (1997) we considered the consequences

of introducing feasibility constraints in that larger framework. The range

of feasible choices is no longer a Cartesian product and this requires a more

complex and careful analysis. All strategy-proof rules are still decomposable,

but choices in the di¤erent dimensions must now be coordinated in order to

guarantee feasibility. While this previous paper makes an important step

in understanding how this coordination is attained for each given shape of

the range, it is marred by a strong assumption on the domain of admissible

preferences. Speci…cally, we assume there that each agent’ bliss point is

feasible. This assumption is not always realistic. Moreover, it makes the

domain of admissible preferences dependent on the range of feasible choices.

In the present paper we study the question of voting under constraints for

two rich and natural sets of admissible preferences: those that are additively

representable or separable on the power set of K, regardless of the type

of constraints faced by choosers. For clarity of exposition, however, we go

back to the case analysed in Barberà, Sonnenschein, and Zhou (1991), which

allows for only two values in each dimension.

Several authors (Serizawa (1994) and Answal, Chatterji, and Sen (1999))

have studied the consequences of speci…c restrictions on the range, like budget

constraints or limitations on the number of objects that may be chosen. Our

results apply generally and cover all types of infeasibilities within our context:

ranges of all shapes are allowed.

The paper is organized as follows. Section 2 contains preliminary notation

and de…nitions as well as previous results. In Section 3 we introduce speci…c

de…nitions and notation, obtain preliminary results, and present our two

characterizations: Theorem 1 for additive preferences and Theorem 2 for
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separable ones. Section 4 contains a …nal remark. Section 5 contains the

proof of Theorem 1, omitted in Section 3.

2 Preliminaries

Agents are the elements of a …nite set N = f1; 2; :::; ng. The set of objects

is K = f1; :::; kg. We assume that n and k are at least 2. Generic elements

of N will be denoted by i and j and generic elements of K will be denoted

by x, y, and z. Alternatives are subsets of K which will be denoted by X,

Y , and Z. Subsets of N will be represented by I and J . Calligraphic letters

will represent families of subsets; for instance, X , Y, and Z will represent

families of subsets of alternatives and W, I, and J families of subsets of

agents (coalitions).

Preferences are binary relations on alternatives. Let P be the set of

complete, transitive, and asymmetric preferences on 2K. Preferences in P

are denoted by Pi, Pj, P 0i , and P 0j. For Pi 2P and X µ 2K, we denote the

alternative in X most-preferred according to Pi as ¿X (Pi), and we call it the

top of Pi on X . We will use ¿ (Pi) to denote the top of Pi on 2K. Generic

subsets of preferences will be denoted by P̂.

Preference pro…les are n-tuples of preferences. They will be represented

by P = (P1; :::; Pn) or by P = (Pi; P¡i) if we want to stress the role of agents

i’s preference.

A social choice function on P̂ is a function F: P̂n ! 2K.

De…nition 1 The social choice function F : P̂n ! 2K respects voter’s

sovereignty if for every X 2 2K there exists P 2P̂n such that F (P ) = X.

The range of a social choice function F: P̂n ! 2K is denoted by RF ; that
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is,

RF =
n
X 2 2K j there exists P 2 P̂n such that F (P ) = X

o
.

Denote by RF the set of chosen objects; namely,

RF = fx 2 K j x 2 X for some X 2 RFg .

De…nition 2 A social choice function F: P̂n ! 2K is manipulable if there

exist P = (P1; :::; Pn) 2P̂n, i 2 N , and P 0i 2P̂ such that F (P 0i ; P¡i)PiF (P ).

A social choice function on P̂ is strategy-proof if it is not manipulable.

De…nition 3 A social choice function F : P̂n ! 2K is dictatorial if there

exists i 2 N such that F (P ) = ¿RF
(Pi) for all P 2P̂n.

The Gibbard-Satterthwaite theorem states that any social choice function

on P will be either dictatorial or its range will have only two elements. It

would apply directly if any individual preference over the sets of objects were

in the domain. However, there are many situations were agents’ preferences

have speci…c structure due to the nature of the set of objects, and this struc-

ture may impose meaningful restrictions on the way agents rank subsets of

objects. We will be interested in two natural domains of preferences: those

that are separable and those that are additive.

De…nition 4 A preference Pi on 2K is additive if there exists a function

ui : K ! IR such that for all X;Y µ K

XPiY if and only if
X

x2X
ui (x) >

X

y2Y
ui (y) .

The set of additive preferences will be denoted by A.

An agent i has separable preferences Pi if the division between good ob-

jects (fxgPi;) and bad objects (;Pifxg) guides the ordering of subsets in the

sense that adding a good object leads to a better set, while adding a bad

object leads to a worse set. Formally,
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De…nition 5 A preference Pi on 2K is separable if for all X µ K and all

y =2 X
X [ fygPiXif and only if fygPi;.

Let S be the set of all separable preferences on 2K. We can give a geo-

metric interpretation to this set by identifying each object with a coordinate

and each set X of objects with a vertex of a k-dimensional cube, i.e., with

the k-dimensional vector of zeros and ones, where x belongs to X if and only

if that vector has a one in x’s coordinate. Sometimes we will make use of this

geometric interpretation. For instance, given X; Y µ K the minimal box on

X and Y is the smallest subcube containing the vectors corresponding to X

and Y ; namely,

MB (X; Y ) =
©
Z 2 2K j (X \ Y ) µ Z µ (X [ Y )

ª
.

Following with this interpretation, it is easy to see that a preference Pi is

separable if for all Z and Y 2 MB (¿ (Pi) ; Z) n fZg, Y PiZ.

Remark that additivity implies separability but the converse is false with

more than two objects. To see that, let K = fx; y; zg be the set of objects

and consider the separable preference

fx; y; zgPify; zgPifx; zgPifx; ygPifxgPifygPifzgPif;g;

which is not additive since fxgPifyg and fy; zgPifx; zg. Geometrically, addi-

tivity imposes the condition that the orderings of all vertices on each parallel

face of the hypercube coincide while separability admits the possibility that

some vertices of two parallel faces have di¤erent orderings. This geometric

interpretation will become very useful to understand the di¤erences of our

two characterizations.

To de…ne voting by committees as in Barberà, Sonnenschein, and Zhou

(1991) we need the concept of a committee.
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De…nition 6 A committee W is a nonempty family of nonempty coalitions

of N , which satis…es coalition monotonicity: if I 2 W and I µ J, then

J 2 W. Coalitions in W are called winning. A coalition I 2 W is a

minimal winning coalition if for all J Ã I we have that J =2 W.

Given a committee W, we will denote by Wm the set of its minimal

winning coalitions. A committee W is dictatorial if there exists i 2 N such

that Wm = ffigg. Associated to each family of committees (one for each

object) we can de…ne a special type of social choice functions.

De…nition 7 A social choice function F : P̂n ! 2K is voting by com-

mittees, if for each x 2 K; there exists a committee Wx such that for all

P = (P1; :::; Pn) 2P̂n,

x 2 F (P )if and only if fi 2 N j x 2 ¿RF
(Pi)g 2 Wx:

A social choice function F is called Voting by quota q (1 � q � n) if for

all x the committee Wx is equal to the family of coalitions with cardinality

equal or larger than q.

We state, as Proposition 1 below, Barberà, Sonnenschein, and Zhou

(1991)’s characterization of voting by committees as the class of strategy-

proof social choice functions on S, as well as on A, satisfying voter’s sovereignty.

Proposition 1 A social choice function F : Sn ! 2K (or, F : An ! 2K)

is strategy-proof and satis…es voter’s sovereignty if and only if it is voting by

committees.

To cover social choice problems with constraints we have to drop the

voter’s sovereignty condition of Proposition 1. But a result in Barberà,

Massó, and Neme (1997) tells us that the only strategy-proof rules in this

case must still be of the same form: this is stated in Proposition 2.
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Proposition 2 Assume F : Sn ! 2K (or, F : An ! 2K) is strategy-proof.

Then, F is voting by committees.1

3 Two Characterization Results

3.1 Examples and Preliminary Results

Because of feasibility constraints, not all combinations of committees can

be guaranteed to always generate a feasible outcome, even if all votes are

for feasible ones. The exact nature of the restrictions, i.e., the shape of

the range, will determine which combinations of committees can constitute

a proper social choice function for this range. Example 1 below illustrates

this fact. Moreover, under the presence of infeasibilities, there are voting

by committees that, although respecting feasibility, are not strategy-proof.

Example 2 illustrates this possibility.

Example 1 Let K = fx; yg be the set of objects and N = f1; 2; 3g the

set of agents. Assume that f;g, fxg, and fyg are feasible but fx; yg is not.

Voting by quota 1 does not respect feasibility because for any preference

pro…le P , with the property that ¿ (P1) = ¿(P2) = fxg and ¿(P3) = fyg,

both x and y should be elected, which is infeasible. However, voting by

quota 2 does respect feasibility because x and y cannot get simultaneously

two votes (remember, agents cannot vote for infeasible outcomes) since the

complementary coalition of each winning coalition for x is not winning for y,

and viceversa.
1It is easy to check that the proof of Proposition 2 in Barberà, Massó, and Neme (1997)

which covers the case of separable preferences also aplies to the smaller domain of additive

preferences.
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This idea will play an important role in our characterization with additive

preferences. The next de…nition generalizes it to any pair of committees.

De…nition 8 We say that two committees W and Wc are complementary

if D 2 W implies NnD =2 Wc and D 2 Wc implies NnD =2 W.

Example 2 Let K = fx; yg be the set of objects and N = f1; 2; 3g the

set of agents. Assume that f;g, fxg, and fyg are feasible but fx; yg is not.

Consider the social choice function F de…ned by voting by quota 3 (which

respects feasibility) and let P be any additive (as well as separable) preference

pro…le such that ¿(P2) = ¿ (P3) = fyg and fx; ygP1fxgP1fygP1f;g. Since

¿ 2Knfx;yg(P1) = fxg, y receives two votes and x one; therefore, F (P ) = f;g.

However, if agent 1 declares the preference P 01 where fygP 01fx; ygP 01f;gP 01fxg,

then y receives three votes and x none; that is, F (P 01; P2; P3) = fygP1f;g =
F (P1; P2; P3). Hence, F is not strategy-proof.

The purpose of our two characterizations is to identify exactly the subfam-

ilies of committees that simultaneously respect feasibility and are strategy-

proof for the domains of additive and separable preferences.

We begin with some intuition about the nature of our results. For that, we

…rst remind the reader about the essential features of voting by committees

when there are no constraints, as in Barberà, Sonnenschein, and Zhou (1991).

There, the choice of a set can be decomposed into a family of binary choices,

one for each object. In each case, society decides whether the object should

or should not be retained, and the union of selected objects amounts to the

social alternative. If the methods used to decide upon each object are each

strategy-proof, then so is the method resulting from combining them into a

global decision, as long as the agent’s preferences are additive or separable.

Agents should be asked to express their best set, and under the expressed

domain restrictions this is equivalent to expressing those objects that they
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would prefer to be included in the social decision, rather than not.

In our case, a …rst di¤erence is that the choice of sets may not be decom-

posable to the extreme of allowing for independent decisions on each object.

Our results tell us precisely about the extent to which global decisions can

be decomposed, and say how to coordinate the decisions within groups of

objects that require joint treatment. Indeed, in the presence of infeasibili-

ties, the decision on what objects to choose, and which ones not to, can no

longer be decomposed into object-by-object binary decisions. For example,

choosing x might only be possible if y is not chosen: then the choices regard-

ing x and y must be joint. Similarly, z might only be chosen if w is, and

again decisions involving these two objects need to be coordinated. Yet, if all

feasible choices of x and y, when coupled with any feasible choice for z and

w, turn out to be feasible, there is still room for decomposition of the choices

in two blocks of objects. If, on the contrary, further restrictions must take

into account, whereby certain feasible choices from x and y become incom-

patible with some feasible choices from z and w, then decomposition is not

possible. The paper provides a precise statement about the extent to which

decisions on what sets to choose can be decomposed into partial decisions

involving subsets (we call each part of the decomposition a section), in the

presence of feasibility constraints. Moreover, we discuss the characteristics

of the committees that must be used in order to coordinate the choices of

objects within each of the sections.

A second contrast with the unconstrained case is that our results for

separable preferences are quite di¤erent (and much more negative) than for

additive preferences. Essentially, this is because in the presence of infeasibil-

ities, agents are not asked to vote for their preferred sets, but rather for their

preferred feasible sets. Hence, they may end up voting for their second best,
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their third best, etc. Now: some of the individual objects they vote for may

be retained, and others not. Likewise, some objects they do not vote for can

obtain. What matters for strategy proofness is whether the best set for each

agent among those that contain some externally …xed objects (those that are

chosen in spite of the agent’s negative vote) and do not contain some others

(those that are not chosen even if the agent supports them) is the set that

contains, in addition to those, as many elements from the agent’s preferred

feasible set. This is the case for additive preferences in all cases. It is also the

case for separable preferences if the …rst best for the agent is feasible, but not

necessarily otherwise. That is why, in the presence of infeasibilities, declaring

the best feasible set may not be a dominant strategy for some voters, even

when committees are used (except if the …rst best is always feasible, a situ-

ation studied in Barberà, Massó, and Neme (1997)). Whereas it is always a

dominant strategy for additive preferences. This accounts for the di¤erences

in results under these two di¤erent domains.

We now make the de…nitions and the statements precise. Given a so-

cial choice function F : P̂n ! 2K and a subset B of RF de…ne the active

components of B in the range as

AC (B) = fX µ B j X = Y \B for some Y 2 RFg :

Active components of B are subsets of B whose union with some subset in

RFnB is part of the range. Now, given B0 µ B µ RF de…ne the range

complement of B0 relative to B as

CBF (B0) = fC µ RFnB j B0 [ C 2 RFg .

The range complement of a subset B0 of B is the collection of sets in RFnB
whose union with B0 is in the range. Notice that AC (B) can also be written

as
©
X µ B j X [ Y 2 RF for some Y 2 CBF (X)

ª
.
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A section is a group of objects with the property that the decision among

their active components can be made without paying attention to the infea-

sibilities involving objects on its complement.

De…nition 9 A subset of objects B µ K is a section of RF if for all active

components B0; B00 2 AC (B) we have CBF (B0) = CBF (B
00
):

Remark 1 RF is a section of RF because CBF (X) is empty for all active

components X 2 AC (RF ) = RF .

Given two families of subsets of objects X and Y we denote by X + Y
the sum of the two; namely,

X + Y = fX [ Y 2 2K j X 2 X and Y 2 Yg:

Remark 2 B is a section of RF if and only if, for all B0 2 AC(B),

RF = AC(B) + CBF (B0):

Lemma 1 Let B be a section of RF and let B1 and B2 be such that

B = B1 [ B2, B1 \ B2 = ;, and B1 is a section of RF . Then, B2 is also a

section of RF .

Proof By de…nition of active component of B2; for any X; Y 2 RF ,

X2 ´ X \B2 2 AC(B2) (1)

and

Y2 ´ Y \B2 2 AC(B2):

Moreover, by de…nition of range complement of X2 and Y2 relative to B2,

X \Bc2 2 CB2F (X2)

and

Y \Bc2 2 CB2F (Y2):
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We want to show that CB2F (X2) = CB2F (Y2). It is su¢cient to show that

Y \Bc2 2 CB2F (X2); that is,

X2 [ (Y \Bc2) 2 RF :

By condition (1), and since Bc2 = B1 [Bc,

X2 [ (Y \Bc2) = (X \B2) [ (Y \Bc2)

= (X \B2) [ (Y \B1) [ (Y \Bc):

Claim 1 (X \B1) [ (X \B2) [ (Y \Bc) 2 RF .

Proof Since Y 2 RF , (Y \B)[(Y \Bc) 2 RF . Therefore, Y \Bc 2 CBF ( ¹B)
for some ¹B 2 AC(B): Moreover, since B is a section and X \ B 2 AC(B);
Remark 2 implies that (X \ B) [ (Y \Bc) 2 RF . Hence, (X \ B1) [ (X \
B2) [ (Y \Bc) 2 RF , which is the statement of the claim.

Therefore, by Claim 1 and the hypothesis that B1 is a section,

(X \B2) [ (Y \Bc) 2 CB1F (B01)

for all B01 2 AC(B1): Because (Y \ B1) 2 AC(B1) we have, by Remark 2,

(X \B2) [ (Y \B1) [ (Y \Bc) 2 RF . Hence, (Y \Bc2) 2 CB2F (X2). ¥

De…nition 9 A partition fB1; :::; Bqg of RF is a cylindric decomposition

of RF if for all p = 1; :::; q, Bp is a section of RF : A cylindric decomposition

is called minimal if there is no …ner cylindric decomposition of RF .

Remark 3 Let fB1; :::; Bqg be a partition of RF . Then, fB1; :::; Bqg is a

cylindric decomposition of RF if and only if

RF = AC (B1) + :::+AC (Bq) :

We want to show (Proposition 3 below) that, given any social choice

function F , its corresponding set RF has a unique minimal cylindric decom-

position. In the proof of Proposition 3 we will use the following Lemma.
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Lemma 2 Let B1 and B2 be two sections of RF : Then B = B1 [ B2 is

also a section of RF :

Proof Let B = B1 [ B2 and assume that B1 and B2 are sections of RF .

Let X; Y 2 RF be arbitrary. They can also be written as

X = (X \B) [ (X \Bc)

and

Y = (Y \B) [ (Y \Bc):

To show that B is a section, it is su¢cient to show that (X\B)[ (Y \Bc) 2
RF . Rewrite X and Y as

X = (X \ (B1nB2)) [ (X \ (B2nB1)) [ (X \ (B1 \B2)) [ (X \Bc)

and

Y = (Y \ (B1nB2)) [ (Y \ (B2nB1)) [ (Y \ (B1 \B2)) [ (Y \Bc):

Since B1 is a section, (Y \ (B1nB2))[ (Y \ (B1 \B2)) and (X \ (B1nB2))[
(X \ (B1\B2)) belong to AC(B1), and (Y \ (B2nB1))[ (Y \Bc) 2 CB1F ((Y \
(B1nB2)) \ (Y \ (B1 \B2))). Therefore,

(X \ (B1nB2)) [ (X \ (B1 \B2)) [ (Y \ (B2nB1)) [ (Y \Bc) 2 RF :

By de…nition of the range complement of (Y \ (B2nB1)) [ (X \ (B1 \ B2))
relative to B2,

(X \ (B1nB2)) [ (Y \Bc) 2 CB2F ((Y \ (B2nB1)) [ (X \ (B1 \B2))): (2)

Also, since X and Y belong to RF and B2 is a section,

(X \B2) [ (Y \Bc2) 2 RF : (3)
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Rewriting condition (3), we have

(Y \ (B1nB2)) [ (X \ (B2nB1)) [ (X \ (B1 \B2)) [ (Y \Bc) 2 RF :

Therefore,

(X \ (B2nB1)) [ (X \ (B1 \B2)) 2 AC(B2): (4)

Then, by conditions (2) and (4), the fact again that B2 is a section, and

Remark 2,

(X \ (B2nB1)) [ (X \ (B1 \B2)) [ (X \ (B1nB2)) [ (Y \Bc) 2 RF :

This implies that (X \B) [ (Y \Bc) 2 RF: Hence, B is a section of RF . ¥

Proposition 3 Any set RF has a unique minimal cylindric decomposition.

Proof Assume not. Let fB11 ; :::; B1q1g and fB21 ; :::; B2q2g be two distinct

minimal cylindric decompositions of RF . There exists at least one pair

such that B1p1 \ B2p2 6= ;. By Lemma 2, B1p1 [ B2p2 is a section of RF : By

Lemma 1, B1p1nB2p2 is also a section of RF implying, again by Lemma 1, that

fB11 ; :::; B1q1g was not minimal. ¥

3.2 Additive Preferences

We can now state our …rst characterization.

Theorem 1 A social choice function F : An ! 2K is strategy-proof if and

only if it is voting by committees with the following properties:

(1) Wx and Wy are equal for all x and y in the same active component of any

section with two active components in RF ’s minimal cylindric decomposition,

(2) Wx and Wy are complementary for all x and y in di¤erent active compo-

nents of the same section in RF ’s minimal cylindrical decomposition, when

there are only two active components in this section, and
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(3) Wx is dictatorial and equal for all x’s in the same section in RF ’s min-

imal cylindric decomposition, when this section has more than two active

components.

The proof of Theorem 1 is in the Appendix at the end of the paper. We

discuss here an elaborate example which illustrates almost all the possibilities

which are opened by our characterization.

Example 3 Let K = fa; b; x; y; z; w; r; s; q; tg be the set of objects and

assume that the set of feasible alternatives is

ffbrg ; fbrtg ; fbsqg ; fbsqtg ; fbzrg ; fbzrtg ; fbzsqg ; fbzsqtg ; fbzwrg ;

fbzwrtg ; fbzwsqg ; fbzwsqtg ; fbxrg ; fbxrtg ; fbxsqg ; fbxsqtg ;

fbxzrg ; fbxzrtg ; fbxzsqg ; fbxzsqtg ; fbxzwrg ; fbxzwrtg ; fbxzwsqg ;

fbxzwsqtg ; fbyrg ; fbyrtg ; fbysqg ; fbysqtg ; fbyzrg ; fbyzrtg ;

fbyzsqg ; fbyzsqtg ; fbyzwrg ; fbyzwrtg ; fbyzwsqg ; fbyzwqstgg:

Notice that (1) a is never chosen, (2) b is always chosen, (3) x and y are never

chosen simultaneously, (4) w is only chosen if z is, (5) s and q are chosen

together, (6) exactly one of r and s is chosen, and (7) t can be chosen or

not, whatever happens. Therefore, we are interested in strategy-proof social

choice functions F: An ! 2K whose range is equal to

RF = fbg+ f;; fxg ; fygg+ f;; fzg ; fz; wgg+ ffrg ; fs; qgg+ f;; ftgg :

Notice that the partition ffbg ; fx; yg ; fz;wg ; fr; s; qg ; ftgg of K is the mini-

mal cylindric decomposition of RF , since one can check that all of its elements

are minimal sections. For example, fx; yg is a section because AC (fx; yg) =
f;; fxg ; fygg (notice that the subset fx; yg is not an active component of

itself) and Cfx;ygF (;), Cfx;ygF (fxg), and Cfx;ygF (fyg) are all equal to

fbg+ f;; fzg ; fz; wgg+ ffrg ; fs; qgg+ f;; ftgg :
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Moreover, this section is minimal since neither fxg nor fyg are sections

because, for instance, AC (fxg) = f;; fxgg but

CfxgF (;) = fbg+ f;; fygg+ f;; fzg ; fz; wgg+ ffrg ; fs; qgg+ f;; ftgg

and

CfxgF (fxg) = fbg+ f;; fzg ; fz; wgg+ ffrg ; fs; qgg+ f;; ftgg ;

and hence, CfxgF (;) 6= CfxgF (fxg).
Also, fz; wg is a section because AC (fz; wg) = f;; fzg ; fz;wgg (notice

that the subset fwg is not an active component of fz; wg) and Cfz;wgF (;),
Cfz;wgF (fzg), and Cfz;wgF (fz; wg) are all equal to

fbg+ f;; fxg ; fygg+ ffrg ; fs; qgg+ f;; ftgg :

Moreover, this section is minimal since neither fzg nor fwg are sections

because, for instance, AC (fwg) = f;; fwgg but

CfwgF (;) = fbg+ f;; fxg ; fygg+ f;; fzgg+ ffrg ; fs; qgg+ f;; ftgg

and

CfwgF (fwg) = fbg+ f;; fxg ; fygg+ fzg+ ffrg ; fs; qgg+ f;; ftgg ;

and hence, CfwgF (;) 6= CfwgF (fwg).
The proof that all other components of the decomposition are also mini-

mal sections is similar and left to the reader.

Now, given a set of agents N , any voting by committees F : An ! 2K

will be strategy-proof as long as it satis…es the following properties: (a) by

condition (3) of Theorem 1, Wm
x = Wm

y = ffi1gg and Wm
z = Wm

w = ffi2gg
for some i1; i2 2 N ; (b) by condition (1) of Theorem 1, Wm

s = Wm
q ; and (c)

by condition (2) of Theorem 1, Wr and Ws are complementary.
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3.3 Separable Preferences

Theorem 2 below characterizes the family of non-dictatorial and strategy-

proof social choice functions when voters’ preferences are separable. Our

result shows that the class of strategy-proof social choice functions under ad-

ditive representable preferences identi…ed in Theorem 1 is drastically reduced

as a consequence of this enlargement of the domain of preferences. Again,

this is a novelty with respect to the situation without constraints. Now,

only social choice functions with Cartesian product ranges (up to constant

and/or omitted objects,) are strategy-proof. Namely, the range of F has to

be a subcube: all sections of the minimal cylindric decomposition of RF (the

set of not omitted objects) are singletons, either with the object itself as the

unique active component (constant object) or else with the object itself and

the empty set as the two active components. Formally,

Theorem 2 Let F : Sn ! 2K be a non-dictatorial social choice function

with #RF ¸ 3. Then, F is strategy-proof if and only if F is voting by

committees and all sections of the minimal cylindric decomposition of RF

are singletons.

Proof Let F : Sn ! 2K be a non-dictatorial social choice function with

#RF ¸ 3. If a social choice function is voting by committees and the sec-

tions of the minimal cylindric decomposition of RF are all singletons, then

this social choice function is onto the power set of some subset of the objects

union a constant disjoint set. The result of Barberà, Sonnenschein, and Zhou

(1991) applies, and the function is strategy-proof. For the converse, assume

that F is strategy-proof. By Proposition 2, F is voting by committees. Since

all additive preferences are separable, Theorem 1 applies to the subdomain

of additive preferences. Therefore, the committees associated to F satisfy
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conditions (1), (2), and (3) of Theorem 1. Since F is non-dictatorial the

minimal cylindric decomposition of RF cannot consist of just one section

with strictly more than two active components (by (3)). Now, notice that

when preferences are separable but not additively representable, the active

components of a section can be ordered di¤erently among themselves, de-

pending on which objects are present in another section. This can now be

used to show that we cannot have a section with more than two active com-

ponents together with another section with more than one active component.

To prove it, it is enough to construct pro…les where the presence of an object

a¤ects the ordering of the active components in another section. Therefore,

all sections have either only one active component (the objects that are al-

ways selected) or they have just two active components which are of the form

ff;g; fxgg. Hence, all sections in the minimal cylindric decomposition of RF

are singletons.

4 Final Remark

Until now, we have taken the dimension of our problems (i.e., the number

of objects), as well as the feasibility constraints, as given data. Our analysis

admits another reading without any formal change, except for its interpreta-

tion.

Consider a situation where society faces four alternatives, a, b, c, and d.

One possibility is that each of these alternatives might be described by two

characteristics, and that identifying a = (0; 0), b = (1; 0), c = (0; 1), and

d = (1; 1) provides a good description of the actual choices (this particular

choice would indicate that a and c are similar in the …rst characteristic but

di¤er on the second, etc.). It may also be, in another extreme, that these four
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alternatives share nothing relevant in common. They can still be represented

as vectors of zeros and ones, but now it is better to embed them in IR4,

and identify them as a = (1; 0; 0; 0), b = (0; 1; 0; 0), c = (0; 0; 1; 0), and d =

(0; 0; 0; 1). There may still be intermediate cases where three characteristics

are necessary and su¢cient to distinguish between these four alternatives.

Two examples may be given by the cases

a = (1; 0; 0) , b = (1; 1; 0) , c = (1; 0; 1) , and d = (0; 0; 0)

or

a = (1; 0; 0) , b = (0; 1; 0) , c = (0; 0; 1) , and d = (0; 1; 1) .

In the four-dimensional and three-dimensional cases, these four alternatives

are only some of the conceivable vertices of the corresponding cubes. Other

combinations of zeros and ones represent conceivable but unfeasible choices.

These examples suggest that the objects in our model (interpreted as

characteristics) may be taken as partial aspects of the overall alternatives

(whose role is played in our model by the feasible sets). This interpretation

is not restrictive: any alternative (out of a …nite set) can be described by

a (…nite) set of characteristics. What is restrictive is that once we identify

each alternative with a set of characteristics (thus embedding it into some

l-dimensional cube), we also determine the shape of the set of feasible alter-

natives, and this has consequences on the class of preferences which pass the

test of additivity (or separability).

In fact, thanks to the above observations, we can conclude by arguing

that the Gibbard-Satterthwaite theorem arises as a particular corollary of our

Theorem 1. Indeed, take any …nite set A of k alternatives (k > 2). Identify

them with the k unit vectors. Notice that all preferences over A are restric-

tions of some additive preference on the k-dimensional cube. Hence, we are
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considering the universal domain assumption of the Gibbard-Satterthwaite

result. Theorem 1 tells us that only dictatorial rules are strategy-proof on

additive preferences. This is the conclusion we wanted.

5 Appendix: Proof of Theorem 1

The proof of Theorem 1 is based on a decomposition argument that applies an

important result of Le Breton and Sen (1997) to our context. This argument,

which will be exploited in the proof of Theorem 1, is expressed as Proposition

4 below. But before, we need the following notation.

Let Pi be an additively representable preference on 2K and consider a

subset B of K: Let PBi stand for the preferences on 2B generated by the

utilities which represent Pi. Let AB be the set of additive preferences on 2B.

For a pro…le P of preferences on 2K, PB will denote the pro…le of preferences

so restricted, for all i 2 N .

Given a strategy-proof social choice function F : An ! 2K and a subset

B of objects, let FB: An
B ! 2B be de…ned so that for all PB 2An

B

FB
¡
PB

¢
= F (P ) \B;

where P is any additive preference such that PB is generated by the utilities

which represent P .

Remark 4 Notice that, since F: An ! 2K is a strategy-proof social choice

function, it is voting by committees (by Proposition 2). Hence, for any

B µ K, F (P ) \ B = F
³
P̂

´
\ B for all P; P̂ 2An such that PB = P̂B.

Therefore, FB is well-de…ned.

Proposition 4 (a) Let F : An ! 2K be a social choice function and let

fB1; :::; Bqg be a cylindric decomposition of RF . If F is strategy-proof then
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FB1 ; :::; FBq are strategy-proof and F (P ) =
qS
p=1

FBp
¡
PBp

¢
for all P 2An.

(b) Conversely, let fB1; :::; Bqg be a partition of K 0 µ K and let fB1; :::;Bqg
be a collection of subsets of objects, with Bp µ 2Bp for all p = 1; :::; q. Let

FBp: An
Bp

! Bp be a collection of onto social choice functions, one for each

p = 1; :::; q. If FB1 ; :::; FBq are strategy-proof, then the function F (P ) =
qS
p=1

FBp
¡
PBp

¢
for all P 2An is strategy-proof, fB1; :::; Bqg is a cylindric

decomposition of RF = K 0, and RF = B1 + :::+ Bq.

Proof (a) Assume fB1; :::; Bqg is a cylindric decomposition of RF and

let P 2An. Then,

F (P ) = F (P ) \RF by de…nition of RF

=
qS
p=1

[F (P ) \Bp] since fB1; :::; Bqg is a partition of RF

=
qS
p=1

FBp(PBp) by de…nition of FBp and PBp :

To obtain a contradiction, assume that FBp is not strategy-proof; that is,

there exist PBp, i, and P̂Bpi such that FBp(P̂Bpi ; P
Bp
¡i )P

Bp
i FBp(PBp). There-

fore, and since preferences are additive,

X

y2FBp (P̂Bpi ;P
Bp
¡i )

u
Bp
i (y) >

X

y2FBp (PBp)

u
Bp
i (y); (5)

for any uBpi : Bp ! IR representing PBpi .

Take any P 2An generating PBp and P̂i generating P̂Bpi with the property

that

P
Bp0
i = P̂

Bp0
i (6)

for all p0 6= p. For each p0 6= p, take any u
Bp0
i representing P

Bp0
i . Then, by

condition (5),

X

p0 6=p

X

x2FBp0 (PBp0 )

u
Bp0
i (x) +

X

y2FBp(PBp )

u
Bp
i (y)
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=
X

p0 6=p

X

x2FBp0 (P̂
Bp0
i ;P

Bp0
¡i )

u
Bp0
i (x) +

X

y2FBp(PBp )

u
Bp
i (y)

<
X

p0 6=p

X

x2FBp0 (P̂
Bp0
i ;P

Bp0
¡i )

u
Bp0
i (x) +

X

y2FBp(P̂Bpi ;P
Bp
¡i )

u
Bp
i (y);

where the equality follows from condition (6) and the inequality follows from

condition (5). Therefore, F (P̂¡i; Pi)PiF (P ); that is, F is not strategy-proof.

(b) Let fB1; :::; Bqg be a partition of K 0 µ K and consider any P 2An,

i 2 N , and P̂i 2A. Since for all p = 1; :::; q the functions FBp are strategy-

proof, we have that FBp(PBp)RBpi F
Bp(P̂

Bp
i ; P

Bp
¡i ); that is, for all p = 1; :::q,

X

x2FBp (PBp)

u
Bp
i (x) ¸

X

y2FBp(P̂Bpi ;P
Bp
¡i )

û
Bp
i (y);

where uBpi and ûBpi are any pair of functions on Bp representing PBpi and

P̂
Bp
i , respectively. Therefore, adding up,

qX

p=1

X

x2FBp(PBp)

u
Bp
i (x) ¸

qX

p=1

X

y2FBp(P̂Bpi ;P
Bp
¡i )

û
Bp
i (y):

Hence, F (P )RiF (P̂i; P¡i); that is, F is strategy-proof. That fB1; :::; Bqg
is a cylindric decomposition of RF = K 0 and RF = B1 + ::: + Bq follow

immediately from the fact that.F (P ) =
qS
p=1

FBp
¡
PBp

¢
for all P 2An.

Our strategy of proof for necessity relies heavily on invoking the Gibbard-

Satterthwaite Theorem for the case where there are more than three active

components in a section Bp of the minimal cylindric decomposition of the

range. This is done by proving that, then, there will be three feasible out-

comes which agents can rank as the three most-preferred, and in any relative

order (a “free triple”). But FBp must be strategy-proof if F is (Proposition

4). If FBp was non-dictatorial, we could use it to construct a non-dictatorial

and strategy-proof social choice function over our free triple, which we know
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is impossible by the Gibbard-Satterthwaite Theorem. As for the case where

a section has two active components only, notice that we can divide the ob-

jects of this section into two sets, such that all the elements in one of the sets

obtains when those on the other don’t, and vice-versa. Our restriction that

the committees corresponding to these two sets of objects are complementary

guarantees that no vote can lead to choose at the same time objects from

these two active components. Otherwise, no further restriction is imposed

on our committees by strategy-proofness when only two outcomes arise.

Now, we state and prove that whenever a section in the minimal cylindric

decomposition of RF contains more than two active components, then we get

a dictator. This is achieved by showing that a free triple always exists in this

case.

Proposition 5 Assume that the following properties of RF hold: (1) the

minimal cylindric decomposition of RF has a unique section and (2) #RF ¸
3. Then, there exists i 2 N such that for all k 2 RF , Wm

k = ffigg.

Proof of Proposition 5 By conditions (1) and (2) there exists Z 2 2K

such that Z =2 RF . Without loss of generality …rst assume that there exists

x such that either Z [ fxg 2 RF or Znfxg 2 RF . Moreover, by rotating the

hypercube to locate Z to its origin and rede…ning all coordinates accordingly,

assume that Z = ; and fxg 2 RF . Let y 2 RFnfxg be arbitrary. We will

show that there exists i 2 N such that Wm
x = Wm

y = ffigg. We will

distinguish between two cases.

Case 1: There exists D 2 RF such that y 2 D and MB (D; ;) \ RF = fDg:

Subcase 1.1: AssumeMB (D [ fxg ; ;) 6= ffxg ; Dg : SinceMB(D; ;)\RF =

fDg there exists B such that ; 6= B µ D, B [ fxg 6= D, and B [ fxg 2
MB (D [ fxg ; ;) \ RF :
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Subcase 1.1.1: Assume B Ã D: Without loss of generality assume that

MB (B [ fxg ; fxg) \ RF = fB [ fxg ; fxgg : Then we can generate, by an

additive preference with top on ;, the orderings D Â1 fxg Â1 B [ fxg,

fxg Â2 D Â2 B [ fxg, and fxg Â3 B [ fxg Â3 D, by an additive preference

with top on B, the orderings D Â4 B [ fxg Â4 fxg ; B [ fxg Â5 fxg Â5 D;

and B[fxg Â6 D Â6 fxg. Moreover, by associating large negative values to

objects outside D [ fxg, we must be able to put these three alternatives at

the tops of the individual orderings. Therefore, we have a free-triple on the

elements of the range D; fxg, and B [fxg. Then the Gibbard-Satterthwaite

Theorem implies that there exists i 2 N such that Wm
x = Wm

y = ffigg.

Subcase 1.1.2: Assume B = D: Because MB (D [ fxg ; ;)\ RF 6= ffxg ; Dg
then D [ fxg 2 RF : Then MB (D [ fxg ; fxg) \ RF = ffxg ;D [ fxgg ;
MB (D [ fxg ; D) \ RF = fD;D [ fxgg : Notice that MB (D; ;) \ RF =

fDg: Therefore, using an argument similar to the one already used in the

proof of Subcase 1.1.1, we have a free triple on elements of the range D; fxg
and D [ fxg, and again, the Gibbard-Satterthwaite Theorem implies that

there exists i 2 N such that Wm
x = Wm

y = ffigg.

Subcase 1.2: Assume MB (D [ fxg ; ;) = ffxg ; Dg :
Subcase 1.2.1: There exists C 2 RF ; such that C \ (D [ fxg) =2 ffxg ; Dg :
Let C = C \D [ fxg and without loss of generality assume MB

©
C;C

ª
\

RF = C: Since MB
©
C; fxg

ª
\ RF = fxg and MB

©
C;D

ª
\ RF = fDg we

have a free triple on elements of the range D; fxg and C, implying that there

exists i 2 N such that Wm
x =Wm

y = ffigg, because y 2 D:
Subcase 1.2.2: For all C 2 RF ; C \D [ fxg 2 ffxg ; Dg :

Claim 1 Assume that for all C 2 RF either fxg µ C or D µ C. Then,

there exists A;B 2 RF and Z 2 ffxg ; Dg such that:

(1.1) MB (A;B) \ RF = fA;Bg :
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(1.2) Z µ A \B:
(1.3) MB

¡
A;B

¢
\ RF = A,

where A = (A [ (fxg [D)) nZ and B = (B [ (fxg [D)) nZ:
Proof of Claim 1: Since RF has the property that its minimal cylindric

decomposition has a unique section there exits G 2 RF and Z 2 ffxg ; Dg
such that Z µ G and G = (G [ (fxg [D)) nZ =2 RF . De…ne

MB(H;Z) =
©
E 2 2K j E = (E [ (fxg [D)) nZ for E 2 MB (H;Z) \ RF

ª
:

Denote » Z = x if Z = D or » Z = D if Z = x: Because G 2 MB (G;Z) \
RF ; then G 2 MB (G;Z) : Since G =2 MB

¡
G;» Z

¢
\RF thenMB (G;Z) *

MB
¡
G;» Z

¢
\ RF . Let B be the element in the range with minimal

L1¡distance to Z with the property that MB (B;Z) * MB
¡
B;» Z

¢
\RF .

This implies that

MB (B;Z) nB =MB
¡
B; f» Zg

¢
\ RF : (7)

Let A 2 MB (B;Z) nB be such that MB (A;B) = fA;Bg. Condition (7)

implies that A 2 RF and MB
¡
A;B

¢
\ RF = A. This proves the Claim.

Let A;B 2 RF and Z 2 ffxg ;Dg be such that conditions (1.1), (1.2),

and (1.3) of Claim 1 hold. Then we can generate, by an additive preference

with top on A [ f» Zg, the orderings A Â1 B Â1 A, A Â2 A Â2 B, and

A Â3 A Â3 B, by an additive preference with top on B[f» zg, the orderings

B Â4 A Â4 A and B Â5 A Â5 A, and by an additive preference with top

on B, the ordering A Â6 B Â6 A. Therefore, we have a free-triple on the

elements of the range A, B, and A, implying that here exists i 2 N such that

Wm
x = Wm

y = ffigg.

Case 2: Assume that for every D 2 RF such that y 2 D; there exists B 6= D
such that B 2 MB (D; ;) \ RF :
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Let D be such that

MB (D; fyg) \ RF = fDg (8)

and let B be such that

MB (B; ;) \ RF = fBg: (9)

If y 2 B then we are back to Case 1. Therefore, assume that y =2 B: For

each z 2 B we can apply case 1 and obtain that there exists i 2 N such that

Wm
x = Wm

z = ffigg.

Subcase 2.1: Assume that fx; yg 2 RF : We claim that MB (fyg ; B)\RF =

fBg. To see it, assume that there exists C 6= B such that C 2 MB(fyg; B)\
RF . If y 2 C then C 2 MB(D; fyg)\RF contradicting condition (8). If y =2
C then C µ B, contradicting the fact that C 6= B becauseMB(B; ;)\RF =

fBg. Moreover, since MB (fyg ;D) \ RF = fDg and MB (fyg ; fx; yg) \
RF = fx; yg we can generate all orderings on D;B; fx; yg (with these three

subsets on the top); therefore, there exists i 2 N such that Wm
x = Wm

y =

ffigg :
Subcase 2.2: Assume that fx; yg =2 RF : First suppose that MB (fyg ; B) \
RF = fBg. SinceMB (fyg ;D)\RF = fDg andMB (fyg ; fxg)\RF = fxg
(remember, by condition (8) we know that y 2 RF ) we can generate all order-

ings on D;B; and fxg (with these three subsets on the top); therefore, there

exists i 2 N such that Wm
x = Wm

y = ffigg. Suppose that MB(fyg; B) 6=
fBg. We claim that D = B [ fyg and therefore MB(fyg; B) = fB;Dg: To

see it, let C 2 MB(fyg; B). If y 2 C then, by condition (8), C = D and

C = D [ fyg. If y =2 C then C µ B and, by condition (9), C = B. Now,

if MB (fyg ; B) \ RF = fB;Dg we can also generate all orderings on D;B;

and fxg with two preferences: one with top on y (orderings D Â1 B Â1 fxg,
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D Â2 fxg Â2 B, and fxg Â3 D Â3 B) and the other with top on ; (orderings

fxg Â4 B Â4 D, B Â5 D Â5 fxg, and B Â6 fxg Â6 D).

Proof of Theorem 1 To prove necessity, let F : An ! 2K be a strategy-

proof social choice function and let fB1; :::; Bqg be the minimal cylindric

decomposition of RF , which exists by Proposition 3.

(1) Assume that x; y 2 Z1 2 AC(Bp) = fZ1; Z2g. Since fB1; :::; Bqg is

minimal we have that Z1 \ Z2 = ;. Assume that Wm
x 6= Wm

y ; that is, there

exists I 2 Wm
x such that I =2 Wm

y . Consider any P such that ¿ (Pi)\Bp = Z1
for all i 2 I and ¿(Pj) \ Bp = Z2 for all j 2 NnI. Then, x 2 F (P ) and

y =2 F (P ) contradicting that x and y belong to the same active component

of Bp.

(2) Assume x 2 X, y 2 Y , and AC(Bp) = fX; Y g. To obtain a contra-

diction assume there exists D 2 Wm
x and NnD 2 Wm

y . It is easy to …nd P

such that x; y 2 F (P ) contradicting that x and y belong to di¤erent active

components of Bp.

(3) Follows from part (a) of Proposition 4 and Proposition 5.

Su¢ciency follows from part (b) of Proposition 4, since it is clear that

all social choice functions de…ned on each of the sections are onto the active

components of the section and strategy-proof.
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