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Abstract

While in previous models of pre-play communication players are forced to com-

municate, we investigate what happens if players can choose not to participate in

this cheap talk. Outcomes are predicted by analyzing evolutionary stability in a

population of a priori identical players. If the game following the communication

rewards players who choose the same action then an e±cient outcome is only guar-

anteed when participation in the pre-play communication is voluntary. If however

players aim to coordinate on choosing di®erent actions in the underlying game then

the highest payo® is selected when players are forced to talk to each other before

playing the game.
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1 Introduction

Nash equilibrium outcomes are often ine±cient. Even when Pareto superior Nash equi-

librium outcomes exist, such ine±cient outcomes are di±cult to rule out when they are

associated with strict equilibria. Play is easily locked in as each player is doing the best

he can do given his correct beliefs of what others will do. Informally it is often argued

that players will nonetheless coordinate on achieving the best outcome if this is supported

by an equilibrium which dominates all other outcomes. One justi¯cation for this is that

in many real life applications players will communicate with their opponents before actu-

ally playing the game. During this communication they should then reach consensus to

coordinate on the e±cient outcome.

However, the formal introduction of pre-play communication does not eliminate any

Nash equilibrium outcome, as it is always an equilibrium to speak randomly and ignore

messages and play any equilibrium of the underlying game. In fact, pre-play communi-

cation extends the set of Nash equilibria since players may, for example, deliberately

speak and actually listen and react to messages in order to coordinate actions on one

of two ine±cient equilibria of the underlying game. In recent years it has been argued

that only the e±cient outcomes are evolutionarily stable. For example, Swinkels (1992),

Matsui (1992), Sobel (1993), and Kim and Sobel (1995) show that various notions of evo-

lutionary stability (EES set, CSS, NES, and stochastically stable set, respectively) yield

e±cient outcomes in two person coordination games1 with pre-play communication. All

these notions of evolutionary stability are based on the assumption that players can be

divided into two types or populations. This implies that behavior in the two populations

may be distinct and this is crucial for the result that ine±cient Nash equilibria are not

evolutionarily stable, even if such an equilibrium is symmetric.2

The two population assumption may be appropriate in case of men and women trying

to coordinate on greetings (kisses or handshakes), buyers and sellers settling on a price,

or employers and employees ¯xing a wage. On the other hand, this asymmetry assump-

tion may not be adequate in case of software agents negotiating bandwith on the internet

1A pure coordination game is a symmetric simultaneous move game in which each player has a ¯nite

set of pure strategies; play of the same strategy results in a strictly positive payo®, miscoordination leads

to a payo® of 0:
2Consider a symmetric and ine±cient Nash equilibrium in which all messages are used. First drift

may take population 1 to a state where some message m is not sent. Then drift may take population 2

to a state were the e±cient action would be played after receiving m. Finally, drift may take population

1 to a state where m is sent and the e±cient action is played.
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(Vulkan, 2001), traders setting bid and ask prices in a double auction, or employees deter-

mining wage demands. Moreover, even if several external asymmetries exist (e.g. sex, age,

and eye color), role identi¯cation may in fact be very noisy and it becomes evolutionarily

stable to ignore external signals all together, returning us to a single population model.

(See Binmore and Samuelson, 2001). Furthermore, traditionally evolutionary models and

solution concepts have been considered for symmetric games where players are drawn

from a single population. Examples are Maynard Smith and Price's (1973) Evolutionarily

Stable Strategy, Maynard Smith's (1982) Neutrally Stable Strategy, and Thomas' (1985)

Evolutionarily Stable set. In this paper we focus on single population models.

It turns out that some ine±cient equilibria of coordination games with pre-play com-

munication are evolutionarily stable in the single population model. (See WÄarneryd (1991,

1998), Schlag (1993, 1994)), and Section 3 for an example.) The possible emergence of

ine±cient outcomes and the common belief that typically the e±cient outcome should

result in such simple games even if players are symmetric leads us to believe that some

features of communication have not been modelled adequately.

In the literature cited above, pre-play communication is modelled by assuming that

players meet once before the game to simultaneously send the other a message where

messages have no literal meaning. Choice of action in the later play of the actual game

can then be conditioned on the message sent and received during the communication

round. Notice that players are forced to send a message and to listen to the message

sent by the opponent. (Of course, they may choose not to condition play on messages

received.) The new idea of this paper is to relax this assumption and to give a player the

opportunity not to show up to the round of pre-play communication. We thereby assume

that a player who does not show up to pre-play does not learn whether his opponent went

to the pre-play communication, in particular he does not receive any messages sent by

his opponent. Thus, not to show up is an irreversible commitment to not listen to sent

messages.

The ability to commit by avoiding the communication round has drastic e®ects on

the evolutionary stability of outcomes in the case where the underlying game is one of

coordination. The e±cient outcome becomes the unique evolutionarily stable outcome. 3

Our above result reveals the importance of making pre-play communication voluntary

3Van Damme and Hurkens (1996) already showed how e±ciency can be guaranteed in coordination

games if commitment opportunities are introduced. In their model, players choose when to irreversibly

commit to playing an action with previous commitments of others being observable. While in their model

the way in which payo®s in the game are achieved is changed, commitment is more subdued in our model.
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in coordination games. In the second half of our paper we investigate whether voluntary

communication is also e®ective in games where players want to choose di®erent actions.

For this we choose as the underlying game a task allocation game; the choice of the same

action leads to payo® zero while choice of di®erent actions leads to strictly positive payo®s.

We add a con°ict of interest and assume that payo®s are not identical when players choose

di®erent actions.

In a two population setting this task allocation game is rather like a coordination

game except for the fact that there need not be a single e±cient outcome. Without pre-

play communication the evolutionarily stable equilibria are the strict equilibria and hence

e±ciency is guaranteed. When pre-play communication is added these e±cient outcomes

cease to be evolutionarily stable as the population that receives the lowest payo® will drift

away to using di®erent messages in order to receive the high payo®. 4

The case of the single population model is rather di®erent as the strict asymmetric

equilibria cannot be played. However, pre-play communication allows for asymmetric

play when sent and received message di®er. In any ESS all messages are sent and

players sending di®erent messages coordinate on an asymmetric strict equilibrium while

players sending the same cheap talk message play the symmetric mixed equilibrium of the

task allocation game. While players are always better o® with pre-play communication,

many di®erent ESS outcomes arise that di®er according to how players coordinate after

sending di®erent messages. In the case of mandatory cheap talk very ine±cient ESS arise

whenever positive probability is put on a pure communication strategy that does not react

to messages sent. On the other hand, nearly e±cient ESS exist and have the property that

each player receives each of the two o®-diagonal payo®s approximately half the time after

each message he sends. In the case of voluntary cheap talk again all cheap talk messages

are used in an ESS but at the same time each player will choose not to show up with

positive probability. This implies that minimal ESS payo®s are higher and maximal ESS

payo®s are lower with voluntary communication than with mandatory communication.

The rest of the paper is organized as follows. Section 2 introduces the basic concepts,

then Section 3 presents results on coordination games. Section 4 contains our analysis of

task allocation games with both mandatory and voluntary pre-play communication. Sec-

tion ¯ve contains the conclusion. The Appendix gathers the proofs about task allocation

4Depending on the evolutionary concept one considers, either nothing is evolutionarily stable or there

is a unique evolutionarily stable set that includes all e±cient outcomes, together with some ine±cient

outcomes (see Kim and Sobel (1995) for the latter result). It can be shown that these results for two

population models do not depend on whether cheap talk is mandatory or volunatry.
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games.

2 Evolutionary stability and pre-play communication

In this paper we consider a speci¯c two person game in which we select strategies and

outcomes according to evolutionary stability.

Consider a symmetric ¯nite two person normal form game in which players have N

pure strategies f1; ::;Ng and A is the N £N payo® matrix. Let ¢N¡1 denote the set of

mixed strategies described as probability distributions on the set of pure strategies. Then

the payo® of strategy x when meeting y equals x ¢Ay for x; y 2 ¢N¡1: x is called a Nash
strategy if (x; x) is a Nash equilibrium, i.e., if x ¢Ax ¸ y ¢Ax for all strategies y. x ¢Ax is
called the average payo® induced by x and maxx ¢ Ax is called the e±cient payo®.
Evolutionary stability is formulated for the following environment. Two players are

drawn at random from a large (essentially, in¯nite) population of identical individuals to

play a symmetric game. A Nash strategy x is an Evolutionarily Stable Strategy (ESS)

(Maynard Smith and Price, 1973) if for every strategy y 6= x, y ¢Ax = x ¢Ax implies that
y ¢ Ay < x ¢ Ay. Note that if (x; x) is a quasi-strict Nash equilibrium (i.e. all pure best

replies against x are used with positive probability in x) for every strategy y 6= x with

y ¢ Ax = x ¢ Ax the condition y ¢ Ay < x ¢ Ay is equivalent to (y ¡ x) ¢ A(y ¡ x) < 0. It
follows (see Van Damme (1987, Thm. 9.2.7)) that a quasi-strict Nash strategy x is an

ESS if and only if A is negative de¯nite with respect to the set of pure best replies against

x, B(x), that is, if and only if

z ¢ Az < 0 for all z 2 <N with z 6= 0,
X

zi = 0, and zi = 0 if i =2 B(x).

In some games ESS do not exist and we therefore also consider a setwise stability con-

cept. A subset X of the set of all Nash strategies is an Evolutionarily Stable Set (ES Set,

Thomas, 1985) if it is nonempty and for each x 2 X and each y, y ¢ Ax = x ¢ Ax implies
that either

(i) y ¢ Ay < x ¢ Ay, or
(ii) y ¢ Ay = x ¢ Ay and y 2 X:

Any singleton ES Set contains an ESS and every ESS constitutes an ES Set as a

singleton, so that ES Sets can be seen as the set-valued extension of the ESS concept.

In our analysis we will consider evolutionary stability in speci¯c games that involve

mandatory or voluntary communication. We will consider a symmetric game with strategy
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set K (such as a coordination game or a task allocation game) that we refer to as the

base game and denote by G. Then we extend the game G by adding a round of pre-play
communication, also called cheap talk, before the players play the coordination game.

In the case of mandatory communication the two players simultaneously send each

other a message from a given ¯nite message set M = fm1; : : : ;mng with n ¸ 2: Sending

and receiving messages is costless and only a®ects later play in the game as players

can condition behavior on the message they receive. A pure strategy (of the reduced

normal form game) now consists of a pair (m; f ) where m is the message he sends and

f : M ! K is a decision rule that speci¯es to play action f (mi) after receiving message

mi: This induces a symmetric ¯nite game GM whose associated payo® matrix we denote

by C. Notice that the payo® a pure strategy (m;f ) receives when playing against pure

strategy (m0; f 0) is ef(m0) ¢ A e;f 0(m).
In the case of voluntary communication we now add the possibility that a player can

choose not to show up to the pre-play communication. It will be assumed that after such

a choice, the player cannot observe whether his opponent was willing to communicate

or not. Formally, this is modelled by adding an additional message mH to M (so now

MV =
©
mH ;m1; ::;mn

ª
) and adjusting the decision rule as follows. A pure strategy for a

player is a pair (m; f ) as before with the restriction that m = mH implies f ( ~m) = f (m0)

for all ~m;m0 2 MV . We will also write (mH ; k) instead of (mH ; f) where f(m) = k for

all m 2 MV . The payo® matrix of the induced game will be denoted by W: Notice that

the payo® a pure strategy (m; f) receives when playing against pure strategy (m0; f 0) is

ef(m0) ¢ A e;f 0(m).

3 Pre-play communication before a coordination

game

Assume that the base game G1 is a generic coordination game de¯ned as follows. Players
have action set K = f1; : : : ; kg. Whenever the two players choose di®erent actions then
both players would be better o® if exactly one of the two players chooses the action

used by the other player, i.e., aii > max faij; ajig for all j 6= i: Index actions such that
a11 > a22 > :: > akk: The special case in which aij = 0 for i 6= j is called a pure

coordination game. All pure strategies are evolutionarily stable in the base game.
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3.1 Mandatory communication

Mandatory communication has been analyzed in the literature before. In this subsection

we collect the established results for mandatory communication in coordination games.

It is easily shown that the set of all strategies that yield the e±cient payo® a11 when

played against themselves is an ES Set. In each matching only action 1 is played although

it can be that the opponent would play a di®erent action if he had received a di®erent

message. Moreover, there is no other ES Set in which the same action is played in all

matchings (see Schlag, 1993, 1994). However, as pointed out by Schlag (1993, 1994) and

WÄarneryd (1998), cheap talk does not guarantee e±ciency as there exist ESS with payo®

strictly less than a11. Fix i and j with i < j and i; j 2 K: Consider the mixed strategy xij
where a player mixes uniformly over all messages and plays action j if the messages are

the same and action i otherwise. Then xij is a Nash strategy that puts positive weight

on each of its best replies and xij earns b = (ajj + (n¡ 1) aii) =n < aii against itself.

Suppose that x0 is a best reply to xij that uses a non-uniform probability distribution

over the messages. Then x0 earns less than b when meeting itself because the probability

of two identical messages is more than 1=n. Thus, xij is an ESS that achieves payo®s

bounded below aii irrespective of the number of messages.

3.2 Voluntary communication

We will now consider the possibility that a player can choose not to show up to the

pre-play communication. We will show that voluntary pre-play communication induces

e±ciency:

Proposition 1 Let MV =
©
mH ;m1; : : : ;mn

ª
and let G1 be a coordination game. Then

GMV

1 has a unique ES Set, namely X = fx : x ¢Wx = a11g.

Proof. Note that X is the set of mixed strategies that yield the e±cient payo® against

themselves. X is the set of strategies where a player either not shows up to pre-play

communication and plays action 1 in the game or randomizes between some cheap talk

messages and plays action 1 whenever he receives one of the messages that were sent with

positive probability.

We ¯rst verify that if for some x 2 X, x is contained in some ES Set X 0, then X ½ X 0.

Let m 2 MV be used with positive probability in x. Then the pure strategy x0 that sends

m and plays action 1 (independent of the message received) is a best reply against x:

Since x0 ¢Wx0 = a11 = x ¢Wx0, we have x0 2 X 0. Let x00 2 X and suppose it uses m with
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positive probability. Then x00 ¢Wx0 = a11 = x0 ¢Wx00 and it follows that x00 2 X 0. Let

ex 2 X and suppose it does not send m but that it chooses action 1 whenever it receives

m. Then again ex ¢Wx0 = a11 = x0 ¢Wex and ex 2 X 0. Finally, let ey 2 X behave just like

ex except that it does not choose action 1 after receiving m. Then ey is a best reply to ex
and ex ¢Wey = a11 = ey ¢Wey and ey 2 X 0.

Next we show that X is indeed an ES Set. Suppose mutant y is a best reply against

a strategy x 2 X but y =2 X. We need to show that y ¢Wy < x ¢Wy. The presumptions
about the mutant imply that y ¢Wx = x ¢Wx = a11 and y ¢Wy < a11. Since the game
is a coordination game in which the highest payo® is a11, y ¢Wx = a11 implies that also
x ¢Wy = a11. Hence, it follows that y ¢Wy < a11 = x ¢Wx = y ¢Wx = x ¢Wy.
It remains to be shown that no strategy outside X can be contained in any ES Set.

Let X 0 6= X be an alternative ES Set. Let x 2 X 0 be a strategy that yields less than

the maximal payo® a11 against itself, i.e. x =2 X. Suppose ¯rst that for some i > 1,¡
mH ; i

¢
is used with positive probability in x: Since (mH ; i) yields aii against itself and

at most aii against any other strategy (including x), we must have that (mH ; i) 2 X 0:

Then y = (m1; f) with f (mH) = f (m1) = i and f(m2) = 1 is a best response against

(mH ; i) that yields the same payo® aii against itself. Hence, y 2 X 0. However, y is not

a best reply against itself, that is, y is not a Nash strategy. This yields a contradiction.

Hence, (mH ; i) with i > 1 is not in the support of x 2 X 0. This implies that (mH ; 1) is

not in the support of x either: If it were, any pure communication strategy (mj; f 0) in the

support of x must have f 0(mH) = 1, which would imply that x yields a11 against itself, a

contradiction. Thus, mH is not sent in x and there is no evolutionary selection pressure

against strategies in the support of x reacting to mH by playing action 1. However, such

strategies are not even Nash strategies, since (mH ; 1) does strictly better against them.

2

4 2£ 2 Task allocation games

In this Section we aim to gain some understanding of play in games in which players want

to choose di®erent actions.5 For simplicity we will focus on a 2 £ 2 game G2 with the
following payo® matrix

A =

"
0 b

1 0

#

5All proofs are gathered in te Appendix.
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where b > 1:6

We call G2 a task allocation game since players want to choose di®erent actions or tasks.
For example, two tasks need to be done and it does not matter who does which task as

long as both tasks are done. b > 1 may indicate that task 1 is more pleasant conditional

on the two players coordinating on di®erent tasks. Alternatively, consider two individuals

who are walking side by side come to a door that needs to be opened and only allows for

one to pass at a time. Here action 2 could describe opening the door and passing through

second. Or two cars could simultaneously arrive at a four way stop and action 1 (2) could

describe to drive ¯rst (second).

G2 has the same best reply structure as a Hawk-Dove Game. When there is no pre-play
communication then this game has a unique ESS z¤ :=

¡
b
1+b
; 1
1+b

¢
with associated payo®

z¤ ¢ Az¤ = b
1+b

< 1:

4.1 Mandatory pre-play communication

Consider mandatory pre-play communication as de¯ned in Section 2. Again C denotes

the payo® matrix of the enlarged game. When the number of messages is n, the e±cient

payo® is 1
n
b+1
4
+ n¡1

n
b+1
2
. This payo® is obtained by the strategy bx that sends all messages

with equal probability, plays action 1 (2) if the sent message has lower (higher) index than

the received message, and plays both actions with equal probability if sent and received

message coincide. Clearly, this strategy is not an ESS as it is not even a Nash strategy.

We derive some implications of evolutionary stability and present these ¯rst verbally along

with some intuition.

Consider an element x of an ES Set of the task allocation with mandatory commu-

nication. All messages must be used in x as otherwise there are no counterforces to

prevent arbitrary drift in behavior to an unsent message. In particular, drift could yield

a situation in which sending any unsent message is rewarded with the highest payo® b

in the underlying game. But this contradicts the fact that elements of an ES Set are

Nash strategies. Since (x; x) is a Nash equilibrium it must prescribe a Nash equilibrium

of the task allocation game after each combination of sent and received messages. When

sent and received message coincide then symmetry implies the play of the ESS z¤ of the

6While the expressions for the explicit equilbrium strategies and values are more intricate, the general

results also go through for any 2 £ 2 game with payo® matrix A such that a12 > a21 > a11 = a22:

We conjecture that it would go through as well for any 2 £ 2 game with payo® matrix A such that

a12 > a21 > maxfa11; a22g:
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underlying game. An asymmetric situation arises when sent and received message do not

coincide. In such situations players will coordinate on o® diagonal outcomes as it turns

out that playing z¤ is not evolutionarily stable in this case.7 It follows that all elements

of an ES Set are quasi-strict Nash strategies and ESS themselves.

Lemma 2 Let M = fm1; : : : ;mng and let G2 be a task allocation game.
(i) Each element x of an ES Set of GM2 is an ESS, has each of its best replies in its

support and generates an average payo® in
¡

b
1+b
; 1+b
2

¢
:

(ii) Consider two players matched with each other each playing the same ESS x of GM2 :
Then each message is sent with positive probability, when two di®erent messages are sent

then the players coordinate on an o® diagonal outcome while they play z¤ conditional on

sending the same message.

Next we present some insights regarding to existence of ESS's in task allocation games

under mandatory pre-play communication. First we construct an ine±cient ESS by

demonstrating that the candidate satisfying the conditions of the lemma above that plays

action one (two) whenever received message has lower (resp. higher) index than the sent

message. Notice that, independently of the number of messages, this ESS yields a payo®

below one as each strategy in its support yields the same expected payo® and one of its

strategies sends message m1 and always plays action two. Also note that this ine±cient

ESS uses the same pure strategies as the e±cient strategy does. The di®erence lies mainly

within the probabilities with which each message is sent. Then we construct an ESS where

each pure strategy in its support plays action one (and action two) against approximately

half of the other messages. Such an ESS yields against itself a payo® below but close to

the e±cient payo® when the number of messages is large.

Proposition 3 Let M = fm1; : : : ;mng and let G2 be a task allocation game. Then
(i) GM2 has an ESS x that yields x ¢Cx < 1.
(ii) For every ± > 0 there exists n0 such that if n > n0 then there exists an ESS of GM2

that yields a payo® above (b+ 1)=2¡ ±.

4.2 Voluntary communication before task allocation

Next we add the choice of a player not to show up to pre-play communication. Recall

that bx denotes the e±cient strategy in case of mandatory cheap talk with n messages.
7These coordination results are very much in the spirit of Selten (1980) who considers players condi-

tioning on exogenous signals.
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Let by denote the strategy that behaves just like bx except that it plays action 2 when the
other player does not show up. Let bq = bx ¢ Cbx. The e±cient payo® is now obtained by
the strategy that with probability ¯ = (b+ 1¡ 2bq)=(2b¡ 2bq) does not show up and then
plays action 1 and plays by otherwise.8 Of course, this strategy is not an ESS as it is not
even Nash. The conditions for ESS are very similar to those obtained under mandatory

cheap talk: all cheap talk messages are used and when sent and received cheap talk

message di®er players choose di®erent tasks. We ¯nd that players do not always show up

to communication and that no-shows choose a pure strategy.

Lemma 4 Let MV =
©
mH ;m1; : : : ;mn

ª
and let G2 be a task allocation game.

(i) Each element of an ES Set of GMV

2 is an ESS, has each of its best replies in its

support and generates an average payo® in
¡

b
1+b
; 2b
1+b

¢
where the upper bound is strictly

less than the e±cient payo® 1+b
2
as b > 1:

(ii) Consider two players matched with each other each playing the same ESS x of

GMV

2 : Then each message (including mH) is sent with positive probability. Each time

mH is sent, the same pure action i from G2 is played. Players showing up to pre-play
communication play a best response to action i if their opponent does not show up. x

conditional on not sending mH is an ESS under mandatory communication.

Next we present some results regarding existence and achievable payo®s of ESS. Con-

sider an ESS x of the game with mandatory cheap talk and let q = x ¢ Cx denote the
payo® it induces. Let (y; j) denote the strategy \show up and send messages according

to x, and react to cheap talk messages as x does; play action j if the other player does

not show up." Let Y j denote the set of pure strategies used with positive probability

by (y; j). Let k = 3¡ j denote the other action. Consider now the game reduced to the
pure strategies in Y j [ f(mH ; k)g and let B denote the corresponding part of the payo®

matrix W . This game has a completely mixed symmetric Nash equilibrium yk where yk

conditional on showing up is exactly like (y; k), unless q � 1 and k = 1. This can be seen

by considering the 2£ 2 game with only the strategies
¡
mH ; k

¢
and (y; j). For k = 1 this

yields the payo® matrix "
0 b

1 q

#
;

which clearly has a mixed equilibrium ( b¡q
b+1¡q ;

1
b+1¡q ) since q < b. Note that this equilib-

rium yields b
b+1¡q which is less than q when q > 1 and more than q when q < 1. Also note

8Note that ¯ ! 0 as n ! 1.
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that the probability of not showing up is at least b¡1
b+1

(since q < (b+1)=2), independently

of the number of cheap talk messages. For k = 2 the 2£ 2 game has payo® matrix

"
0 1

b q

#
;

which has a mixed equilibrium ( 1¡q
b+1¡q ;

b
b+1¡q ) whenever q < 1. This equilibrium yields

b
b+1¡q > q. These mixed equilibria induce completely mixed equilibria in the game with

matrix B, and quasi-strict equilibria in GMV

2 , as all best replies are used with positive

probability. Since B has zeros on the diagonal and b and 1 o® the diagonal with Bij = b

if and only if Bji = 1, this matrix is negative de¯nite and the quasi-strict equilibrium yk

is in fact an ESS. Since q 2 ( b
b+1
; b+1
2
) the payo® it obtains is

yk ¢Wyk = b=(b+ 1¡ q) 2 ( b2 + b

b2 + b+ 1
;
2b

b+ 1
):

We summarize our results into a Proposition.

Proposition 5 Let MV =
©
mH ;m1; : : : ;mn

ª
and let G2 be a task allocation game.

(i) GMV

2 has an ESS y that yields y ¢Wy < 1.
(ii) For every ± > 0 there exists n0 such that if n > n0 then there exists an ESS y

0 of

GMV

2 that yields a payo® above (2b)=(b+ 1)¡ ±.
Thus, making pre-play communication voluntary in task allocation games is harmful

to potential maximal payo®s but raises minimal payo®s. When cheap talk messages are

used to achieve a very ine±cient payo® (below 1), the option not to show up for cheap

talk increases the payo®. On the other hand, when cheap talk messages are used to

achieve a high payo® (above 1 ), the option not to show up makes things worse. No-

shows are rewarded by a player willing to communicate with the maximal payo® b and

thus sometimes a player chooses not to show up. However, when both players do not

show up, they will miscoordinate which lowers their total expected payo® as compared to

mandatory communication.

5 Conclusion

We reveal an implicit assumption of the classic cheap talk models, namely that players

are forced to communicate and consider what happens when this is relaxed. Whether
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our model of voluntary communication is superior for reaching e±ciency depends on the

underlying game. In pure coordination games this is true as the ine±cient evolutionarily

stable equilibria are now ruled out. As it is the aim for all to play the best action

it does not matter whether players communicate or not. Of course, the possibility to

communicate must be available in order to make ine±cient outcomes unstable. However,

in task allocation games we get the opposite results as we ¯nd that mandatory cheap talk

is superior. Near e±ciency can only be reached if players coordinate and perform each

task about half the time. This of course requires that all players show up most of the time

to the communication round. However, players have a natural incentive also not to show

up when such an action is rewarded with a payo® higher than the nearly e±cient payo®.

Because such o®ers that make all worse o® can not be ruled out in these evolutionary

models, players have to be exogenously forced to communicate in order to reach e±ciency.

Both for simplicity and for being the traditional approach, we chose the concept of

ESS and its set-wise generalization ES Set to select outcomes.9 Alternatively one might

choose to work directly with a selection dynamic such as the replicator dynamic or a more

general aggregate monotone dynamic. This would tie our results to boundedly rational

\optimal" learning by imitation scenarios as developed by Schlag (1998, 1999). In fact,

under an aggregate monotone dynamic any ESS or ES set will be an asymptotically stable

strategy and an asymptotically stable set (in the de¯nition where the set is attracting and

each point is Lyapunov stable) respectively. While generally asymptotically sets that are

not ES Sets may also exist, for the games analyzed in this paper, it can be veri¯ed (though

beyond the scope of this paper) that this is not the case.

Other mechanisms for reaching e±ciency in coordination games have been suggested.

Van Damme and Hurkens (1996) assume that players can consider when to choose an

action. Committing to an early choice is similar to committing by not attending pre-play

communication and in fact induces e±cient outcomes (see their Table 1b). Sobel (1993)

considered in¯nitely repeated games based on two population models where the ¯rst few

stages of the repeated games are interpreted as cheap messages (see also Balkenborg

(1995)). Notice that the option of publicly burning money before choosing actions will

not guarantee e±ciency when selecting outcomes using ESS (see Ben-Porath and Dekel

(1992)10).

9Recently there has been lots of work with ¯nite population dynamics. However, typically these

dynamics do not select only mixed strategies which we ¯nd the natural solutions to our task allocation

game.
10In fact, notice that after identifying L with U and D with R; that 0:75 ¤ ODU + 0:25 ¤ BUD is an
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Appendix: Proofs for Task-Allocation

Proof of Lemma 2. We ¯rst show that when two di®erent messages are sent then the

players coordinate on an o®-diagonal outcome while they play z¤ conditional on sending

the same message.

Consider an element x of an ES Set with given probabilities of sending each message.

Let ¸i be the probability that message mi is sent. Let xij be the mixed action played in

the task allocation game conditional on sending message mi and receiving message mj:

Evaluating the ES Set conditions at x against deviations from xij for given i; j 2 f1; ::; ng
we obtain the following. If i = j and ¸i > 0 then xii must be a Nash strategy in the base

game G2 and thus, xii = z¤ whenever ¸i > 0: Assume i 6= j and ¸i¸j > 0: Then (xij; xji)
must be a Nash equilibrium of G2. Suppose that (xij; xji) = (z¤; z¤). Let x0 behave just
like x except for the fact that it plays action 1 after sending mi and receiving mj . Then

x0 ¢Cx = x ¢Cx while x0 ¢Cx0 = x ¢Cx0 so that x0 must be part of the ES Set. However, x0 is
not even a Nash strategy. Thus, (xij; xji) 2 f((1; 0) ; (0; 1)) ; ((0; 1) ; (1; 0))g. In particular,
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payo®s are contained in (b= (1 + b) ; (1 + b) =2) : Finally assume that ¸i = 0. For any j;

xji does not in°uence x ¢ Cx and thus there is an element x0 of the ES Set such that x0
behaves like x except that x0ji = 2 for all j: However, x

0 is then not a Nash strategy as

(mi; f ´ 1) is a best response to x0 as it yields b > (1 + b) =2 > x0 ¢Cx0: Thus all messages
are sent with strictly positive probability in x:

The above shows that any strategy in an ES set is in fact a quasi-strict Nash equilibrium

strategy. Such a strategy x is an ESS if and only if C is negative de¯nite with respect to

the support of x. Let B be the 2n£ 2n payo® matrix resulting from the restriction of C
to the pure strategies in the support of x: Then B is a matrix with 0 on the diagonal and

with b or 1 o® the diagonal such that Bij + Bji = b + 1 for all i 6= j. Let z 2 <2nnf0g
with

P
zi = 0. Note that

z ¢Bz = (b+ 1)
X

i 6=j
zizj = ¡(b+ 1)

X

i

z2i < 0:

It then follows that C is negative de¯nite with respect to the support of x, so that x is in

fact an ESS. 2

Proof of Proposition 3.

Part (i).

Consider the following strategy x: Send message mj with probability rj =

b2(j¡1)= (1 + b2 + b4 + ¢ ¢ ¢+ b2n¡2). When the message received is the same as the one
sent, play the mixed equilibrium of the base game

¡
b
1+b
; 1
1+b

¢
. If the message received

has a higher index than the message sent, play action 2. If the message received has a

lower index than the one sent, play action 1. Thus, x puts positive probability on the

pure strategy e to send message mn and then to always play action 1 and on the pure

strategy ~e to send message m1 and then to always play action 2: It is easily veri¯ed that

x is a Nash strategy. For a given message received, players prefer to send a message with

a higher index. On the other hand, the higher the index of the own message, the higher

the probability that the same messages are sent. To make players indi®erent between

the messages we need the probabilities rj described above. This strategy earns (against

itself) q := x ¢ Cx = 1¡ 1= (1 + b+ : : :+ b2n¡1). It is clear that x is quasi-strict. Hence,
x is an ESS if and only if C is negative de¯nite with respect to set of pure strategies in

the support of x. Let us rename the pure strategies e1; : : : ; e2n in the support of x as

follows: e2j¡1 denotes the pure strategy to send message mj and to play action 1 if the

message received has index i � j, and to play action 2 if the message received has an index
i > j. Similarly, e2j denotes the pure strategy to send message mj and to play action
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1 if the message received has index i < j, and to play action 2 if the message received

has an index i ¸ j. Let B denote the 2n £ 2n matrix obtained from C by restricting it

to these strategies. Then Bkk = 0, Bkl = b when k < l and Bkl = 1 when k > l. It is

straightforward to check that

z ¢Bz = ¡(b+ 1)
X

i

z2i < 0

for all z 2 <2nÂf0g with P
i zi = 0. This proves that C is negative de¯nite with respect

to the support of x. hence, x is an ESS.

Part (ii). The actual construction of a near e±cient ESS depends on whether the

number of messages is odd or even. We ¯rst give a near e±cient ESS in the case of an

odd number of messages, as the construction is easier.

Let n = 2k + 1: Consider the strategy x0 that mixes with equal probability over all

messages, playing the ESS of the base game in case of equal messages, playing action

2 if the index of the message received j is in the set fi+ 1; : : : ; i+ kg (mod n) where i
is the index of the message sent and playing action 1 otherwise. Notice that x0 ¢ Cx0 =¡
1¡ 1

n

¢
1+b
2
+ 1

n
b
1+b
: It is clear that x0 is a Nash strategy that is quasi strict. Since the

payo® matrix of C restricted to the support of x has zeros on the diagonal and Bkl = 1

if and only if Blk = b, B is negative de¯nite and x
0 is an ESS.

Let n = 2k: Consider strategies eij (i = 1; : : : ; n and j = 1; 2) de¯ned as follows.

For i = 1; : : : ; k and j = 1; 2 let eij denote the strategy: \Send message mi. Play

action j if mi is received. Play action 1 if message m 2 fmi+1; : : : ;mi+kg is received
and play action 2 otherwise." For i = k + 1; : : : ; 2k and j = 1; 2 let eij denote the

strategy: \Send message mi. Play action j if mi is received. Play action 1 if message

m 2 fmi+1; : : : ;m2kg [ fm1; : : : ;mi¡k¡1g is received and play action 2 otherwise."
The game restricted to those strategies has a completeley mixed equilibrium y. This

equilibrium is an ESS in the original game. Moreover, the payo® it obtains against itself

approaches (b+ 1)=2 as k ! 1.
Proof: It is clear that for any completely mixed equilibrium strategy y we must have

(in order to be indi®erent between ei1 and ei2) that yi1 = byi2. Let ®i = yi1 + yi2 and let

ei =
b
b+1
ei1 +

1
b+1
ei2. For i = 1; : : : ; k ¡ 1 indi®erence between ei and ei+1 is equivalent to

®i(
b

b+ 1
¡ 1) + ®i+1(b¡ b

b+ 1
) + ®i+k+1(1¡ b) = 0:

Indi®erence between ek and ek+1 is equivalent to

®k(
b

b+ 1
¡ 1) + ®k+1(b¡ b

b+ 1
) = 0:
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For i = k + 1; : : : ; 2k ¡ 1 indi®erence between ei and ei+1 is equivalent to

®i(
b

b+ 1
¡ 1) + ®i+1(b¡ b

b+ 1
) + ®i¡k(1¡ b) = 0:

De¯ne ®j = ¯j=
P2k

1 ¯j > 0 where

¯j = 1 + b4k + (b2 ¡ 1)b4k¡4j for j = 1; :::; k;
¯j = 1 + b4k + (1¡ b2)b8k+2¡4j for j = k + 1; :::; 2k:

It is straightforward to check that the indi®erence conditions are met. Hence, there is a

completely mixed strategy y. This is an ESS in the full game (because of the fact that

a matrix with 0 on the diagonal and b and 1 o® the diagonal with Bkl = b , Blk = 1 is

negative de¯nite).

Note that

y ¢ Cy = b

b+ 1

2kX

i=1

®2i +
b+ 1

2
(1¡

2kX

i=1

®2i ):

We need to show that our so constructed equilibrium strategy gives payo® close to e±cient

one. That is accomplished by showing that

2kX

i=1

®2i =

P2k
i=1 ¯

2
i

(
P2k

i=1 ¯i)
2

! 0 as k ! 1:

Note that

¯2k ¸ ¯2k¡1 ¸ : : : ¸ ¯k+1; and

¯1 ¸ ¯2 ¸ : : : ¸ ¯k¡1 ¸ maxf¯k; ¯2kg ¸ ¯k+1:

Hence, P2k
i=1 ¯

2
i

(
P2k

i=1 ¯
2
i )
2

� 2k(max¯i)
2

4k2(min¯i)2
=

¯21
2k¯2k+1

! 0

as
¯1
¯k+1

=
1 + b4k + b4k¡2 ¡ b4k¡4

1 + b4k¡2
! b4 + b2 ¡ 1

b2

2

Proof of Lemma 4.
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Consider behavior after sending or receiving mH : Consider an element x of an ES Set.

Assume that a player sending messagemi and receiving messagemH is indi®erent between

the two actions. Then drift to playing more of action k after sending mi and receiving

mH will not change the payo®s and hence there is an element of the ES Set where players

play the same action k whenever they do not send mH but receive mH :

Consider such an element ex of an ES Set and let y be de¯ned as ex conditional on
not sending mH : Consider now the reduced form of our game where there are only three

strategies
¡
mH ; 1

¢
;

¡
mH ; 2

¢
and y. Then y weakly dominates

¡
mH ; k

¢
as y ¢ Wy > 0:

Consequently,
¡
mH ; k

¢
cannot be contained in the support of x. This means that for

any element of an ES Set, mH is associated with play of a unique action and any player

arriving at the pre-play communication will best respond to the anticipated action of mH

choosers.

The upper bound on the payo®s has already been derived in the text. The rest of the

proof is analogous to that of Lemma 2. 2

Proof of Proposition 5.

Part (i). Let x be an ESS of the mandatory cheap talk game with x ¢ Cx < 1 as

constructed in Proposition 3(i). Then y2 as constructed in the main text is an ESS

yielding less than 1.

Part (ii). Let x be an ESS of the mandatory cheap talk game with x ¢Cx > (b+1)=2¡±
as constructed in Proposition 3(ii). Then y1 as constructed in the main text is an ESS

yielding more than (b+ 1)=2¡ ±.


