Voting by Committees under Constraints ${ }^{\text {T}}$

by

Salvador B arberà̀, J ordi M assózy, and Alejandro Neme ${ }^{x}$

October 2001

Abstract

We consider social choice problems where a society must choose

 a subset from a set of objects. Speci..cally, we characterize the families of strategy-proof voting procedures when not all possible subsets of objects are feasible, and voters' preferences are separable or additively representable.J ournal of E conomic Literature Classi..cation Number: D7.

K eywords: Voting, Strategy-proofness, A dditive and Separable Preferences.

[^0]
1 Introduction

Many problems of social choice take the following form. There are n voters and a set $K=f 1 ;::: ; k g$ of objects. These objects may be bills considered by a legislature, candidates to some set of positions, or the collection of characteristics which distinguish a social alternative from another. The voters must choose a subset of the set of objects.

Sometimes, any combination of objects is feasible: for example, if we consider the election of candidates to join a club which is ready to admit as many of them as the voters choose, or if we are modelling the global results of a legislature, which may pass or reject any number of bills. It is for these cases that Barberà, Sonnenschein, and Zhou (1991) provided characterizations of all voting procedures which are strategy-proof and respect voter's sovereignty (all subsets of object may be chosen) when voters' preferences are additively representable, and also when these are separable. For both of these restricted domains, voting by committees turns out to be the family of all rules satisfying the above requirements. Rules in this class are de..ned by a collection of families of winning coalitions, one for each object; agents vote for sets of objects; to be elected, an object must get the vote of all members of some coalition among those that are winning for that object.

M ost often, though, some combinations of objects are not feasible, while others are: if there are more candidates than positions to be ..Iled, only sets of size less than or equal to the available number of slots are feasible; if objects are the characteristics of an alternative, some collections of characteristics may be mutually incompatible, and others not. Our purpose in this paper is to characterize the families of strategy-proof voting procedures when not all possible subsets of objects are feasible, and voters' preferences are separable or additively representable. Our main conclusions are the following. First:
rules that satisfy strategy-proofness are still voting by committees, with ballots indicating the best feasible set of objects. Second: the committees for dixerent objects must be interrelated, in precise ways which depend on what families of sets of objects are feasible. Third: unlike in Barberà, Sonnenschein, and Zhou (1991), the class of strategy-proof rules when preferences are additively representable can be substantially larger that the set of rules satisfying the same requirement when voters' preferences are separable.

Our characterization result for separable preferences is quite negative: infeasibilities quickly turn any non-dictatorial rule into a manipulable one, except for very limited cases. In contrast, our characterization result for additive preferences can be interpreted as either positive or negative, because it has dixerent consequences depending on the exact shape of the range of feasible choices. The contrast between these two characterization results is a striking conclusion of our research, because until now the results regarding strategy-proof mechanisms for these two domains had gone hand to hand, even if they are, of course, logically independent.

Notice that here, as in B arberà, Sonnenschein, and Zhou (1991), we could identify sets of objects with their characteristic function, and our objects of choice as (some of) the vertices of a k-dimensional hypercube. Barberà, Gul, and Stacchetti (1993) extended the analysis to cover situations where the objects of choice are Cartesian products of integer intervals, allowing for possibly more than two values on each dimension. In there and in other contexts of multidimensional choice where the range of the social choice rule is a Cartesian product, strategy-proof rules are necessarily decomposable into rules which independently choose a value for each dimension, and are themselves strategy-proof (see Le Breton and Sen (1997) and (1999) for general expressions of this important result, which dates back to the pioneering work
of Border and J ordan (1983)).
In Barberà, Massó, and Neme (1997) we considered the consequences of introducing feasibility constraints in that larger framework. The range of feasible choices is no longer a Cartesian product and this requires a more complex and careful analysis. All strategy-proof rules are still decomposable, but choices in the dixerent dimensions must now be coordinated in order to guarantee feasibility. While this previous paper makes an important step in understanding how this coordination is attained for each given shape of the range, it is marred by a strong assumption on the domain of admissible preferences. Speci..cally, we assume there that each agent' bliss point is feasible. This assumption is not always realistic. Moreover, it makes the domain of admissible preferences dependent on the range of feasible choices.

In the present paper we study the question of voting under constraints for two rich and natural sets of admissible preferences: those that are additively representable or separable on the power set of K, regardless of the type of constraints faced by choosers. For clarity of exposition, however, we go back to the case analysed in B arberà, Sonnenschein, and Zhou (1991), which allows for only two values in each dimension.

Several authors (Serizawa (1994) and A nswal, Chatterji, and Sen (1999)) have studied the consequences of speci..c restrictions on the range, like budget constraints or limitations on the number of objects that may be chosen. Our results apply generally and cover all types of infeasibilities within our context: ranges of all shapes are allowed.

Thepaper is organized as follows. Section 2 contains preliminary notation and de..nitions as well as previous results. In Section 3 we introduce speci..c de..nitions and notation, obtain preliminary results, and present our two characterizations: Theorem 1 for additive preferences and Theorem 2 for
separable ones. Section 4 contains a ..nal remark. Section 5 contains the proof of Theorem 1, omitted in Section 3.

2 Preliminaries

Agents are the elements of a ..nite set $N=f 1 ; 2 ;:::$; ng. The set of objects is $K=f 1 ;:::$; k. We assume that n and k are at least 2 . Generic elements of N will be denoted by i and j and generic elements of K will be denoted by x, y, and z . Alternatives are subsets of K which will be denoted by X , Y , and Z . Subsets of N will be represented by I and J. Calligraphic letters will represent families of subsets; for instance, X, Y, and Z will represent families of subsets of alternatives and W, I, and J families of subsets of agents (coalitions).

Preferences are binary relations on alternatives. Let P be the set of complete, transitive, and asymmetric preferences on 2^{K}. Preferences in P are denoted by $P_{i}, P_{j}, P_{i},{ }^{0}$, and $P_{j}{ }^{0}$. For $P_{i} 2 P$ and $X \mu 2^{K}$, we denote the alternative in X most-preferred according to P_{i} as $i x\left(P_{i}\right)$, and we call it the top of P_{i} on X. We will use $i\left(P_{i}\right)$ to denote the top of P_{i} on 2^{K}. Generic subsets of preferences will be denoted by \hat{P}.

Preference pro..les are n-tuples of preferences. They will be represented by $P=\left(P_{1} ;::: ; P_{n}\right)$ or by $P=\left(P_{i} ; P_{i}\right)$ if we want to stress the role of agents i's preference.

A social choice function on \hat{P} is a function $F: \hat{P}^{n}!2^{K}$.
De..nition 1 The social choice function $F: \hat{P}^{n}$! 2^{K} respects voter's sovereignty if for every $X 22^{K}$ there exists $P 2 \hat{P}^{n}$ such that $F(P)=X$.

The range of a social choice function $F: \hat{P}^{n}!2^{K}$ is denoted by R_{F}; that
is,

$$
R_{F}={ }^{n} X 22^{K} j \text { there exists } P 2 \hat{P}^{n} \text { such that } F(P)=X^{0} .
$$

Denote by R_{F} the set of chosen objects; namely,

$$
R_{F}=f \times 2 \mathrm{~K} j \times 2 \times \text { for some } \times 2 R_{F} g .
$$

De..nition 2 A social choice function $F: \hat{P}^{n}!2^{K}$ is manipulable if there exist $P=\left(P_{1} ;::: ; P_{n}\right) 2 \hat{P}^{n}$, i $2 N$, and $P_{i}^{0} 2 \hat{P}$ such that $F\left(P_{i}^{0}, P_{i}\right) P_{i} F(P)$. A social choice function on \hat{P} is strategy-proof if it is not manipulable.

De..nition 3 A social choice function $F: \hat{P}^{n}!2^{K}$ is dictatorial if there exists i $2 N$ such that $F(P)=i_{R_{F}}\left(P_{i}\right)$ for all $P 2 \hat{P}^{n}$.

The Gibbard-Satterthwaite theorem states that any social choice function on P will be either dictatorial or its range will have only two elements. It would apply directly if any individual preference over the sets of objects were in the domain. However, there are many situations were agents' preferences have speci..c structure due to the nature of the set of objects, and this structure may impose meaningful restrictions on the way agents rank subsets of objects. We will be interested in two natural domains of preferences: those that are separable and those that are additive.

De..nition 4 A preference P_{i} on 2^{K} is additive if there exists a function $u_{i}: K!\mathbb{R}$ such that for all $X ; Y \mu \mathrm{~K}$

$$
X P_{i} Y \text { if and only if }{ }_{x 2 x}^{X} u_{i}(x)>_{y 2 Y}^{X} u_{i}(y) \text {. }
$$

The set of additive preferences will be denoted by A .
An agent i has separable preferences P_{i} if the division between good objects ($\mathrm{fxgP} \mathrm{i}_{\mathrm{i}}$;) and bad objects (; $\mathrm{P}_{\mathrm{i}} \mathrm{f} \mathrm{fg}$) guides the ordering of subsets in the sense that adding a good object leads to a better set, while adding a bad object leads to a worse set. Formally,

De..nition 5 A preference P_{i} on 2^{K} is separable if for all $X \mu K$ and all $y Z X$

$$
X\left[\text { fyg } P_{i} X \text { if and only if fygP } P_{i}\right.
$$

Let S be the set of all separable preferences on 2^{k}. We can give a geometric interpretation to this set by identifying each object with a coordinate and each set X of objects with a vertex of a k -dimensional cube, i.e., with the k-dimensional vector of zeros and ones, where x belongs to X if and only if that vector has a one in x 's coordinate. Sometimes we will make use of this geometric interpretation. For instance, given $X ; Y \mu K$ the minimal box on X and Y is the smallest subcube containing the vectors corresponding to X and Y; namely,

$$
M B(X ; Y)={ }^{©} Z 22^{K} j(X \backslash Y) \mu Z \mu\left(X[Y)^{\underline{a}} .\right.
$$

Following with this interpretation, it is easy to see that a preference P_{i} is separable if for all Z and $Y 2 \mathrm{MB}\left(i\left(P_{i}\right) ; Z\right) n f Z g, Y P_{i} Z$.

Remark that additivity implies separability but the converse is false with more than two objects. To see that, let $K=f x ; y ; z g$ be the set of objects and consider the separable preference

$$
f x ; y ; z g P_{i} f y ; z g P_{i} f x ; z g P_{i} f x ; y g P_{i} f x g P_{i} f y g P_{i} f z g P_{i} f ; g ;
$$

which is not additive since $f x g P_{i} f y g$ and $f y ; z g P_{i} f x ; z g$. Geometrically, additivity imposes the condition that the orderings of all vertices on each parallel face of the hypercube coincide while separability admits the possibility that some vertices of two parallel faces have dixerent orderings. This geometric interpretation will become very useful to understand the dixerences of our two characterizations.

To de..ne voting by committees as in Barberà, Sonnenschein, and Zhou (1991) we need the concept of a committee.

De..nition 6 A committee W is a nonempty family of nonempty coalitions of N, which satis..es coalition monotonicity: if I 2 W and I $\mu \mathrm{J}$, then J 2 W . Coalitions in W are called winning. A coalition I 2 W is a minimal winning coalition if for all J Ã I we have that J ZW.

Given a committee W , we will denote by W^{m} the set of its minimal winning coalitions. A committee W is dictatorial if there exists i 2 N such that $W^{m}=$ ffigg. Associated to each family of committees (one for each object) we can de..ne a special type of social choice functions.

De..nition 7 A social choice function $\mathrm{F}: \hat{\mathrm{P}}^{\mathrm{n}}$! 2^{K} is voting by committees, if for each $\times 2 \mathrm{~K}$; there exists a committee W_{x} such that for all $P=\left(P_{1} ;:: \cdot ; P_{n}\right) 2 \hat{P}^{n}$,

$$
x 2 \mathrm{~F}(\mathrm{P}) \text { if and only if fi } 2 \mathrm{~N} \mathrm{j} \times 2 \mathrm{i}_{\mathrm{R}_{F}}\left(\mathrm{P}_{\mathrm{i}}\right) \mathrm{g} 2 \mathrm{~W}_{\mathrm{x}} \text { : }
$$

A social choice function F is called Voting by quota $q\left(\begin{array}{lll}1 & q & n\end{array}\right)$ if for all x the committee W_{x} is equal to the family of coalitions with cardinality equal or larger than q.

We state, as Proposition 1 below, Barberà, Sonnenschein, and Zhou (1991)'s characterization of voting by committees as the class of strategyproof social choice functions on S, as well as on A, satisfying voter's sovereignty. Proposition 1 A social choice function $F: S^{n}!2^{K}$ (or, $F: A^{n}!2^{K}$) is strategy-proof and satis.es voter's sovereignty if and only if it is voting by committees.

To cover social choice problems with constraints we have to drop the voter's sovereignty condition of Proposition 1. But a result in Barberà, M assó, and Neme (1997) tells us that the only strategy-proof rules in this case must still be of the same form: this is stated in Proposition 2.

Proposition 2 Assume F:S S^{n} (2^{K} (or, F:A A^{n} ! 2^{K}) is strategy-proof. Then, F is voting by committees. ${ }^{1}$

3 Two Characterization Results

3.1 Examples and Preliminary Results

Because of feasibility constraints, not all combinations of committees can be guaranteed to always generate a feasible outcome, even if all votes are for feasible ones. The exact nature of the restrictions, i.e., the shape of the range, will determine which combinations of committees can constitute a proper social choice function for this range. Example 1 below illustrates this fact. M oreover, under the presence of infeasibilities, there are voting by committees that, although respecting feasibility, are not strategy-proof. Example 2 illustrates this possibility.

Example 1 Let $K=f x ; y g$ be the set of objects and $N=f 1 ; 2 ; 3 g$ the set of agents. A ssume that $f ; g, f x g$, and $f y g$ are feasible but $f x ; y g$ is not. Voting by quota 1 does not respect feasibility because for any preference pro..le P, with the property that $i\left(P_{1}\right)=i\left(P_{2}\right)=f x g$ and $i\left(P_{3}\right)=f y g$, both x and y should be elected, which is infeasible. However, voting by quota 2 does respect feasibility because x and y cannot get simultaneously two votes (remember, agents cannot vote for infeasible outcomes) since the complementary coalition of each winning coalition for x is not winning for y, and viceversa.

[^1]This idea will play an important role in our characterization with additive preferences. The next de..nition generalizes it to any pair of committees.

De..nition 8 We say that two committees W and W^{c} are complementary if $D 2 W$ implies $N n D Z W^{c}$ and $D 2 W^{c}$ implies $N n D Z W$.

Example 2 Let $K=f x ; y g$ be the set of objects and $N=f 1 ; 2 ; 3 g$ the set of agents. Assume that $f ; g, f x g$, and $f y g$ are feasible but $f x ; y g$ is not. Consider the social choice function F de..ned by voting by quota 3 (which respects feasibility) and let P be any additive (as well as separable) preference pro..le such that $i\left(P_{2}\right)=i\left(P_{3}\right)=f y g$ and $f x ; y g P_{1} f x g P_{1} f y g P_{1} f ; g$. Since ¿ $2^{2} n f x ; y g\left(P_{1}\right)=f x g$, y receives two votes and x one; therefore, $F(P)=f ; g$. However, if agent 1 declares the preference P_{1}^{0} where $f y g P ~_{1}{ }_{1} f x ; y g P_{1}{ }^{0 f} ; \mathrm{gP}_{1}{ }^{\circ f} \mathrm{fg}$, then y receives three votes and x none; that is, $F\left(P_{1}{ }^{0} ; P_{2} ; P_{3}\right)=f y g P_{1} f ; g=$ $F\left(P_{1} ; P_{2} ; P_{3}\right)$. Hence, F is not strategy-proof.

The purpose of our two characterizations is to identify exactly the subfamilies of committees that simultaneously respect feasibility and are strategyproof for the domains of additive and separable preferences.

We begin with some intuition about the nature of our results. For that, we ..rst remind the reader about the essential features of voting by committees when there are no constraints, as in B arberà, Sonnenschein, and Zhou (1991). There, the choice of a set can be decomposed into a family of binary choices, one for each object. In each case, society decides whether the object should or should not be retained, and the union of selected objects amounts to the social alternative. If the methods used to decide upon each object are each strategy-proof, then so is the method resulting from combining them into a global decision, as long as the agent's preferences are additive or separable. A gents should be asked to express their best set, and under the expressed domain restrictions this is equivalent to expressing those objects that they
would prefer to be included in the social decision, rather than not.
In our case, a ..rst dixerence is that the choice of sets may not be decomposable to the extreme of allowing for independent decisions on each object. Our results tell us precisely about the extent to which global decisions can be decomposed, and say how to coordinate the decisions within groups of objects that require joint treatment. Indeed, in the presence of infeasibilities, the decision on what objects to choose, and which ones not to, can no longer be decomposed into object-by-object binary decisions. For example, choosing x might only be possible if y is not chosen: then the choices regarding x and y must be joint. Similarly, z might only be chosen if w is, and again decisions involving these two objects need to be coordinated. Y et, if all feasible choices of x and y, when coupled with any feasible choice for z and w, turn out to be feasible, there is still room for decomposition of the choices in two blocks of objects. If, on the contrary, further restrictions must take into account, whereby certain feasible choices from x and y become incompatible with some feasible choices from z and w, then decomposition is not possible. The paper provides a precise statement about the extent to which decisions on what sets to choose can be decomposed into partial decisions involving subsets (we call each part of the decomposition a section), in the presence of feasibility constraints. Moreover, we discuss the characteristics of the committees that must be used in order to coordinate the choices of objects within each of the sections.

A second contrast with the unconstrained case is that our results for separable preferences are quite dixerent (and much more negative) than for additive preferences. Essentially, this is because in the presence of infeasibilities, agents are not asked to vote for their preferred sets, but rather for their preferred feasible sets. Hence, they may end up voting for their second best,
their third best, etc. Now: some of the individual objects they vote for may be retained, and others not. Likewise, some objects they do not vote for can obtain. What matters for strategy proofness is whether the best set for each agent among those that contain some externally ..xed objects (those that are chosen in spite of the agent's negative vote) and do not contain some others (those that are not chosen even if the agent supports them) is the set that contains, in addition to those, as many elements from the agent's preferred feasible set. This is the case for additive preferences in all cases. It is also the case for separable preferences if the ..rst best for the agent is feasible, but not necessarily otherwise. That is why, in the presence of infeasibilities, declaring the best feasible set may not be a dominant strategy for some voters, even when committees are used (except if the ..rst best is always feasible, a situation studied in Barberà, M assó, and Neme (1997)). Whereas it is always a dominant strategy for additive preferences. This accounts for the dixerences in results under these two dixerent domains.

We now make the de..nitions and the statements precise. Given a social choice function $F: \hat{P}^{n}!2^{K}$ and a subset B of R_{F} de..ne the active components of B in the range as

$$
A C(B)=f X \mu B j X=Y \backslash B \text { for some } Y 2 R_{F} g:
$$

Active components of B are subsets of B whose union with some subset in $R_{F} n B$ is part of the range. Now, given $B^{0} \mu B \mu R_{F}$ de. ne the range complement of B^{0} relative to B as

$$
C_{F}^{B}\left(B 9=f C \mu R_{F} n B j B{ }^{0}\left[C 2 R_{F} g .\right.\right.
$$

The range complement of a subset B^{0} of B is the collection of sets in $R_{F} n B$ whose union with B^{0} is in the range. Notice that $A C(B)$ can also be written as ${ }^{C^{\prime}} \mathrm{X} \mu \mathrm{Bj} \mathrm{X}\left[\mathrm{Y} 2 \mathrm{R}_{\mathrm{F}}\right.$ for some $\mathrm{Y} 2 \mathrm{C}_{\mathrm{F}}^{\mathrm{B}}(\mathrm{X})^{\underline{\text { a }}}$.

A section is a group of objects with the property that the decision among their active components can be made without paying attention to the infeasibilities involving objects on its complement.

De..nition 9 A subset of objects $B \mu K$ is a section of R_{F} if for all active components $B^{a}, B^{\infty} 2 A C(B)$ we have $C_{F}^{B}\left(B 9=C_{F}^{B}\left(B^{\infty}\right)\right.$:

Remark $1 \quad R_{F}$ is a section of R_{F} because $C_{F}^{B}(X)$ is empty for all active components $X 2 A C\left(R_{F}\right)=R_{F}$.

Given two families of subsets of objects X and Y we denote by $X+Y$ the sum of the two; namely,

$$
X+Y=f X\left[Y 22^{K} j X 2 X \text { and } Y 2 Y g:\right.
$$

Remark $2 B$ is a section of R_{F} if and only if, for all $B^{0} 2 A C(B)$,

$$
R_{F}=A C(B)+C_{F}^{B}(B 9:
$$

Lemma 1 Let B be a section of R_{F} and let B_{1} and B_{2} be such that $B=B_{1}\left[B_{2}, B_{1} \backslash B_{2}=;\right.$, and B_{1} is a section of R_{F}. Then, B_{2} is also a section of R_{F}.

Proof $B y$ de..nition of active component of B_{2}; for any $X ; Y 2 R_{F}$,

$$
\begin{equation*}
X_{2}^{\prime} X \backslash B_{2} 2 A C\left(B_{2}\right) \tag{1}
\end{equation*}
$$

and

$$
Y_{2}{ }^{\prime} Y \backslash B_{2} 2 A C\left(B_{2}\right):
$$

M oreover, by de..nition of range complement of X_{2} and Y_{2} relative to B_{2},

$$
X \backslash B_{2}^{C} 2 C_{F}^{B_{2}}\left(X_{2}\right)
$$

and

$$
Y \backslash B_{2}^{C} 2 C_{F}^{B_{2}}\left(Y_{2}\right):
$$

We want to show that $C_{F}^{B_{2}}\left(X_{2}\right)=C_{F}^{B_{2}}\left(Y_{2}\right)$. It is suq cient to show that $Y \backslash B_{2}^{c} 2 C_{F}^{B_{2}}\left(X_{2}\right)$; that is,

$$
X_{2}\left[\left(Y \backslash B_{2}^{c}\right) 2 R_{F}:\right.
$$

By condition (1), and since $B_{2}^{c}=B_{1}\left[B^{c}\right.$,

$$
\begin{aligned}
X_{2}\left[\left(Y \backslash B_{2}^{c}\right)\right. & =\left(X \backslash B_{2}\right)\left[\left(Y \backslash B_{2}^{c}\right)\right. \\
& =\left(X \backslash B_{2}\right)\left[(Y \backslash B _ { 1 }) \left[\left(Y \backslash B^{c}\right):\right.\right.
\end{aligned}
$$

Claim $1\left(X \backslash B_{1}\right)\left[\left(X \backslash B_{2}\right)\left[\left(Y \backslash B^{c}\right) 2 R_{F}\right.\right.$.
Proof Since $Y 2 R_{F},(Y \backslash B)\left[\left(Y \backslash B^{C}\right) 2 R_{F}\right.$. Therefore, $Y \backslash B^{c} 2 C_{F}^{B}(B)$ for some $B 2 A C(B)$: Moreover, since B is a section and $X \backslash B 2 A C(B)$; Remark 2 implies that $(X \backslash B)\left[\left(Y \backslash B^{c}\right) 2 R_{F}\right.$. Hence, $\left(X \backslash B{ }_{1}\right)$ [$(X \backslash$ $\left.B_{2}\right)$ [$\left(Y \backslash B^{C}\right) 2 R_{F}$, which is the statement of the claim.

Therefore, by Claim 1 and the hypothesis that B_{1} is a section,

$$
\left(X \backslash B_{2}\right)\left[\left(Y \backslash B^{c}\right) 2 C_{F}^{B_{1}}\left(B_{1}^{0}\right)\right.
$$

for all $B_{1}^{0} 2 A C\left(B_{1}\right)$: Because ($Y \backslash B_{1}$) $2 A C\left(B_{1}\right)$ we have, by Remark 2, $\left(X \backslash B_{2}\right)\left[\left(Y \backslash B_{1}\right)\left[\left(Y \backslash B^{c}\right) 2 R_{F}\right.\right.$. Hence, $\left(Y \backslash B_{2}^{c}\right) 2 C_{F}^{B_{2}}\left(X_{2}\right)$. $\quad ¥$ De..nition 9 A partition $f B_{1} ;::$; $B_{q} g$ of R_{F} is a cylindric decomposition of R_{F} if for all $p=1 ;::: ; B_{p}$ is a section of R_{F} : A cylindric decomposition is called minimal if there is no ..ner cylindric decomposition of R_{F}.

Remark 3 Let $f B_{1} ; \ldots: ; B_{q} g$ be a partition of R_{F}. Then, $f B_{1} ;:: ; B_{q} g$ is a cylindric decomposition of R_{F} if and only if

$$
\mathrm{R}_{\mathrm{F}}=\mathrm{AC}\left(\mathrm{~B}_{1}\right)+:::+\mathrm{AC}\left(\mathrm{~B}_{\mathrm{q}}\right):
$$

We want to show (Proposition 3 below) that, given any social choice function F, its corresponding set R_{F} has a unique minimal cylindric decomposition. In the proof of Proposition 3 we will use the following Lemma.

Lemma 2 Let B_{1} and B_{2} be two sections of R_{F} : Then $B=B_{1}\left[B_{2}\right.$ is also a section of R_{F} :

Proof Let $B=B_{1}\left[B_{2}\right.$ and assume that B_{1} and B_{2} are sections of R_{F}. Let $X ; Y 2 R_{F}$ be arbitrary. They can also be written as

$$
X=(X \backslash B)\left[\left(X \backslash B^{c}\right)\right.
$$

and

$$
Y=(Y \backslash B)\left[\left(Y \backslash B^{c}\right):\right.
$$

To show that B is a section, it is su申 cient to show that $(X \backslash B)\left[\left(Y \backslash B^{c}\right) 2\right.$ R_{F}. Rewrite X and Y as

$$
X=\left(X \backslash\left(B_{1} n B_{2}\right)\right)\left[(X \backslash (B _ { 2 } n B _ { 1 })) \left[(X \backslash (B _ { 1 } \backslash B _ { 2 })) \left[\left(X \backslash B^{c}\right)\right.\right.\right.
$$

and

$$
Y=\left(Y \backslash\left(B_{1} n B_{2}\right)\right)\left[(Y \backslash (B _ { 2 } n B _ { 1 })) \left[(Y \backslash (B _ { 1 } \backslash B _ { 2 })) \left[\left(Y \backslash B^{c}\right):\right.\right.\right.
$$

Since B_{1} is a section, $\left(Y \backslash\left(B_{1} n B_{2}\right)\right)\left[\left(Y \backslash\left(B_{1} \backslash B_{2}\right)\right)\right.$ and $\left(X \backslash\left(B_{1} n B_{2}\right)\right)[$ $\left(X \backslash\left(B_{1} \backslash B_{2}\right)\right)$ belong to $A C\left(B_{1}\right)$, and $\left(Y \backslash\left(B_{2} n B_{1}\right)\right)\left[\left(Y \backslash B^{C}\right) 2 C_{F}^{B_{1}}((Y \backslash\right.$ $\left.\left.\left(B_{1} n B_{2}\right)\right) \backslash\left(Y \backslash\left(B_{1} \backslash B_{2}\right)\right)\right)$. Therefore,

$$
\left(X \backslash\left(B_{1} n_{2}\right)\right)\left[(X \backslash (B _ { 1 } \backslash B _ { 2 })) \left[(Y \backslash (B _ { 2 } n B _ { 1 })) \left[\left(Y \backslash B^{c}\right) 2 R_{F}:\right.\right.\right.
$$

By de..nition of the range complement of $\left(Y \backslash\left(B_{2} \mathrm{nB}_{1}\right)\right)$ [$\left(\mathrm{X} \backslash\left(\mathrm{B}_{1} \backslash \mathrm{~B}_{2}\right)\right)$ relative to B_{2},

$$
\begin{equation*}
\left(X \backslash\left(B_{1} n B_{2}\right)\right)\left[(Y \backslash B ^ { c }) 2 C _ { F } ^ { B _ { 2 } } \left(\left(Y \backslash\left(B_{2} n B_{1}\right)\right)\left[\left(X \backslash\left(B_{1} \backslash B_{2}\right)\right)\right):\right.\right. \tag{2}
\end{equation*}
$$

Also, since X and Y belong to R_{F} and B_{2} is a section,

$$
\begin{equation*}
\left(X \backslash B_{2}\right)\left[\left(Y \backslash B_{2}^{c}\right) 2 R_{F}:\right. \tag{3}
\end{equation*}
$$

Rewriting condition (3), we have

$$
\left(Y \backslash\left(B_{1} n B_{2}\right)\right)\left[(X \backslash (B _ { 2 } n B _ { 1 })) \left[(X \backslash (B _ { 1 } \backslash B _ { 2 })) \left[\left(Y \backslash B^{c}\right) 2 R_{F}:\right.\right.\right.
$$

Therefore,

$$
\begin{equation*}
\left(\mathrm{X} \backslash\left(\mathrm{~B}_{2} \mathrm{nB}_{1}\right)\right)\left[\left(\mathrm{X} \backslash\left(\mathrm{~B}_{1} \backslash \mathrm{~B}_{2}\right)\right) 2 \mathrm{AC}\left(\mathrm{~B}_{2}\right):\right. \tag{4}
\end{equation*}
$$

Then, by conditions (2) and (4), the fact again that B_{2} is a section, and Remark 2,

$$
\left(X \backslash\left(B_{2} n B_{1}\right)\right)\left[(X \backslash (B _ { 1 } \backslash B _ { 2 })) \left[(X \backslash (B _ { 1 } n B _ { 2 })) \left[\left(Y \backslash B^{c}\right) 2 R_{F}:\right.\right.\right.
$$

This implies that $(X \backslash B)\left[\left(Y \backslash B^{C}\right) 2 R_{F}\right.$. Hence, B is a section of $R_{F} . \neq$ Proposition 3 Any set R_{F} has a unique minimal cylindric decomposition. Proof Assume not. Let $f B_{1}^{1} ; \ldots: ; B_{q_{1}}^{1} g$ and $f B_{1}^{2} ; \ldots: B_{q_{q}}^{2} g$ be two distinct minimal cylindric decompositions of R_{F}. There exists at least one pair such that $B_{p_{1}}^{1} \backslash B_{p_{2}}^{2} G$; . By Lemma 2, $B_{p_{1}}^{1}\left[B_{p_{2}}^{2}\right.$ is a section of R_{F} : By Lemma $1, B_{p_{1}}^{1} n B_{p_{2}}^{2}$ is also a section of R_{F} implying, again by Lemma 1, that $f B{ }_{1}^{1} ;::: ; B_{q_{1}}^{1} g$ was not minimal.

3.2 A dditive Preferences

We can now state our ..rst characterization.
Theorem 1 A social choice function $F: A^{n}!2^{K}$ is strategy-proof if and only if it is voting by committees with the following properties:
(1) W_{x} and W_{y} are equal for all x and y in the same active component of any section with two active components in R_{F} 's minimal cylindric decomposition, (2) W_{x} and W_{y} are complementary for all x and y in dixerent active components of the same section in R_{F} 's minimal cylindrical decomposition, when there are only two active components in this section, and
(3) W_{x} is dictatorial and equal for all x 's in the same section in R_{F} 's minimal cylindric decomposition, when this section has more than two active components.

The proof of Theorem 1 is in the A ppendix at the end of the paper. We discuss here an elaborate example which illustrates almost all the possibilities which are opened by our characterization.

Example 3 Let $K=f a ; b ; x ; y ; z ; w ; r ; s ; q ; t g$ be the set of objects and assume that the set of feasible alternatives is
ffbrg; fbrtg; fbsqg; fbsqtg; fbzrg; fbzrtg; fbzsqg; fbzsqtg; fbzwrg;
fbzwrtg; fbzwsqg; fbzwsqtg;fbxrg;fbxrtg;fbxsqg;fbxsqtg;
fbxzrg;fbxzrtg;fbxzsqg;fbxzsqtg;fbxzwrg;fbxzwrtg;fbxzwsqg;
fbxzwsqtg;fbyrg;fbyrtg;fbysqg;fbysqtg;fbyzrg;fbyzrtg;
fbyzsqg;fbyzsqtg; fbyzwrg; fbyzwrtg; fbyzwsqg; fbyzwqstgg:
Notice that (1) a is never chosen, (2) bis always chosen, (3) x and y are never chosen simultaneously, (4) w is only chosen if z is, (5) s and q are chosen together, (6) exactly one of r and s is chosen, and (7) t can be chosen or not, whatever happens. Therefore, we are interested in strategy-proof social choice functions F : $A^{n}!2^{K}$ whose range is equal to

$$
R_{F}=f b g+f ; ; f x g ; f y g g+f ; ; f z g ; f z ; w g g+f f r g ; f s ; q g g+f ; ; f t g g:
$$

Notice that the partition $f f b g ; f x ; y g ; f z ; w g ; f r ; s ; q g ; f t g g$ of K is the minimal cylindric decomposition of R_{F}, since one can check that all of its elements are minimal sections. For example, $f x ; y g$ is a section because $A C(f x ; y g)=$ $\mathrm{f} ; ; \mathrm{fxg} ; \mathrm{fygg}$ (notice that the subset fx ; yg is not an active component of itself) and $C_{F}^{f x ; y g}(;), C_{F}^{f x ; y g}(f x g)$, and $C_{F}^{f x ; y g}(f y g)$ are all equal to

$$
f b g+f ; ; f z g ; f z ; w g g+f f r g ; f s ; q g g+f ; ; f t g g:
$$

Moreover, this section is minimal since neither fxg nor fyg are sections because, for instance, $A C(f x g)=f ; ; f x g g$ but

$$
\mathcal{C}_{F}^{f x g}(;)=f b g+f ; ; f y g g+f ; ; f z g ; f z ; w g g+f f r g ; f s ; q g g+f ; ; f t g g
$$

and

$$
C_{F}^{f x g}(f x g)=f b g+f ; ; f z g ; f z ; w g g+f f r g ; f s ; q g g+f ; ; f t g g ;
$$

and hence, $C_{F}^{f \times g}(;) \in C_{F}^{f x g}(f x g)$.
Also, fz; wg is a section because $A C(f z ; w g)=f ; ; f z g ; f z ; w g g$ (notice that the subset $f w g$ is not an active component of $f z ; w g$) and $C_{F}^{f z w g}(;)$, $C_{F}^{f z ; w g}(f z g)$, and $C_{F}^{f z ; w g}(f z ; w g)$ are all equal to
fbg + f; ;fxg;fygg + ffrg;fs;qgg + f; ;ftgg:

Moreover, this section is minimal since neither fzg nor fwg are sections because, for instance, $A C(f w g)=f ;$; f gg but

$$
C_{F}^{f w g}(;)=f b g+f ; ; f x g ; f y g g+f ; ; f z g g+f f r g ; f s ; q g g+f ; ; f t g g
$$

and

$$
C_{F}^{f w g}(f w g)=f b g+f ; ; f x g ; f y g g+f z g+f f r g ; f s ; q g g+f ; ; f t g g ;
$$

and hence, $C_{F}^{f w g}(;) \in C_{F}^{f w g}(f w g)$.
The proof that all other components of the decomposition are also minimal sections is similar and left to the reader.

Now, given a set of agents N, any voting by committees $F: A^{n}!2^{k}$ will be strategy-proof as long as it satis..es the following properties: (a) by condition (3) of Theorem $1, W_{x}^{m}=W_{y}^{m}=f f i_{1} g g$ and $W_{z}^{m}=W_{w}^{m}=f f i_{2} g g$ for some $i_{1} ; i_{2} 2 \mathrm{~N} ;(\mathrm{b})$ by condition (1) of Theorem $1, \mathrm{~W}_{\mathrm{s}}^{\mathrm{m}}=\mathrm{W}_{\mathrm{q}}^{\mathrm{m}}$; and (c) by condition (2) of Theorem $1, W_{r}$ and W_{s} are complementary.

3.3 Separable Preferences

Theorem 2 below characterizes the family of non-dictatorial and strategyproof social choice functions when voters' preferences are separable. Our result shows that the class of strategy-proof social choice functions under additive representable preferences identi..ed in Theorem 1 is drastically reduced as a consequence of this enlargement of the domain of preferences. A gain, this is a novelty with respect to the situation without constraints. Now, only social choice functions with Cartesian product ranges (up to constant and/ or omitted objects,) are strategy-proof. Namely, the range of F has to be a subcube: all sections of the minimal cylindric decomposition of R_{F} (the set of not omitted objects) are singletons, either with the object itself as the unique active component (constant object) or else with the object itself and the empty set as the two active components. Formally,

Theorem 2 Let F: $S^{n}!2^{K}$ be a non-dictatorial social choice function with $\# R_{F}$, 3. Then, F is strategy-proof if and only if F is voting by committees and all sections of the minimal cylindric decomposition of R_{F} are singletons.

Proof Let F: S^{n} ! 2^{K} be a non-dictatorial social choice function with \# R_{F}, 3. If a social choice function is voting by committees and the sections of the minimal cylindric decomposition of R_{F} are all singletons, then this social choice function is onto the power set of some subset of the objects union a constant disjoint set. The result of B arberà, Sonnenschein, and Zhou (1991) applies, and the function is strategy-proof. For the converse, assume that F is strategy-proof. By Proposition 2, F is voting by committees. Since all additive preferences are separable, Theorem 1 applies to the subdomain of additive preferences. Therefore, the committees associated to F satisfy
conditions (1), (2), and (3) of Theorem 1. Since F is non-dictatorial the minimal cylindric decomposition of R_{F} cannot consist of just one section with strictly more than two active components (by (3)). Now, notice that when preferences are separable but not additively representable, the active components of a section can be ordered dixerently among themselves, depending on which objects are present in another section. This can now be used to show that we cannot have a section with more than two active components together with another section with more than one active component. To prove it, it is enough to construct pro..les where the presence of an object axects the ordering of the active components in another section. Therefore, all sections have either only one active component (the objects that are always selected) or they have just two active components which are of the form $f f ; g ; f x g g$. Hence, all sections in the minimal cylindric decomposition of R_{F} are singletons.

4 Final Remark

Until now, we have taken the dimension of our problems (i.e., the number of objects), as well as the feasibility constraints, as given data. Our analysis admits another reading without any formal change, except for its interpretation.

Consider a situation where society faces four alternatives, a, b, c, and d. One possibility is that each of these alternatives might be described by two characteristics, and that identifying $a=(0 ; 0), b=(1 ; 0), c=(0 ; 1)$, and $d=(1 ; 1)$ provides a good description of the actual choices (this particular choice would indicate that a and c are similar in the ..rst characteristic but dixer on the second, etc.). It may also be, in another extreme, that these four
alternatives share nothing relevant in common. They can still be represented as vectors of zeros and ones, but now it is better to embed them in \mathbb{R}^{4}, and identify them as $a=(1 ; 0 ; 0 ; 0), b=(0 ; 1 ; 0 ; 0), c=(0 ; 0 ; 1 ; 0)$, and $d=$ $(0 ; 0 ; 0 ; 1)$. There may still be intermediate cases where three characteristics are necessary and suф cient to distinguish between these four alternatives. T wo examples may be given by the cases

$$
a=(1 ; 0 ; 0), b=(1 ; 1 ; 0), c=(1 ; 0 ; 1), \text { and } d=(0 ; 0 ; 0)
$$

or

$$
a=(1 ; 0 ; 0), b=(0 ; 1 ; 0), c=(0 ; 0 ; 1), \text { and } d=(0 ; 1 ; 1) .
$$

In the four-dimensional and three-dimensional cases, these four alternatives are only some of the conceivable vertices of the corresponding cubes. Other combinations of zeros and ones represent conceivable but unfeasible choices.

These examples suggest that the objects in our model (interpreted as characteristics) may be taken as partial aspects of the overall alternatives (whose role is played in our model by the feasible sets). This interpretation is not restrictive: any alternative (out of a ..nite set) can be described by a (..nite) set of characteristics. What is restrictive is that once we identify each alternative with a set of characteristics (thus embedding it into some I-dimensional cube), we also determine the shape of the set of feasible alternatives, and this has consequences on the class of preferences which pass the test of additivity (or separability).

In fact, thanks to the above observations, we can conclude by arguing that the Gibbard-Satterthwaitetheorem arises as a particular corollary of our Theorem 1. Indeed, take any ..nite set A of k alternatives ($k>2$). Identify them with the k unit vectors. Notice that all preferences over A are restrictions of some additive preference on the k-dimensional cube. Hence, we are
considering the universal domain assumption of the Gibbard-Satterthwaite result. Theorem 1 tells us that only dictatorial rules are strategy-proof on additive preferences. This is the conclusion we wanted.

5 A ppendix: Proof of Theorem 1

The proof of T heorem 1 is based on a decomposition argument that applies an important result of Le B reton and Sen (1997) to our context. T his argument, which will be exploited in the proof of T heorem 1, is expressed as Proposition 4 below. But before, we need the following notation.

Let P_{i} be an additively representable preference on 2^{K} and consider a subset B of K : Let P_{i}^{B} stand for the preferences on 2^{B} generated by the utilities which represent P_{i}. Let A_{B} be the set of additive preferences on 2^{B}. For a pro..le P of preferences on $2^{\mathrm{K}}, \mathrm{P}^{\mathrm{B}}$ will denote the pro..le of preferences so restricted, for all i 2 N .

Given a strategy-proof social choice function $\mathrm{F}: \mathrm{A}^{\mathrm{n}}!2^{\mathrm{K}}$ and a subset B of objects, let $F^{B}: A_{B}^{n}!2^{B}$ be de. ned so that for all $P^{B} 2 A_{B}^{n}$

$$
F^{B}{ }^{i} P^{B}{ }^{\Phi}=F(P) \backslash B ;
$$

where P is any additive preference such that P^{B} is generated by the utilities which represent P.

Remark 4 Notice that, since F:A ${ }^{n}!2^{K}$ is a strategy-proof social choice function, it is voting by çommittees (by Proposition 2). Hence, for any $B \mu K, F(P) \backslash B=F \quad P^{\wedge} \backslash B$ for all $P ; P^{\wedge} 2 A^{n}$ such that $P^{B}=P^{\wedge}$. Therefore, F^{B} is well-de.ned.

Proposition 4 (a) Let $F: A^{n}$! 2^{K} be a social choice function and let $f B_{1} ;::: ; B_{q} g$ be a cylindric decomposition of R_{F}. If F is strategy-proof then
$F^{B_{1}} ;: \ldots: ; F^{B_{q}}$ are strategy-proof and $F(P)={ }_{p=1}^{S} F^{B_{p}}{ }^{i_{P}}{ }^{B_{p}}{ }^{\AA}$ for all P $2 A^{n}$. (b) Conversely, let $f B_{1} ;:: ; B_{q} g$ be a partition of $K{ }^{0} \mu \mathrm{~K}$ and let $f B_{1} ; \ldots ; B_{q} g$ be a collection of subsets of objects, with $B_{p} \mu 2^{B_{p}}$ for all $p=1 ;::: ; q$. Let $F^{B_{p}}: A_{B_{p}}^{n}$! B_{p} be a collection of onto social choice functions, one for each $\mathrm{p}=1$;:::; q. If $\mathrm{F}^{\mathrm{B}_{1}} ;::: ; \mathrm{F}^{\mathrm{B}_{\mathrm{q}}}$ are strategy-proof, then the function $\mathrm{F}(\mathrm{P})=$ ${ }_{p=1}^{\mathcal{S}} F^{B_{p}}{ }^{i_{P}}{ }^{B_{p}}{ }^{\Phi}$ for all $P \quad 2 A^{n}$ is strategy-proof, $f B_{1} ; \ldots ; B_{q} g$ is a cylindric decomposition of $R_{F}=K^{0}$, and $R_{F}=B_{1}+:::+B_{q}$.

Proof (a) Assume $f B_{1} ;::: B_{q} g$ is a cylindric decomposition of R_{F} and let $P 2 A^{n}$. Then,

$$
\begin{array}{rlrl}
F(P) & =F(P) \backslash R_{F} & & \text { by de. nition of } R_{F} \\
& =\int_{p=1}^{p=1}\left[F(P) \backslash B_{p}\right] & \text { since } f B_{1} ;: \ldots ; B_{q} g \text { is a partition of } R_{F} \\
& =\int_{p=1}^{S} F^{B_{p}\left(P^{B_{p}}\right)} & \text { by de. nition of } F^{B_{p}} \text { and } P^{B_{p}}:
\end{array}
$$

To obtain a contradiction, assume that $F^{B_{p}}$ is not strategy-proof; that is, there exist $P^{B_{p}}, i$, and $P_{i}^{B_{p}}$ such that $F^{B_{p}}\left(P_{i}^{B_{p}} ; P_{i}^{B_{p}}\right) P_{i}^{B_{p}} F^{B_{p}}\left(P^{B_{p}}\right)$. There fore, and since preferences are additive,

$$
\begin{equation*}
\underset{y 2 F^{B_{p}\left(P_{i}^{B_{p}} ; P_{i}^{B_{p}}\right)}}{u_{i}^{B_{p}}(y)}>X_{y 2 F^{B_{p}\left(P^{B_{p}}\right)}}^{u_{i}^{B_{p}}(y) ;} \tag{5}
\end{equation*}
$$

for any $u_{i}^{B_{p}}: B_{p}$! \mathbb{R} representing $P_{i}^{B_{p}}$.
Take any $P \quad 2 A^{n}$ generating $P^{B_{p}}$ and $\hat{P_{i}}$ generating $\widehat{P_{i}^{B_{p}}}$ with the property that

$$
\begin{equation*}
P_{i}^{B_{p 0}}=P_{i}^{B_{p 0}} \tag{6}
\end{equation*}
$$

for all $p^{0} \in p$. For each $p^{0} \in p$, take any $u_{i}^{B_{p 0}}$ representing $P_{i}^{B_{p} 0}$. Then, by condition (5),

$$
\begin{aligned}
& X \\
& X \\
& p^{0} \in p \\
& \left.\times 2 F^{B_{p^{0}}\left(P^{B} p^{0}\right.}\right)
\end{aligned} u_{i}^{u_{i}^{p_{0}}(x)}+\underset{y 2 F^{B_{p}\left(P^{B p}\right)}}{ } u_{i}^{B_{p}}(y)
$$

where the equality follows from condition (6) and the inequality follows from condition (5). Therefore, $\mathrm{F}\left(\widehat{\mathrm{P}_{\mathrm{i}}} ; \mathrm{P}_{\mathrm{i}}\right) \mathrm{P}_{\mathrm{i}} \mathrm{F}(\mathrm{P})$; that is, F is not strategy-proof.
(b) Let $f B_{1} ;:: . ; B_{q} g$ be a partition of $K{ }^{0} \mu \mathrm{~K}$ and consider any $P 2 A^{n}$, i $2 N$, and $\hat{P_{i}} 2 A$. Since for all $p=1 ;::: ; q$ the functions $F^{B_{p}}$ are strategyproof, we have that $F^{B_{p}}\left(P^{B_{p}}\right) R_{i}^{B_{p}} F^{B_{p}}\left(P_{i}^{B_{p}} ; P_{i i}^{B_{p}}\right)$; that is, for all $p=1 ;::: q$,

$$
\underset{\times 2 F^{B p}\left(P^{B p}\right)}{ } u_{i}^{B_{p}}(x), \quad X_{y 2 F^{B p}\left(P_{i}^{B p} ; P_{i}^{B p}\right)} \hat{u}_{i}^{B_{p}}(y) ;
$$

where $u_{i}^{B_{p}}$ and $\hat{u}_{i}^{B_{p}}$ are any pair of functions on B_{p} representing $P_{i}^{B_{p}}$ and $P_{i}^{B_{p}}$, respectively. Therefore, adding up,

Hence, $F(P) R_{i} F\left(\widehat{i} ; P_{i}\right)$; that is, F is strategy-proof. That $f B_{1} ;::: ; \mathrm{B}_{\mathrm{q}} \mathrm{g}$ is a cylindric decomposition of $R_{F}=K{ }^{0}$ and $R_{F}=B_{1}+:::+B_{q}$ follow immediately from the fact that.F $(P)={ }_{p=1}^{\mathbb{S}} F^{B_{p}} i_{P} B_{p}{ }^{\$}$ for all $P 2 A^{n}$.

Our strategy of proof for necessity relies heavily on invoking the GibbardSatterthwaite Theorem for the case where there are more than three active components in a section B_{p} of the minimal cylindric decomposition of the range. This is done by proving that, then, there will be three feasible outcomes which agents can rank as the three most-preferred, and in any relative order (a "free triple"). But $\mathrm{F}^{\mathrm{B}_{\mathrm{p}}}$ must be strategy-proof if F is (Proposition 4). If $F^{B_{p}}$ was non-dictatorial, we could use it to construct a non-dictatorial and strategy-proof social choice function over our free triple, which we know
is impossible by the Gibbard-Satterthwaite Theorem. As for the case where a section has two active components only, notice that we can divide the objects of this section into two sets, such that all the elements in one of the sets obtains when those on the other don't, and vice-versa. Our restriction that the committees corresponding to these two sets of objects are complementary guarantees that no vote can lead to choose at the same time objects from these two active components. Otherwise, no further restriction is imposed on our committees by strategy-proofness when only two outcomes arise.

Now, we state and prove that whenever a section in the minimal cylindric decomposition of R_{F} contains more than two active components, then we get a dictator. This is achieved by showing that a free triple always exists in this case.

Proposition 5 Assume that the following properties of R_{F} hold: (1) the minimal cylindric decomposition of R_{F} has a unique section and (2) \# R_{F},
3. Then, there exists i 2 N such that for all $\mathrm{k} 2 \mathrm{R}_{\mathrm{F}}, \mathrm{W}_{\mathrm{k}}^{\mathrm{m}}=\mathrm{ffigg}$.

Proof of Proposition 5 By conditions (1) and (2) there exists Z 22^{K} such that $Z \geq R_{F}$. Without loss of generality ..rst assume that there exists x such that either $Z\left[f x g 2 R_{F}\right.$ or $Z n f x g 2 R_{F}$. M oreover, by rotating the hypercube to locate Z to its origin and rede..ning all coordinates accordingly, assume that $Z=$; and $f x g 2 R_{F}$. Let y $2 R_{F} n f x g$ be arbitrary. We will show that there exists i 2 N such that $\mathrm{W}_{\mathrm{x}}^{\mathrm{m}}=\mathrm{W}_{\mathrm{y}}^{m}=$ ffigg. We will distinguish between two cases.

Case 1: There exists D $2 R_{F}$ such that y $2 D$ and $M B(D ; ;) \backslash R_{F}=f D g:$ Subcase 1.1: AssumeM B (D [fxg; ;) 6 ffxg; Dg: SinceM B (D; ;) $\backslash R_{F}=$ $f D g$ there exists B such that ; $G B \mu D, B[f x g \in D$, and $B[f x g 2$ MB(D [fxg; ;) \ R_{F} :

Subcase 1.1.1: Assume B A D: Without loss of generality assume that $M B\left(B[f x g ; f x g) \backslash R_{F}=f B[f x g ; f x g g:\right.$ Then we can generate, by an additive preference with top on ; , the orderings $D \hat{A}^{1} f x g \hat{A}^{1} B[f x g$, $f x g \hat{A}^{2} D \hat{A}^{2} B\left[f x g\right.$, and $f x g \hat{A}^{3} B\left[f x g \hat{A}^{3} D\right.$, by an additive preference with top on B, the orderings $D \hat{A}^{4} B\left[f x g \hat{A}^{4} f x g ; B\left[f x g \hat{A}^{5} f x g \hat{A}^{5} D\right.\right.$; and $B\left[f x g \hat{A}^{6} D \hat{A}^{6} f x g\right.$. M oreover, by associating large negative values to objects outside D [fxg, we must be able to put these three alternatives at the tops of the individual orderings. Therefore, we have a free-triple on the elements of the range $D ; f \times g$, and $B[f x g$. Then the Gibbard-Satterthwaite Theorem implies that there exists i 2 N such that $\mathrm{W}_{\mathrm{x}}^{\mathrm{m}}=\mathrm{W}_{\mathrm{y}}^{\mathrm{m}}=\mathrm{ffigg}$.

Subcase 1.1.2: A ssume $B=D$: Because $M B\left(D\left[f x g ;\right.\right.$;) $\backslash R_{F} G f f x g ; D g$ then $D\left[f x g 2 R_{F}\right.$: Then $M B\left(D[f x g ; f x g) \backslash R_{F}=f f x g ; D[f x g g ;\right.$ $M B\left(D[f x g ; D) \backslash R_{F}=f D ; D\left[f x g g:\right.\right.$ Notice that $M B(D ; ;) \backslash R_{F}=$ fD g: Therefore, using an argument similar to the one already used in the proof of Subcase 1.1.1, we have a free triple on elements of the range $D ; f x g$ and D [fxg, and again, the Gibbard-Satterthwaite Theorem implies that there exists i 2 N such that $\mathrm{W}_{\mathrm{x}}^{\mathrm{m}}=\mathrm{W}_{\mathrm{y}}^{\mathrm{m}}=\mathrm{ffigg}$.
Subcase 1.2: Assume M B (D [fxg; ;) = ffxg; Dg:
Subcase 1.2.1: There exists $C 2 R_{F}$; such that $C \backslash(D[f x g) Z f f x g ; D g:$ Let $\bar{C}=C \backslash D\left[f x g\right.$ and without loss of generality assume $M B{ }^{\mathbb{C}} C^{C} ; C^{\underline{a}} \backslash$ $R_{F}=C$: Since $M B \stackrel{\mathbb{C}}{C} ; f x g \backslash R_{F}=f x g$ and $M B{ }^{\mathbb{C}}{ }^{\mathbb{C}} ; D^{\underline{a}} \backslash R_{F}=f D g$ we have a free triple on elements of the range $D ; f \times g$ and C, implying that there exists i 2 N such that $\mathrm{W}_{\mathrm{x}}^{\mathrm{m}}=\mathrm{W}_{\mathrm{y}}^{\mathrm{m}}=\mathrm{ffigg}$, because y 2 D :
Subcase 1.2.2: For all C $2 R_{F}$; C \ D [fxg $2 \mathrm{ffxg} ; \mathrm{Dg}$:
Cl aim 1 Assume that for all $C 2 R_{F}$ either $f x g \mu C$ or $D \mu C$. Then, there exists $A ; B 2 R_{F}$ and $Z 2 f f x g ; D g$ such that:
(1.1) $M B(A ; B) \backslash R_{F}=f A ; B g$:
(1.2) $Z \mu A \backslash B:$
(1.3) $M B^{i} \bar{A} ; \bar{B}^{\Phi} \backslash R_{F}=\bar{A}$,
where $\bar{A}=(A[(f x g[D)) n Z$ and $\bar{B}=(B[(f x g[D)) n Z$:
Proof of Cl aim 1: Since R_{F} has the property that its minimal cylindric decomposition has a unique section there exits G $2 R_{F}$ and $Z 2$ ffxg;Dg such that $Z \mu G$ and $\bar{G}=\left(G\left[(f x g[D)) n Z \not Z R_{F}\right.\right.$. De.ne $\overline{M B}(H ; Z)={ }^{\mathbb{C}} E 22^{K} j \bar{E}=\left(E\left[(f x g[D)) n Z\right.\right.$ for $E 2 M B(H ; Z) \backslash R_{F}{ }^{\underline{a}}$:

Denote» $Z=x$ if $Z=D$ or » $Z=D$ if $Z=x$: Because $G 2 M B(G ; Z) \backslash$ R_{F}; then $\bar{G} 2 \overline{M B}(G ; Z)$: Since $\bar{G} Z M B^{i} \bar{G} ; » Z^{\Phi} \backslash R_{F}$ then $\overline{M B}(G ; Z)$ * $M B{ }^{i} \bar{G} ; » Z^{\Phi} \backslash R_{F}$. Let B be the element in the range with minimal $L_{1 i}$ distance to Z with the property that $\overline{M B}(B ; Z)^{*} M B^{i} \bar{B} ; » Z^{\Phi} \backslash R_{F}$. This implies that

$$
\begin{equation*}
\overline{M B}(B ; Z) n \bar{B}=M B^{i} \bar{B} ; f » Z g^{\Phi} \backslash R_{F}: \tag{7}
\end{equation*}
$$

Let $A 2 M B(B ; Z) n B$ be such that $M B(A ; B)=f A ; B g$. Condition (7) implies that $\bar{A} 2 R_{F}$ and $M B{ }^{i} \bar{A} ; \bar{B}^{\Phi} \backslash R_{F}=\bar{A}$. This proves the Claim.

Let $A ; B 2 R_{F}$ and $Z 2$ ffxg; g be such that conditions (1.1), (1.2), and (1.3) of Claim 1 hold. Then we can generate, by an additive preference with top on $A\left[f » Z g\right.$, the orderings $A \hat{A}^{1} B \hat{A}^{1} \bar{A}, A \hat{A}^{2} \bar{A} \hat{A}^{2} B$, and $\bar{A} \hat{A}^{3} A \hat{A}^{3} B$, by an additive preference with top on $B[f$ » $z g$, the orderings $B \hat{A}^{4} A \hat{A}^{4} \bar{A}$ and $B \hat{A}^{5} \bar{A} \hat{A}^{5} A$, and by an additive preference with top on \bar{B}, the ordering $\bar{A} \hat{A}^{6} B \hat{A}^{6} A$. Therefore, we have a free-triple on the elements of the range A, B, and \bar{A}, implying that here exists i $2 N$ such that $W_{x}^{m}=W_{y}^{m}=$ ffigg.

Case 2: A ssume that for every $D 2 R_{F}$ such that y 2 D ; there exists $B \in D$ such that $B 2 M B(D ; ;) \backslash R_{F}$:

Let D be such that

$$
\begin{equation*}
M B(D ; f y g) \backslash R_{F}=f D g \tag{8}
\end{equation*}
$$

and let B be such that

$$
\begin{equation*}
\text { M B }(B ; ;) \backslash R_{F}=f B g: \tag{9}
\end{equation*}
$$

If y 2 B then we are back to Case 1. Therefore, assume that y $Z \mathrm{~B}$: For each z 2 B we can apply case 1 and obtain that there exists i 2 N such that $W_{x}^{m}=W_{z}^{m}=$ ffigg.

Subcase 2.1: Assume that fx;yg $2 R_{F}$: We claim that $M B$ (fyg; $\left.B\right) \backslash R_{F}=$ $f B g$. To see it, assume that there exists $C \in B$ such that $C 2 M B(f y g ; B) \backslash$ R_{F}. If y $2 C$ then $C 2 M B$ (D; fyg) $\backslash R_{F}$ contradicting condition (8). If y z C then $C \mu B$, contradicting the fact that $C \in B$ because $M B(B ; ;) \backslash R_{F}=$ $f B g$. Moreover, since $M B(f y g ; D) \backslash R_{F}=f D g$ and $M B$ (fyg; $f x ; y g$) \backslash $R_{F}=f x ; y g$ we can generate all orderings on $D ; B ; f x ; y g$ (with these three subsets on the top); therefore, there exists i 2 N such that $\mathrm{W}_{\mathrm{x}}^{\mathrm{m}}=\mathrm{W}_{\mathrm{y}}^{\mathrm{m}}=$ ffigg:
Subcase 2.2: Assume that $f x ; y g z R_{F}$: First suppose that $M B$ (fyg; B) \} $R_{F}=f B g$. Since $M B(f y g ; D) \backslash R_{F}=f D g$ and $M B(f y g ; f x g) \backslash R_{F}=f x g$ (remember, by condition (8) we know that y $2 R_{F}$) we can generate all orderings on $D ; B$; and $f x g$ (with these three subsets on the top); therefore, there exists i $2 N$ such that $W_{x}^{m}=W_{y}^{m}=$ ffigg. Suppose that $M B(f y g ; B) G$ $f B g$. We claim that $D=B[f y g$ and therefore $M B(f y g ; B)=f B ; D g: T o$ see it, let C 2 M $B(f y g ; B$). If y $2 C$ then, by condition (8), $C=D$ and $C=D$ [fyg. If $y z C$ then $C \mu B$ and, by condition (9), $C=B$. Now, if $M B(f y g ; B) \backslash R_{F}=f B ; D g$ we can also generate all orderings on $D ; B$; and $f x g$ with two preferences: one with top on y (orderings $D \hat{A}^{1} B \hat{A}^{1} f x g$,
$D \hat{A}^{2} f x g \hat{A}^{2} B$, and $f x g \hat{A}^{3} D \hat{A}^{3} B$) and the other with top on ; (orderings $f x g \hat{A}^{4} B \hat{A}^{4} D, B \hat{A}^{5} D \hat{A}^{5} f x g$, and $\left.B \hat{A}^{6} f x g \hat{A}^{6} D\right)$.

Proof of Theorem 1 To prove necessity, let F : $A^{n}!2^{K}$ be a strategyproof social choice function and let $f B_{1} ; \ldots: ; \mathrm{B}_{\mathrm{q}}$ be the minimal cylindric decomposition of R_{F}, which exists by Proposition 3.
(1) A ssume that $x ; y 2 Z_{1} 2 A C\left(B_{p}\right)=f Z_{1} ; Z_{2} g$. Since $f B_{1} ;:: ; B_{q} g$ is minimal we have that $Z_{1} \backslash Z_{2}=$; A ssume that $W_{x}^{m} \in W_{y}^{m}$; that is, there exists I $2 W_{x}^{m}$ such that I $Z W_{y}^{m}$. Consider any P such that $\dot{i}\left(P_{i}\right) \backslash B_{p}=Z_{1}$ for all i 21 and $i\left(P_{j}\right) \backslash B_{p}=Z_{2}$ for all j 2 Nnl . Then, x $2 \mathrm{~F}(\mathrm{P})$ and $y Z F(P)$ contradicting that x and y belong to the same active component of B.
(2) A ssume $x 2 \mathrm{X}$, y 2 Y , and $A C\left(B_{p}\right)=f X ; Y$ g. To obtain a contradiction assume there exists $D 2 W_{x}^{m}$ and $N n D 2 W_{y}^{m}$. It is easy to ..nd P such that $\mathrm{x} ; \mathrm{y} 2 \mathrm{~F}(\mathrm{P})$ contradicting that x and y belong to dixerent active components of B_{p}.
(3) Follows from part (a) of Proposition 4 and Proposition 5.

Su¢ ciency follows from part (b) of Proposition 4, since it is clear that all social choice functions de..ned on each of the sections are onto the active components of the section and strategy-proof.

6 R eferences

ANSWAL, N., CHATTERJI, S., and SEN, A. (1999). "Dictatorial Domains",

Discussion paper 99-05, Indian Statistical Institute.
BARBERÀ, S., GUL, F., and STACCHETTI, E. (1993). "Generalized Me dian Voter Schemes and Committees", J ournal of E conomic Theory, 61,

262-289.
BARBERÀ, S., MASSÓ, J., and NEME, A. (1997). " Voting under Constraints", J ournal of E conomic Theory, 76, 298-321.

BARBERÀ, S., SONNENSCHEIN, H., and ZHOU, L. (1991). "Voting by Committees", Econometrica, 59, 595-609.

BORDER, K. and J ORDAN, J. (1983). "Straightforward Elections, Unanimity and Phantom A gents", The Review of Economic Studies, 50, 153-170.

LE BRETON, M. and SEN, A. (1997). "Separable Preferences, Strategyproofness and Decomposability", forthcoming in Econometrica.

LE BRETON, M. and SEN, A. (1999). "Strategyproof Social Choice Functions and the Decomposability Property: The Case of Weak Orderings", mimeo.

SERIZAWA, S. (1994). "An Impossibility Theorem in Pure Public Goods Economies with Feasibility Constraints: Voting by Committees in NonRectangular Feasible Sets", J apanese E conomic Review, 47, 368-383.

[^0]: ${ }^{x} W$ e are grateful to Dolors Berga for helpful comments. The work of S. Barberà and J. Massó is partially supported by Research Grants PB 98-0870 from the Spanish Ministry of Education and Culture, and 2000SGR-00054 from the Generalitat de Catalunya. The paper was partially written while J ordi M assó was visiting the Department of Economics at the Universidad Carlos III de M adrid (Spain) under a sabbatical fellowship from the Generalitat de Catalunya and the IMASL at the Universidad Nacional de San Luis (A rgentina) under a sabbatical fellowship from the Spanish Ministry of Education and Culture.
 y Departament d'E conomia i d'Història Econòmica and CODE. Universitat Autònoma de Barcelona. 08193, Bellaterra (Barcelona), Spain. E-mails: salvador.barbera@uab.es and jordi.masso@uab.es.
 ${ }^{2}$ Author to whom the editorial communication should be sent.
 ×Instituto de M atemática A plicada. Universidad Nacional de San Luis and CONICET. Ejército de los A ndes 950. 5700, San Luis, A rgentina. E-mail: aneme@unsl.edu.ar.

[^1]: ${ }^{1}$ It is easy to check that the proof of P roposition 2 in Barberà, M assó, and Neme (1997) which covers the case of separable preferences also aplies to the smaller domain of additive preferences.

