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1. Introduction

1.1. Motivation

In very many circumstances, economic agents, even though they may understand

the consequences and probabilities associated with the environment in which they

operate, are unable to describe adequately certain complex contingencies that may

arise. Often, the gap between the complexity of the environment and what the agents

are able to describe ex-ante is non-negligible in the sense that it has a significant

impact on the agents’ expected utilities.

These contingencies have often been called “unforeseen” by economists (Tirole

1999, p. 743). It is clear that contingencies that are unforeseen in the sense intuitively

sketched out above cannot possibly be included in any ex-ante contractual agreement

that the agents may contemplate. The resulting contracts are often termed incomplete

by economists (Grossman and Hart 1986).1

The goal of this paper is to provide a formal model of unforeseen contingencies. We

set forth a contractual environment that displays contingencies that are understood

by the contracting agents in the sense that their consequences and probabilities are

known to them, but where every feasible ex-ante description of such events necessarily

leaves out relevant features that have a non-negligible impact on the parties’ expected

utilities. Although the contracting parties are able to carry out expected utility

computations to evaluate their decisions in reaching a contractual agreement, they

are not able to describe ex-ante some relevant future contingencies. Any attempt to

“fill the gap” by describing in more and more detail the relevant set of states will not

even approximate a viable description of the unforeseen contingencies that the agents

face.

1Of course, the fact that a contingency cannot be included in an ex-ante agreement, does not, in
general, imply that the outcome of the contractual situation cannot depend on such a contingency.
This is because of the possible role of ex-post implementation mechanisms (Maskin and Tirole 1999).
We return to this issue at some length in Section 2 below.
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1.2. The Contractual Environment

The first paragraph of this paper is a statement of fact. However, there is a sense in

which it is also not far from an explanation of what precisely an unforeseen contin-

gency is. A model in which ex-ante descriptions of certain contingencies are necessar-

ily significantly less complex than the actual contractual environment, can provide a

possible formal model of unforeseen contingencies. Of course the value of such model

is commensurate to the appeal of the complex environment that it captures, and to

the appeal of the class of feasible descriptions that is considered.

In this subsection, we provide an informal description of the state space that

embodies the uncertainty that the agents face. We then briefly describe the class of

feasible descriptions of a contingency (event) that we consider formally below. We

postpone a discussion of our modelling choices until Subsection 1.3 that follows.

Purely for the sake of simplicity, we focus on two agents who enter a contractual

relationship whose outcome is affected by the realization of a state of nature. To keep

matters simple, we consider a co-insurance problem in which two risk-averse agents

face a random environment that makes it mutually beneficial for them to draw up a

contract to smooth their consumption across states.

We consider a countable infinity of physical states of nature. These states can

be described by means of a language in which a countable infinity of elementary

statements are possible. Each elementary statement represents a particular feature

that can be either present or not in a given state of nature (the sky can be either

“blue” or “not blue”).

Slightly more formally, we work with a model in which each state of nature sn (n =

1, 2, . . .) is characterized by an infinite list of elementary statements {s1
n, . . . , s

i
n, . . .}

that determine which features are present in the state. Each feature si
n can either be

present (si
n = 1) or not (si

n = 0) in each state.

Real world situations in which the description of each state is by itself potentially

highly complex abound. Just as an example consider a situation in which the object of

economic interest is the overall configuration of active connections in the US telephone
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system at any one point in time.2 In principle, of course, a finite set of features will

suffice to describe the state of nature in this case. However, for all intents and

purposes such description is not feasible.3

An example involving more familiar ingredients is the description of the “output”

of an academic (on which, for instance, a promotion decision might be based). Of

course, the full set of papers that the academic might write will again in principle

be finite. However, for all intents and purposes the features that fully identify the

academic’s output might be taken again as belonging to an infinite set.

For reasons that we will discuss in detail in Subsection 1.3 below, we work with an

“atomless” measure over our countable state space. Roughly speaking, the probability

of a set of states of nature will be set equal to its “limit frequency” within the state

space. Thus, while any finite set of states will be assigned zero probability by our

measure, an infinite set consisting of say “every third state” will receive a probability

of 1/3.

The set of events that we consider “describable” — or equivalently the set of

contingencies that are not unforeseen (for want of a better term foreseen contingencies

from now on) — is not hard to outline intuitively. A feasible description of an event

in our model is an object that must be finite. In other words a foreseen contingency

is an event that can be fully described with reference to a finite set of the constituent

features of each state. A describable event must be entirely pinned down by a finite

set of statements in the language used to describe the states.

The main result of this paper can be paraphrased as follows. In the set up we

have just briefly outlined, it is possible to envisage events that have a well defined

probability (frequency), but that are not describable (are unforeseen) in the sense

above. Any attempt to capture these events using a finite set of statements in the

language used to describe the states will result in the definition of a set of states that

2This might be relevant for instance to determine the fully contingent pricing of a further con-
nection to be activated on demand.

3For instance, routing of trunk calls is determined by solving a finite set of “local” optimization
problems that take into account a particular subset of the system and proceed “as if” the entire
system is in fact an object of infinite size.
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will significantly differ (with positive measure) from the unforeseen contingency that

we were trying to capture in the first place.

To go back to the familiar turf concerning the output of an academic (an assistant

professor this time), consider the event that she gets tenure. That is consider the set

of states of nature that correspond to an academic output sufficient to obtain tenure

in the candidate’s school. It seems reasonable to assert that any finite description of

the assistant professor’s output will not capture exactly the set of states of nature in

which tenure is given. The probability that the candidate gets tenure if she publishes

one paper in a particular journal is neither 1 nor 0. For m large, the probability that

the candidate gets tenure with m published papers may even be 1. However, surely

the probability of getting tenure with m− 1 published papers is in fact not 0.

1.3. Discussion

Our choice of what constitutes a feasible description of an event (a foreseen contin-

gency) is not hard to justify. Once a language to describe the states is given, it seems

natural and compelling to restrict attention to finite “sentences” in the language.

At this point it is useful to notice two features of our definition of foreseen contin-

gencies. The first is that since we are only restricting our descriptions of events to be

finite, our results below are immune to changes in the elementary statements in the

language that, for instance, re-code feature “1” and feature “14” into a single one. A

finite statement in one language will correspond to a finite statement in the new one

and vice-versa. This immunity to re-coding is a relevant feature in a world in which

languages obviously evolve to capture more efficiently concepts that may once have

been considered complex or difficult. A contract concerning the content of an e-mail

message would have required a much larger number of words 10 years ago than it

does now.

The second feature of our definition of a foreseen contingency is that clearly it

yields results that must hold in a world in which each statement in the language is

associated with a cost. In fact any cost function of the number of statements that

guarantees that an infinite number of statements is infinitely costly must yield results



Unforeseen Contingencies 5

that are at least as strong as the ones that we present below. Of course restricting

attention only to finite statements also affords us the luxury of not having to specify

what the (inevitably arbitrary, and possibly sensitive to re-coding) form of the cost

function of longer statements in the language might be.

We are now ready to turn to a discussion of our modelling choices concerning

the state space that we have described above. There are two issues of concern. The

cardinality of the state space, and the atomless probability measure that we place on

it.

The set of possible states of nature is countably infinite in our model. The reason

why an infinity of states is needed to model a complex world is an obvious one. If

the set of states is finite, then only finitely many features of each state can possibly

matter. Any two states can be “separated” by identifying finitely many of their

constituent features. Thus the restriction that a foreseen contingency must use only

a finite number of features would have no bite in a model with finitely many states.4

Intuitively, the reason we work with a countable infinity of states rather than a

continuum is as follows. It turns out to be the case that if we consider a continuum

of states, those contingencies for which expected utility can be computed are also

those that can be handled (at least approximately) by agents who are restricted to

condition on foreseen contingencies alone. Roughly speaking this is because, with a

continuum of states, those ex-ante agreements that can be “integrated” to yield well

defined expected utility values are also those agreements that can be approximated

by a sequence of (step functions) agreements that specify foreseen contingencies alone

(Anderlini and Felli 1994).5

Any “standard” (countably additive) probability measure over a countable set also

poses a problem to model the complex world that we try to capture here. Suppose

that we were to place a countably additive probability measure over our state space.

4Of course this would no longer be true in a model in which “writing costs” are explicitly modelled
(Anderlini and Felli 1999, Battigalli and Maggi 2002). As we mentioned above, modelling such costs
is something we specifically want to avoid here.

5We return to this point in Section 2 below.
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Then we could be sure to find a finite subset of the state space that “approximates”

the entire set of possible states in the sense that whatever is left out has arbitrarily

small probability. Therefore, in this world, the agents could approximate whatever

is best for them by effectively considering a finite problem. But, as we noted above,

once we are dealing with a finite problem, only finitely many features of each state can

possibly matter. Hence, the restriction to conditioning only on foreseen contingencies

would have no bite in this case.

To avoid the “approximation” problem that we have just outlined, we choose to

work with an atomless (finitely additive) probability measure over our countable state

space.

1.4. Overview

The plan of the rest of the paper is as follows. We begin by reviewing some related

literature in Section 2. In Section 3 we set up the co-insurance problem we use as a

backdrop and derive the benchmark efficient allocation that the parties can achieve

in the absence of any constraint. We then define the state space that we described

intuitively above, and the associated probability measure in Section 4. In Section 5 we

proceed to give a formal definition of the notion of a finite contract. In Section 6 we

piece together all these elements and proceed to evaluate the parties’ expected utilities

associated with any finite contract. Section 7 presents our first batch of results: we

show that for some instances of our basic co-insurance problem the only transfers

that the parties would like to specify are contingent on unforeseen contingencies. As

a consequence, the optimal finite contract is to specify no transfers at all: the no-

contract outcome obtains. Sections 8 and 9 generalize the results of Section 7 to the

case in which some of the variability of the environment can be captured by a finite

contract, but a non-negligible amount of uncertainty cannot be captured in this way.

In Section 8 we consider a continuous “smoothed” contracting problem that can be

associated with every instance of our basic co-insurance problem with a countable

state space, and we establish some of its basic properties. In Section 9 we use the

tools developed in Section 8 to characterize the shape of optimal finite contracts in the
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general case for our basic co-insurance problem. Section 9 also includes two leading

examples of how our tools can be used to characterize optimal finite contracts in

specific cases. Section 10 concludes the paper. For ease of exposition, all proofs have

been relegated to the Appendix.6

2. Related Literature

The intuitive notion of a contingency that is “[...]prohibitively difficult to think about

and describe unambiguously in advance” (Grossman and Hart 1986, p. 696) has been

extensively used in the contracting literature. In short, if we take as given that

some contingencies cannot be included in an ex-ante agreement (although their conse-

quences and probabilities are understood by the agents), and therefore that contracts

are incomplete, we can then focus on the institutional arrangements that may reduce

the inevitable inefficiencies that are associated with this lack of detail of the ex-ante

contracts that the parties draw up.

This line of research has proved extremely fertile. Among other things, it has

afforded important insights concerning the boundaries of a firm (Grossman and Hart

1986), the allocation of ownership rights over physical assets (Hart and Moore 1990),

the allocation of authority (Aghion and Tirole 1997) and power (Rajan and Zingales

1998) in organizations and the judicial role of the courts of law (Anderlini, Felli, and

Postlewaite 2001).

Perhaps precisely because of its prominence and usefulness in modelling a wide

range of economic phenomena, the plain assumption that contracting agents may face

some contingencies that are unforeseen has itself been the subject of intense scrutiny

in a number of recent papers. It seems useful to distinguish between two literature

strands here. One that investigates the foundations of the notion of unforeseen con-

tingencies in a contractual set-up, and one that addresses the necessary effects on

the contractual outcomes that can be achieved when unforeseen contingencies are

present.7

6In the numbering of equations, definitions, remarks and so on, a prefix of “A” indicates that the
relevant item is to be found in the Appendix.
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This paper is a contribution to the literature that concerns the foundations of

the notion of an event that has known consequences and probabilities but which is

impossible to include in an ex-ante agreement.8

Anderlini and Felli (1994) and Al-Najjar (1999) are two existing contributions

that are closely related to the results presented here.

In Anderlini and Felli (1994), the contracting parties are restricted to ex-ante

agreements that are finite in a sense that is analogous to the one we postulate in

this paper. However, crucially, in Anderlini and Felli (1994), there is a continuum

of states of nature. One of the results reported there is the so-called approximation

result: in a model with a continuum of states, under general conditions of continuity,

the restriction that only finitely many of the constituent features of a state of nature

can be included in any ex-ante agreement has a negligible impact on the parties’

expected utilities.

The restriction to finite agreements clearly precludes the agents from writing some

possible ex-ante contracts.9 Intuitively, the reason why the impact of this restriction

is in fact negligible lies in the requirement that the parties must be able to compute

the expected utilities that an ex-ante agreement generates. In short, if an ex-ante

agreement yields well defined expected utilities to the contracting parties, then it

must yield them utility levels that are “integrable” as a function of the state of

nature. Since a function that is integrable can always be approximated by a sequence

of step functions, it is now enough to notice that (a “sufficiently rich” set of) step

7It should be noted at this point that the term “unforeseen contingencies” has also been used
in a number of decision-theoretic and epistemic models (see for instance Kreps (1992), and more
recently Dekel, Lipman, and Rustichini (2001) and the survey in Dekel, Lipman, and Rustichini
(1998)). Once again, here we are using the term unforeseen contingency in a restricted sense. Our
contracting parties understand (have common knowledge of) the consequences and probabilities
of unforeseen contingencies. They are simply unable to describe them in advance and hence to
incorporate them in any ex-ante agreement.

8Anderlini and Felli (2000) contains a partial review of the literature that links the notion of
complexity costs to that of contractual incompleteness as generated by unforeseen contingencies.

9A simple counting argument suffices to prove this point. It is easy to see that in the world of
Anderlini and Felli (1994) there are countably many possible finite ex-ante contracts, while there
are uncountably many possible ex-ante agreements.
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functions can be viewed as finite ex-ante agreements.

The key differences between the analysis in Anderlini and Felli (1994) and the

results that we report below is that the approximation result does not hold in the

model we analyze here. Intuitively the stark difference between the two environments

can be traced to the cardinality of the state space (countable versus continuous) and

the nature of the associated probability measure (finitely additive “frequencies” in

this paper, “standard” probability measures over the interval [0, 1] in Anderlini and

Felli (1994)).

In Al-Najjar (1999) the state space is akin to the one used here: it is discrete and

is equipped with finitely additive “frequencies,” as in the analysis below. Using this

apparatus, in a very different set-up from the one analyzed below, Al-Najjar (1999)

addresses the question of whether competitive differences between agents get washed

out by imitation. Roughly speaking, imitation is limited to those features that can

be finitely defined. In a model with a continuum of states it is possible to show

that the performance of a successful agent can be replicated asymptotically as more

and more data become available: a version of the approximation result described

above holds in this case. However, in a complex environment (embodied in a state

space similar to the one used in the present paper) imitation does not eliminate all

competitive advantages, even in the limit when an arbitrarily large amount of data

becomes available.

Two further papers have investigated contractual environments in which the ap-

proximation result described above fails. The analysis in both Anderlini and Felli

(1998) and Krasa and Williams (1999) centers on the observation that the approxima-

tion result in Anderlini and Felli (1994) requires the parties utilities to be continuous

in an appropriate way. The focus of Anderlini and Felli (1998) is to characterize the ef-

fects of discontinuities in the parties’ utilities in a principal-agent model in which only

finite agreements are allowed. Krasa and Williams (1999) focus on a condition that

they label “asymptotic decreasing importance” which, in their model, is necessary

and sufficient for the required continuity conditions, and hence for the approximation

result, to hold. By contrast, in this paper the parties’ utilities are assumed to be
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continuous in outcomes. The fact that the approximation result fails in our model

below is not due to any form of discontinuity in the agents’ preferences.

Using the contribution by Hart and Moore (1988), as their point of departure

Maskin and Tirole (1999) have highlighted a tension between the restrictions that

the agents face in drawing up an ex-ante agreement and their impact on the possible

contractual outcomes ex-post.10 Hart and Moore (1988) analyze an environment in

which there are unforeseen contingencies and all payoffs and their probabilities are

common knowledge between the contracting parties. Maskin and Tirole (1999) argue

that this does not necessarily impose any restrictions on the outcomes (payoffs) that

the contracting parties can achieve ex-post.

In short, Maskin and Tirole (1999) argue that, instead of relying on an infeasi-

ble ex-ante description of all relevant contingencies, the parties can write an ex-ante

contract that commits them to playing an ex-post revelation game. In this revelation

game the players are required to report the payoff relevant information associated

to the realized states or any uniquely defined coding of this information. Provided

that the coding is common knowledge, the game can be designed so that the parties

in equilibrium report the truth, and the allocation implemented by such a mecha-

nism coincides with the allocation implemented by the contract that is optimal in

the absence of any unforeseen contingencies. In other words, an ex-post implementa-

tion mechanism allows the parties to render the realized outcome contingent on the

unforeseen contingencies that at an ex-ante stage the parties could not describe.

This paper provides a formal foundation for the notion of unforeseen contingencies

that fits the environment considered by Hart and Moore (1988) and Maskin and

Tirole (1999). If we are in a world in which the Maskin and Tirole (1999) “critique”

applies, then our contribution can be viewed as providing a rigorous model in which

any efficient outcome must necessarily be implemented ex-post using a message game

(Moore and Repullo 1988, Maskin and Tirole 1999). If, on the other hand, the relevant

environment is one to which the Maskin and Tirole (1999) critique does not apply,

10Tirole (1999) provides an authoritative account of the state of this literature and the debate
that it has generated.



Unforeseen Contingencies 11

then our results below can be viewed as a foundation for contractual agreements that

are genuinely incomplete.

We conclude our discussion of related literature by recalling that the possibility of

renegotiation tempers the benefits to the contracting parties of an ex-post implemen-

tation mechanism. If the contracting parties are allowed to write message-contingent

mechanisms but they cannot commit ex-ante not to renegotiate the agreed mechanism

if an ex-post mutually beneficial opportunity arises, the gain from these mechanisms

may be greatly reduced as the complexity (Segal 1999, Hart and Moore 1999) or

symmetry (Reiche 2001) of the environment increases. In particular Segal (1999) an-

alyzes an environment in which all “states of nature” have an equal probability and

an equal impact on the complexity of the message game the parties optimally commit

to. Hence as the number of states of nature (the number of “widgets” in his case)

increases without bound, the welfare benefits of the message game decrease asymp-

totically to zero. In the limit the parties’ welfare coincides with their welfare in the

absence of any ex-ante contract. The state space that we consider in this paper could

be embedded in a different contracting model to formalize the limit world of Segal

(1999). Although our analysis abstracts from the message contingent mechanism, we

propose an environment with a countable infinity of states of nature in which the

parties cannot approximate the first best by focusing on any finite subset of states.

3. The Contracting problem

For the sake of concreteness, throughout the paper we work using a standard co-

insurance problem as backdrop. Two risk-averse agents, labelled i = 1, 2 face a risk-

sharing problem. The uncertainty in the environment is captured by the realization

of a state of nature, denoted by s; the set of all possible states of nature is denoted by

S. The preferences of agent i are represented by the state contingent utility function

Ui : R× S → R. For simplicity only, we assume that the agents’ utilities depend on

s only according to whether or not s falls in a subset Z of the state space S.

The two agents can agree to a state-contingent monetary transfer t ∈ R, which

by convention represents a payment from 2 to 1. We write the utility of 1 in state s,
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if the transfer is t as

U1(t, s) =

{
V (1 + t) if s ∈ Z
V (t) if s ∈ Z

(1)

where Z denotes the complement of Z in S. Party 2’s utility in state s is instead

written as

U2(t, s) =

{
V (−t) if s ∈ Z
V (1− t) if s ∈ Z

(2)

where V : R → R is a twice differentiable, increasing and strictly concave function

satisfying the Inada conditions

lim
y→−1

V ′(y) = +∞, lim
y→+1

V ′(y) = 0.

Ex-ante, 1 makes a take-it-or-leave-it offer of a contract t : S → R to 2, where

t(s) is the monetary transfer from 2 to 1 if state s is realized. Of course, 1’s take-it-

or-leave-it offer to 2 will have to satisfy a participation constraint for 2 which will be

specified shortly.

The co-insurance problem we have just described is a completely standard one.

Since in (1) and (2) we have specified the agents utilities so that complete insurance

is in fact feasible, in the absence of any additional restrictions, the optimal contract

t∗(·) will involve only two levels of transfers tZ and tZ with

t∗(s) =

{
tZ if s ∈ Z
tZ if s ∈ Z

(3)

and 1 + tZ = tZ so that

U1(t(s), s) = V (1 + tZ) = V (tZ) ∀ s ∈ S (4)

and

U2(t(s), s) = V (−tZ) = V (1− tZ) ∀ s ∈ S (5)

Agent 2’s participation constraint can be easily specified if we define the proba-
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bility p = Pr{s ∈ Z} that s falls in Z. In the absence of any agreed transfers 2’s

expected utility is pV (0)+ (1− p)V (1). Since 2 is the recipient of a take-it-or-leave-it

offer, his participation constraint will bind. Therefore, in addition to (4) and (5) the

optimal contract t∗(·) is characterized by

pV (−tZ) + (1− p)V (1− tZ) = pV (0) + (1− p)V (1) (6)

Clearly, equations (4), (5) and (6) uniquely pin down the values of tZ and tZ , so

that the characterization of the solution to our co-insurance problem in the standard

case is complete.

4. States and Probabilities

We are now ready to proceed with a formal description of our state space S and the

associated probability measure µ.

As we mentioned above, both of these ingredients of our model are not of a

standard form. They are building blocks of a world in which details, no matter how

small, can matter a lot. The inability to capture these details in any finite ex-ante

agreement is at the center of our model of unforeseen contingencies.

4.1. The State Space

We think of there being a countable infinity of physical states of the world S =

{s1, . . . , sn, . . .}.

The parties have a common language to describe each state sn. The language

consists of a countable infinity of elementary statements (characteristics) that can

be true or false about each state of nature sn. Hence the complete description of a

state of nature sn can be thought of as an infinite sequence {s1
n, . . . , s

i
n, . . .} of 0’s and

1’s. Each element of the sequence is simply interpreted as reporting whether the i-th

elementary statement is true (si
n = 1) or false (si

n = 0) about state sn.

The formal definition of our state space simply encapsulates what we have stated

so far about S.
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Definition 1. State Space: The state space S is a countably infinite set {s1, s2,

. . . sn, . . .}. Each sn is in turn an infinite sequence of the type {s1
n, . . . , s

i
n, . . .} with

si
n ∈ {0, 1} for every i and n.

4.2. Probabilities

The second ingredient that is crucial to our model of unforeseen contingencies is the

probability measure over the set of possible states of nature S. Again, our goal is to

model a world in which small details can have a non-negligible impact on the contract

that the parties would like to draw-up and hence on their expected utilities.

Any countably additive probability measure p(·) over a countable set like S cannot

be “atomless” in the following obvious sense. For every ξ > 0 we can find n such

that
∑∞

n=n p(sn) < ξ. It follows that (provided utilities are bounded below) the risk-

sharing problem we described in Section 3 above can be approximated arbitrarily

closely by considering a finite problem that ignores all states of nature sn with n ≥ n.

The expected utility loss from a contract that prescribes an arbitrary sharing of

surplus for all but finitely many states is proportional to ξ.11 Since only finitely

many states matter, it is now clear that only finitely many features of each state can

possibly matter in the contracting problem. A finite set of features will be sufficient

to “distinguish” between any two states in the relevant finite set. Hence, with a

countably additive probability measure over S, the features of each state beyond a

certain level have a negligible impact on the contracting problem. Small details are

negligible in some well defined sense.

Therefore, to proceed in our modelling of unforeseen contingencies in which details

matter we have to abandon the requirement that the probability measure we place

over S is countably additive, and consider a genuinely atomless, finitely additive,

probability measure. Our first step is to define the density of a set of states.

11This is the basic intuition behind the version of the Approximation Result for the case of a
countable state space with a countably additive probability measure reported in Anderlini and Felli
(2000).
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Definition 2. Density: Given any Q ⊆ S, let χQ denote the indicator function of Q

so that χQ(sn) = 1 if sn ∈ Q and χQ(sn) = 0 if sn 6∈ Q. We define the density of Q

to be

µ(Q) = lim
N→∞

1

N

N∑
n=1

χQ(sn) (7)

when the limit in (7) exists. The density is otherwise left undefined. We denote by

D the collection of subsets of S that have a well defined density.

Two points should be noted. First of all the density of a set µ(Q) is its “frequency”

in the standard sense of the word. Thus, for instance, every finite set of states has a

density of zero and the set of all “even numbered” states {s2, s4, s6, . . .} has a density

of 1/2. Secondly, the definition of density we have given (both whether the density

of a given set is defined and the value that it takes if it is defined) depends on the

ordering of the states {s1, . . . , sn, . . .}. This ordering is taken as given and fixed

throughout the paper.12

We conclude this subsection with two observations that will become useful below.

First, given two sets Q′ and Q′′ that have well defined densities and such that

µ(Q′) > 0 and µ(Q′ ∩ Q′′) is also well defined, then we can define the conditional

density µ(Q′′ | Q′) as µ(Q′ ∩Q′′)/µ(Q′).

Secondly, if we let Σ be the set of all subsets of S. Then there exists an extension

to Σ of the density µ in Definition 2 above which is a finitely additive probability

measure. In other words

Remark 1. Finitely Additive Probability Measure: There exists a finitely additive

probability measure µ̃ over (S, Σ) that for every set of states B ⊂ S satisfies µ̃(B) =

µ(B), whenever µ(B) is defined.13

12The class of permutations of the states of nature that leave our results unaffected includes all
finite permutations. We do not attempt a general characterization of such permutations in this
paper.

13See, for example, Rao and Rao (1983), p. 41) for a proof.
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5. Finitely Definable Sets and Finite Contracts

The set of ex-ante contracts that our agents can draw up intuitively coincides with

those agreements that are finite in a sense to be defined shortly in a formal way.

There is a further important issue to clarify at this point. We interpret the words

“ex-ante” to mean that a contract prescribes outcomes (transfers) as a function of the

actual realized state. Any other variables cannot be included in an ex-ante agreement

because they cannot be “verified” by an enforcing authority (a court).14

It is convenient to start our description of what a finite contract is by introducing

the notion of a finitely definable set. Intuitively, these are subsets of S that can be

defined referring only to a finite set of their constituent features.

For each state of nature sn, let si
n ∈ {0, 1} indicate the value of the i-th feature

of sn. Define also

A(i, j) = {sn ∈ S such that si
n = j} (8)

so that A(i, j) is the set of those states of nature that have the i-th feature equal to

j ∈ {0, 1}.

We are now ready to define the set of finitely definable subsets of S.

Definition 3. Finitely Definable Sets: Consider the algebra of subsets of S gener-

ated by the collection of sets of the type A(i, j) defined in (8). Let this algebra be

denoted by A. We refer to any A ∈ A as a finitely definable set.

Elements of A can be obtained by complements and/or finite intersections and/or

finite unions of the sets A(i, j). Hence every element of A can be defined by finitely

many elementary statements about the features of the states of nature that it contains.

14As we remarked above (see our discussion of Maskin and Tirole (1999) in Section 2) the parties
to a contract can attempt to implement the desired outcomes as a function of other (non-verifiable)
variables (e.g. utility levels) committing to an ex-post game. Our focus here is what can be achieved
by means of ex-ante agreements. In a world with unforeseen contingencies as we model here, the
agents may indeed be forced to rely on such ex-post mechanisms to implement certain outcomes.
We come back to this point once again in the concluding section of the paper.
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A suitable definition of a finite contract is now easy to get. The key feature of

a finite contract is that it should specify a set of transfers that is conditional only

on finitely definable sets. For simplicity we also restrict attention to contracts that

specify a finite set of values for the actual transfer t. This is clearly without loss of

generality in our simple co-insurance problem described in Section 3 above.

Definition 4. Finite Contracts: A contract is finite if and only if the transfer rule

t(·) that it prescribes is measurable with respect to A, and takes finitely many values

{t1, . . . , tM}. The set of finite contracts is denoted by F .

Above, we have justified informally the fact that one might want to restrict atten-

tion to finite contracts using the idea that contracts must be finite objects in some

sense. While it is possible to take Definition 4 as a primitive that embodies the notion

of a contract as a finite object, it is important to point out that this requirement can

be supported in a different way (than just taking Definition 4 at face value).

Anderlini and Felli (1994) put forward the idea that it is natural to consider

contracts that yield a value for a sharing rule that is computable by a Turing machine

as a function of the state of nature. The justification for this requirement is a claim

that if a function is computable in a finite number of steps by any imaginable finite

device then it must be computable by a Turing machine.15 Obviously, any finite

contract must be computable. It is also possible to show that the converse holds:

requiring that contracts be finite exhausts the set of all computable contracts. For

reasons of space, we omit any formal analysis of this topic.

6. Computing Expected Utilities

We now have set out all the ingredients of our model. In essence we want to char-

acterize what the agents can achieve using finite contracts when the state space and

associated probability measure are as in Section 4.

15This claim is known in the literature on computable functions as Church’s thesis. See for instance
Cutland (1980), or Rogers (1967).
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As we mentioned already, we want to restrict attention to those cases in which the

agents can base their choices on the expected utility that an ex-ante contract yields.

Since we want the agents to be able to contemplate all possible finite contracts, we

need to ensure that all such contracts can be evaluated in this way. So far, there is

nothing in our framework that guarantees that this is the case. This is because our

Definition 2 above does not, by itself, guarantee that all finitely definable sets have a

well defined density. Our next assumption guarantees that this property holds.

Assumption 1. Densities of Finitely Definable Sets: The state space S is such that

every A ∈ A has a well defined density µ(A). In other words, S is such that A ⊆ D.

Of course, at this point we need to show that a state space S as in Definition 1

that also satisfies Assumption 1 does indeed exist.

Proposition 1. Existence: There exists a state space S as in Definition 1 that sat-

isfies Assumption 1.

The proof of Proposition 1 is a simple consequence of the law of large numbers.

Think of S as a realization of countably many i.i.d. draws from, say, a (countably

additive) density µ̂ over {0, 1}N. It is then sufficient to observe that the law of large

numbers guarantees that, with probability one, the fraction of draws that falls into

any finitely definable set A is in fact well defined and equal to its density µ̂(A). The

set of realizations of these i.i.d. draws that have the properties required to satisfy

Assumption 1 has probability one in the space of realizations of this process. It

then follows that it must be not empty. Hence, setting S to be equal to a “typical”

realization of these i.i.d. draws as described is sufficient to prove the claim.

To evaluate the expected utility accruing to each party from any finite contract

we will also need to refer to the conditional densities of certain events. This is an easy

task if we restrict attention to finitely definable sets. The following remark is stated

without proof since it is a direct consequence of the fact that, by assumption, since A
is an algebra, the intersection of two finitely definable sets is itself finitely definable.
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Remark 2. Well Defined Conditional Densities: Let Assumption 1 hold and let A′

and A′′ be two finitely definable sets with µ(A′) > 0. Then the conditional density

µ(A′′ | A′) is well defined.

In any simple co-insurance problem of the type described in Section 3, the expected

utility that a finite contract yields to the agents is, of course, the result of two maps:

the contract itself, and the way in which the agents’ state-dependent utilities vary

with the state of nature. Therefore, to ensure that the agents’ expected utilities

from any finite contract is well defined we need to further impose a restriction on the

second of these two maps. Clearly, without doing so, it is possible that the agents’

utilities vary with the state of nature in a way that makes it impossible to assign a

frequency to the contract prescribing a certain transfer t conditional on the state of

nature belonging to a particular set on which the agents’ utilities depend.

Notice that, a stronger restriction on the way that the agents’ utilities depend on

the state of nature will make our results below stronger rather than weaker. This is

because our results will show that the agents’ utilities can be made to depend on the

state in such a way that any finite contract is unable to capture (all or a significant

part) of such variability. Clearly, the smaller the class of state-dependent utilities to

which we refer, the stronger the result.

It is useful to start with an abstract definition of what it means for a function

to vary with the state of nature so that its frequencies can be computed, conditional

on any finitely definable set. This, roughly speaking, is the maximum rate of state-

dependence that we will allow for the agents’ utilities.

Consider a function f : S → {f1, . . . , fM} and denote Fi = f−1(fi), for i ∈
{1, . . . ,M} the inverse images of each of the values fi. Then we say that the func-

tion f(·) has well-defined frequencies if it is possible to compute the density of Fi,

conditional on any finitely definable set.

Definition 5. Well-Defined Frequencies: The function f : S → {f1, . . . , fM} has
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well defined frequencies if

Fi ∩ A ∈ D ∀ A ∈ A, ∀i ∈ {1, . . . ,M}

in other words the inverse image sets of f have densities, conditional on any finitely

definable set A (provided of course that µ(A) > 0).

We have now introduced all the elements that will allow us to study a class of

co-insurance problems in which unforeseen contingencies can arise, and in which the

expected utilities for both agents from any finite contract are well defined and can be

computed in a simple way.

The fact that unforeseen contingencies can arise in this model is the subject of

our next section. For the time being, we remark that the expected utilities from any

finite contract are well defined.

Our next statement takes the shape of a definition (rather than a proposition)

since we are in fact defining what the natural meaning of expected utilities is in a

world in which probabilities are equated with the densities of Definition 2 above.

Definition 6. Expected Utilities: Consider the co-insurance problem described in

Section 3. Let a density µ as in Definition 2 be given and let Assumption 1 hold.

Assume further that the function f : S → {0, 1} defined as f(s) = 1 if s ∈ Z and

f(s) = 0 if s ∈ Z has well defined frequencies in the sense of Definition 5. Let also

any finite contract t : S → {t1, . . . , tM} be given. Then the expected utility to agent

1 from contract t is defined as

EU1(t) =
M∑
i=1

V (1 + ti) µ[t−1(ti) ∩ Z] +
M∑
i=1

V (ti) µ[t−1(ti) ∩ Z ] (9)

while 2’s expected utility is

EU2(t) =
M∑
i=1

V (−ti) µ[t−1(ti) ∩ Z] +
M∑
i=1

V (1− ti) µ[t−1(ti) ∩ Z ] (10)
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We conclude this section with an observation. Using the finitely additive probabil-

ity measure µ̃ of Remark 1 that extends µ to all subsets of S it is possible to compute

the density of every set D ∈ Σ. This in turn would allow us to compute the expected

utility of a much broader class of contracts that are not necessarily finite, allowing

also for a much broader class of state-dependent utilities. Of course, to do this we

would need a way to integrate a much broader class of functions f : S → R with

respect to µ̃. Fortunately, there is an elaborate theory of integration with respect

to finitely additive probabilities, which for the most part is analogous to the usual

theory of integration.16

In this paper, we restrict attention to contracts that are measurable with respect

to A. Of course, when we restrict attention to this case, the more general type of

integration that we are referring to gives exactly the expected utilities that we have

defined above.

To simplify matters further, we also restrict attention (without any loss in gen-

erality in our co-insurance setup) to contracts that take a finite number of values.

It should be noted, however, that the restriction to finitely-valued functions, is in-

troduced only for expository simplicity; our analysis is applicable more generally

(although this would require some additional machinery).

7. Unforeseen Contingencies

7.1. Finite Invariance and Fine Variability

In contrast to the cases of a continuous state space and of a countable state space with

a countably additive probability measure, finite contracts cannot always approximate

the first best in the model we have set-up here. The idea is the allocation t∗ that

the agents may be trying to attain could exhibit “fine” variability as a function of

the state of nature. Any finite contract is bound not to capture part (or all) of this

16Dunford and Schwartz (1958) is a classic textbook which provides a unified treatment of inte-
gration for both finite and countably additive measures. A more specialized treatment can be found
in Rao and Rao (1983).
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variability. It is important to stress again that this is in fact possible when the state-

dependence of the agents’ preferences is such that the expected utility of any finite

contract (Definition 6) is well defined.

We begin with two abstract definitions that capture the idea that in the model we

have set up it is possible that a function f : S → {f1, . . . , fM} may “look the same”

if we look at its restriction over any finitely definable set, but at the same time may

vary “finely” with the state of nature. It will be precisely this type of fine variability

that finite contracts cannot capture and hence give rise to unforeseen contingencies

below.

Definition 7. Finite Invariance: Let f : S → R be a function that takes finitely

many distinct values {f1, . . . , fM} ∈ RM and let Fi = f−1(fi) for every i ∈ {1, . . . ,M}.
We say that f displays finite invariance over A (with µ(A) > 0) if for every subset

A′ ⊆ A such that A′ ∈ A and µ(A′) > 0,

µ(Fi|A′) = µ(Fi|A) ∀ i ∈ {1, . . . ,M} (11)

So, f displays finite invariance over A, if the densities of the sets Fi are the same,

conditional on all finitely definable sets that are subsets of A.

In other words, if f displays finite invariance over, say, the whole of S, knowing

that s belongs to any finitely definable subset of S does not help us to “predict”

better the values that f will take. It should be noted at this point that the possibility

that Definition 7 may have a non-trivial content is a feature of the model we have set

up, which does not hold in say a standard model with a continuum of states when

f is a measurable function of s. In fact, it is clear that in this case if f is finitely

invariant over A then it must be (essentially) constant over A. This is not the case

in our model, as we will demonstrate shortly in Proposition 2 below.

The second abstract definition that we state is a property that we label fine

variability: roughly speaking this is a measure of the degree of variability of a finitely-

valued function that displays finite invariance.
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Definition 8. Fine Variability: Let f : S → {f1, . . . , fM} finitely invariant over

A ∈ A with µ(A) > 0 be given.

We say that f(·) displays fine variability of degree v ∈ {1, . . . ,M − 1} over A

if and only if there are v + 1 elements of the range of f that have positive density

conditional on A.

In other words µ(Fi|A) > 0 for v + 1 distinct Fi’s.

The properties that we have just defined may simultaneously hold for a function

that is also well defined in terms of frequencies.

Our next proposition asserts that, for some state spaces S satisfying Assumption

1 even though a function may be well defined in terms of frequencies and display

finite invariance over a finitely definable set A, it may be far from being constant

over A. In other words, f may be well defined in terms of frequencies and display

finite invariance over A, but at the same time exhibit an arbitrary amount of fine

variability over the same set A.

Proposition 2. Finite Invariance and Fine Variability: There exists an S such that

the following is true.

Let v ∈ {1, . . . ,M − 1} and any (p1, . . . , pM) ∈ ∆M−1 be given.17 Let also A ∈ A
be given, with µ(A) > 0.

Then there exists a function f : S → {f1, . . . , fM} with well defined frequencies

that displays both finite invariance and fine variability of degree v over A. Moreover

the density of Fi = f−1(fi) conditional on A is equal to pi for every i = 1, . . . ,M .

The formal proof of Proposition 2 is in the Appendix. Here we sketch the argument

in the simple case in which f takes only two values {f1, f2}, A = S and p1 = p2 = 1/2.

Let S be as in Proposition 1. We can then construct the function f in the following

way. For each given state of nature sn ∈ S we set f(sn) equal to f1 or f2 with equal

17Here, and throughout the rest of the paper the notation ∆M−1 denotes the (M −1)-dimensional
simplex in RM .
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probability, and with i.i.d draws across all the states sn. The law of large numbers

again guarantees that we can take f to be a “typical” realization of this process to

prove the claim.

In fact, in any such typical realization, the law of large numbers ensures that the

event “the function f takes value fi” has a density that is well defined and is equal to

1/2 conditional on any finitely definable subset of states. This clearly guarantees that

f exhibits both finite invariance and fine variability of degree 1, as well as displaying

well defined frequencies, as required.

As we mentioned above, the type of fine variability that is found in Proposition 2

is at the root of our model of unforeseen contingencies. Our next task is to examine

its impact on the simple co-insurance model described in Section 3 above.

7.2. Unforeseen Contingencies and Fine Variability

The possibility that the contract t∗ in the co-insurance problem described in Section

3 above may have the fine variability described in Proposition 2 has far reaching

consequences on what the contracting parties can achieve by means of a finite contract.

In this section, we characterize the impact of fine variability in its simplest form

— namely when it is associated with finite invariance over the entire state space. In

this case, any finite contract will be unable to capture any of the fine variability of t∗.

As a consequence the agents will choose a trivial contract that prescribes a transfer

of t = 0 in every possible state. This is of course the same as saying that no contract

will be drawn up.

Consider the co-insurance problem described in Section 3. For a given S, µ and

Z, let t∗∗ be the optimal finite co-insurance contract, if it exists. In other words, if it

is well defined let t∗∗ be the solution to

max
t

EU1(t)

s.t. EU2(t) ≥ µ(Z)V (0) + µ(Z)V (1)

t ∈ F

(12)
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where EUi(t) are the parties’ expected utilities as in Definition 6 above.

Proposition 3. Optimal Finite Contract I: Consider the co-insurance problem de-

scribed in Section 3. Then there exist an S, µ and Z with µ(Z) ∈ (0, 1) with the

following properties.

1. The characteristic function of Z is well defined in terms of frequencies.

2. The optimal finite contract t∗∗ that solves problem (12) exists unique, up to a set

of states of µ-measure zero.

3. The optimal finite contract t∗∗ prescribes no transfer between the agents in every

state of nature. In other words t∗∗(s) = 0 for every s ∈ S, up to a set of states of

µ-measure zero.

Once again the formal proof of Proposition 3 is presented in the Appendix. Intu-

itively, Proposition 3 is a fairly direct consequence of Propositions 1 and 2 coupled

with the strict concavity (in t) of the agents’ preferences.

Again, we start with an S as in Proposition 1. Recall now that in the co-insurance

problem described in Section 3 above the parties are able to achieve full insurance

by agreeing on a transfer contingent on the event Z. We now choose the event Z
so that its characteristic function exhibits finite invariance and fine variability as in

Proposition 2 over the whole of S. Let pZ and pZ be the densities of Z and Z
respectively, conditional on any A ∈ A.

Notice that by definition of finite invariance the event Z has been defined so that

any attempt by the parties to condition on a finite set of characteristics (the only

feasible ex-ante description available to them) will leave them with a set of states

of which only a fraction pZ actually belongs to Z. This is true whatever finitely

definable subset of S the parties decide to condition their contract on. The fact

that the parties are risk averse now implies that the optimal finite contract should

specify the same transfer from 2 to 1 contingent on any finitely definable subset of

S. Any transfer function that varies across two finitely definable sets of states will



Unforeseen Contingencies 26

be strictly dominated (in terms of the parties expected utility) by a constant transfer

that coincides with the average of the transfer function we started from.

The optimal contract t∗∗ is now immediately obtained from the observation that

the only constant (across all states) transfers from 2 to 1 that are compatible with 2’s

participation constraint are non-positive. Since 1’s expected utility is monotonically

increasing in the constant transfer from 2, the optimal finite contract must clearly

prescribe a transfer of 0 in all states.

The allocation entailed by the optimal finite contract coincides with the no-

contract outcome. Clearly the fact that the two parties to the contract are strictly

risk averse implies that party 1’s expected utility associated with the no-contract

outcome is bounded away from the full-insurance contract t∗ described in Section 3.

In our terminology, the event Z is an unforeseen contingency. The agents under-

stand its probability pZ and use it in their expected utility computations. However,

no matter how finely they attempt to describe it in a finite ex-ante agreement, they

will only be correct a fraction pZ of the time. The extreme prediction that the par-

ties will choose an allocation equivalent to no-contract of course derives from the

particular event Z we constructed above.

8. The Discrete and the Continuous State Spaces

Our next task in this paper is to characterize tightly optimal finite contracts in a

more general case that we have done so far. In particular we would like to “solve” our

basic contracting problem in the more general case in which f — the characteristic

function of Z — exhibits fine variability but not necessarily finite invariance.

We attack this problem directly in Section 9 below. In this section we develop

some of the tools that are needed for this task. For reasons that will be apparent

below, we need to investigate the relationship between a given contracting problem in

our discrete state space S and a closely related problem formulated in a continuous

state space.

Recall that our state space S is a countable set of sequences of 0s and 1s. It
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is clearly a natural question to ask what happens if we consider instead the set

Ŝ ≡ {0, 1}N of all binary sequences.18

To proceed with the translation of our basic contracting problem into one on the

continuous state space Ŝ, we begin with a basic observation: every elementary set of

the form A(i, j), has a natural image in Ŝ ≡ {0, 1}N. Formally, define

Â(i, j) = {s ∈ Ŝ such that si = j} (13)

Clearly, A(i, j) = Â(i, j) ∩ S, so there is a natural one-to-one correspondence

between elementary sets in the two models. Intuitively, one may think of this cor-

respondence as follows: A(i, j) and Â(i, j) are representations in two different state

spaces of the same statement, namely “the set of states where feature i takes value

j.” This statement makes sense independently of the set of physical states. Note also

that the identification of elementary sets in S and Ŝ extends to the algebras they

generate. Thus, the algebra Â generated by all sets of the form Â(i, j), corresponds

in a natural way to the algebra A through the relationship: Â ∈ Â if and only if

Â ∩ S ∈ A.

We now introduce the main idea of this section: every contracting problem in the

discrete model has a unique, natural extension to a contracting problem on Ŝ.

Recall that our basic co-insurance problem (12) is defined by three elements: the

state space S, the measure µ over S and the set Z, or equivalently its characteristic

function f .

Our first result is that we can find a measure µ̂ and a measurable19 function f̂ on

18The space Ŝ is closely related to [0,1], as can be seen by viewing each element of Ŝ as a binary
expansion of a real number. There are two formal differences, however. First, some real numbers
have more than one binary expansion, so two points in Ŝ may correspond to the same real number
in [0,1]. However, this happens for only a countable number of points in [0,1], which is negligible if
one takes a diffuse measure, such as the uniform distribution. Second, the usual metric on [0,1] is
generated by a specific order of the features, while no such order is implied in the definition of Ŝ.

19Here and in the rest of the paper, all measurability statements about functions defined on Ŝ are
with respect to the σ-algebra generated by Â, which is in fact the Borel σ-algebra generated by the
product topology on Ŝ. This is easily seen by noting that Â is a base for the product topology on
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Ŝ which “replicate” µ and f in the following sense.

Proposition 4. Continuum Extension: Let S be a (discrete) state space as in Defi-

nition 1, and assume that S satisfies Assumption 1. Let µ be the (finitely additive)

density (measure) of Definition 2. Let Z ⊆ S be a subset of states in S and assume

that the characteristic function f of Z has well defined frequencies in the sense of

Definition 5.

For every pair (f, µ) as above, there is a unique countably additive measure µ̂ on

Ŝ ≡ {0, 1}N and a measurable function f̂ : Ŝ → IR, unique (up to equivalence), such

that

µ(A) = µ̂(Â) for every A ∈ A (14)

and ∫
A

fdµ =

∫
Â

f̂dµ̂ for every A ∈ A (15)

where for any A ∈ A, Â denotes the corresponding set in the algebra Â as given by

(13) above.

Given any triple (S, f, µ), we call the pair (f̂ , µ̂) its extension to the continuum.20

The proof of Proposition 4 is in the Appendix. Besides being useful to character-

ize optimal finite contracts in the more general case considered in the next section,

Proposition 4 sheds light on the nature of our original model with the discrete state

space S.

On the one hand, equation (14) reassures us that the (finitely additive) measure µ

on the state space S must treat all sets in the algebra A in a way that is “compatible”

Ŝ.
20Notice that we map a triple into a pair simply because the state space in the continuous extension

is always Ŝ.
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with a standard countably additive measure µ̂ on the continuous state space Ŝ. This

part of Proposition 4 is in fact a consequence of Kolmogorov’s existence theorem.

On the other hand, equation (15)tells us that for some measurable function f̂ , for

any finitely definable set A we can think of the density of Z ∩ A as the integral of

f on the corresponding Â. In some sense, f̂ contains all the information about the

behavior of f , that we can ever hope to capture if we can only condition on finitely

definable sets. Not surprisingly then, if f exhibits finite invariance with µ(Z|A) =

pZ for every A ∈ A, it is immediate from (14) and (15) that we would get f̂(s) = pZ

for every s ∈ Ŝ.

This last observation highlights a key insight about the nature of fine variability in

our model with discrete state space S. If f does not display finite invariance it is again

immediate from (15) that the corresponding f̂ would not be constant over Ŝ. So, some

of the variability of f may be meaningfully captured preserving measurability with

respect to the algebra A. This part of the variability of f is what can be incorporated

in the corresponding measurable function f̂ . Working with the discrete state space S
allows for (fine) variability that cannot possibly be captured in this way in a model

with the continuous state space Ŝ.

9. Fine Variability Without Finite Invariance

So far we have considered contracting problems that exhibit both fine variability and

finite invariance. This is clearly a canonical extreme case. Proposition 3 tells us that

in this case the optimal finite contract will simply ignore all the variability embodied

in the contracting problem. Finite invariance guarantees that the contracting problem

exhibits no variability that can be usefully captured by any finite contract.

We now ask the question of what optimal finite contracts look like in a contracting

problem that does not necessarily exhibit finite invariance. Clearly, it can still be the

case that some of the variability of the contracting problem is just “too fine” to

be usefully captured by any finite contract. The question that remains, however, is

whether there is any part of the variability of a contracting problem that will be

reflected in optimal finite contracts. If this is the case, can we characterize what part
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of the variability embodied in a contracting problem will in fact be reflected in an

optimal finite contract?

The answer to the above question stems from Proposition 4 above. To know

what part of the variability of the environment will be reflected in the optimal finite

contract in the general case it is sufficient to consider the continuous extension of

the contracting problem to which Proposition 4 refers. In a contracting problem that

does not exhibit finite invariance it will indeed be the case that the optimal finite

contract will not be “flat” as in Proposition 3. Moreover, the optimal finite contract

in the absence of finite invariance can be tightly characterized. As it turns out, using

the continuous extension of the given contracting problem we will able to state basic

first order conditions which completely characterize the optimal finite contract.

9.1. The Contracting Problem and Optimizing Sequences

The contracting problem that we consider here is still the one described in Section 3,

and defined formally in (12). The novelty now is that, because we are not restricting

attention to the case of finite invariance, we are unable to use the concavity arguments

in the proof of Proposition 3 to characterize the optimal finite contract between the

agents.

Indeed, as will be apparent below, once we allow contracting problems without

finite invariance, an optimal finite contract may or may not exist. The possibility

that an optimal finite contract may not exist is due to a simple “closure” problem.

In other words, the contracting problem may be associated with a sequence of finite

contracts that yield higher and higher expected utility to agent 1 (approaching a

finite supremum of course), while still meeting the participation constraint of agent

2. In these cases our results below characterize tightly the “shape” of any sequence

of feasible finite contracts that approaches agent 1’s supremum of expected utility.

Some extra notation is needed to handle this point formally.

Consider again problem (12) above. If a solution to this problem does not exist,

let V ∗∗
1 be the supremum of agent 1’s expected utility over the set of contracts that
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satisfy both constraints in problem (12).21 We can now proceed with our next formal

definition.

Definition 9. Optimizing Sequence: Consider the contracting problem (12) above.

Consider now a sequence of finite contracts tn ∈ F that satisfies the first constraint

in problem (12) and such that

lim
n→∞

E U1(tn) = V ∗∗
1 (16)

then we say that tn is an optimizing sequence of finite contracts. Below, an optimizing

sequence of finite contracts will typically be denoted by {t∗∗n }∞n=1.

9.2. Characterization of Optimal Finite Contracts

The characterization of optimal finite contracts (or optimizing sequences) that we

provide in Proposition 5 below is obtained via the solution to the continuous extension

to our original co-insurance problem that we defined in Proposition 4 above.

Before we state our proposition and begin providing some intuition for it, it is

useful to define the class of maximization problem that yields the solution to the

continuous extension that we will use below.

Definition 10. Auxiliary Problem: Consider a triple (S, µ, f) defining a co-insuran-

ce problem as in (12). Assume that (S, µ, f) satisfies the hypotheses of Proposition

4 and, as before, denote by (µ̂, f̂) it continuous extension.

Let M be the set of all bounded measurable functions on Ŝ.

The auxiliary problem for the original contracting problem is

21Notice that it is trivial that V ∗∗
1 is finite.
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max
t̂∈M

∫
Ŝ

f̂(s) V [1 + t̂(s)] + [1− f̂(s)] V [t̂(s)] dµ̂

s.t.

∫
Ŝ

f̂(s) V [−t̂(s)] + [1− f̂(s)] V [1− t̂(s)] dµ̂ ≥ µ̂(Z)V (0) + µ̂(Z)V (1)

(17)

Notice that, given the one-to-one correspondence between the sets in the algebras

A and Â that we discussed in Section 8, given a finite contract t : S → R, its

“translation” in the obvious way to the state space Ŝ — typically denoted by t̂ :

Ŝ → R — is unambiguously well defined. In the sequel, when we refer to a contract

t̂ : Ŝ → R as finite, we mean a contract t̂ with a finite range {t1, . . . , tM} and such

that t̂−1(tj) ∈ Â for every j = 1, . . . ,M . Clearly, its “translation” to the state space

S — typically denoted by t : S → R — is also unambiguously well defined.

We are now ready to state our main characterization result.

Proposition 5. Optimal Finite Contract II: Consider any contracting problem as in

(12). Assume that S satisfies Assumption 1 and that the characteristic function of Z
has well defined frequencies as in Definition 5.

Then the following statements hold for the original problem (S, µ, f) and the

associated auxiliary problem (µ̂, f̂).

1. The solution t̂∗∗ to the auxiliary problem exists and is unique up to a set of µ̂-

measure zero of points s ∈ Ŝ.

2. The optimal finite contract t∗∗ for the original problem (S, µ, f) exists, if and only

if there exists a finite contract t̂∗∗ : Ŝ → R that solves the auxiliary problem (µ̂, f̂).

3. If there exists a finite contract t̂∗∗ : Ŝ → R that solves the auxiliary problem (µ̂, f̂),

then its translation t∗∗ : S → R to the state space S is an optimal finite contract for

the original problem (S, µ, f).
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4. Let {t∗∗n }∞n=1 be any optimizing sequence of contracts for the original problem, and

let t̂∗∗ denote the (unique up to equivalence) solution to the auxiliary problem. Then

for every A ∈ A, with µ(A) > 0, and corresponding Â ∈ Â

lim
n→∞

E[U1(t
∗∗
n )|A] =

1

µ̂(Â)

∫
Â

f̂(s) V [1 + t̂∗∗(s)] + [1− f̂(s)] V [t̂∗∗(s)] dµ̂ (18)

That is, whether an optimal finite contract exists or not, the expected payoff along

the sequence {t∗∗n }∞n=1 converges to the expected payoff under t̂∗∗, conditional on any

A ∈ A of positive µ-measure.

As usual, the proof of the proposition is in the Appendix. Intuitively, this result

is a fairly direct consequence of Proposition 4 and of the way we have set up the

auxiliary problem in (17) above. Once we find a solution to the auxiliary problem

t̂∗∗, if the solution to the original problem were not (at least approximately) equal to

it, then we could easily contradict the fact that t̂∗∗ is optimal in the first place.

Our last result of this subsection states that the solution to the auxiliary problem

invoked in Proposition 5 is in turn easy to characterize via the associated first order

conditions.

Proposition 6. First Order Conditions: Let any contracting problem as in (12),

identified by the triple (S, µ, f), be given. Assume that S satisfies Assumption 1

and that the characteristic function of Z has well defined frequencies as in Definition

5.

Then the solution to the associated auxiliary problem (µ̂, f̂) satisfies the following

first order conditions, up to a set of µ̂-measure zero of points s ∈ Ŝ.

f̂(s) V ′[1 + t̂∗∗(s)] + [1− f̂(s)] V ′[t̂∗∗(s)] =

= γ
{

f̂(s) V ′[−t̂∗∗(s)] + [1− f̂(s)] V ′[1− t̂∗∗(s)]
} (19)

where γ is a positive constant.
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Together with the obvious observation that the constraint in (17) must hold with

equality, the first order conditions (19) completely characterize the solution to the

auxiliary problem (17).

The proof of Proposition 6 is a matter of routine, and appears below in the

Appendix to the paper.

9.3. Two Leading Examples

We conclude this section with two examples of how the characterization of optimal

finite contracts (or optimizing sequences) we have just given may be used to solve a

contracting problem with fine variability but without finite invariance.

The first example is easy to describe. We partition the state space S into two

subsets: A0 = A(1, 0) in which Z is more “likely,” and A1 = A(1, 1) in which it is

less likely.22

Therefore, we consider an S that satisfies Assumption 1 and that also satisfies

µ(A0) = q ∈ (0, 1) and µ(A1) = 1− q, together with a Z, and associated f as follows.

For any A ∈ A with A ⊆ A0 we have that µ(Z|A0) = p, while for any A ∈ A with

A ⊆ A1 we have that µ(Z|A1) = p, with 0 < p < p < 1. So, the problem exhibits

finite invariance over A0 and A1 considered separately, but not over the entire state

space S.

Notice that it is immediate that in this case f̂(s) = p for every s ∈ A0, while f̂(s)

= p for every s ∈ A1. Therefore, the first order conditions (19) in this case read

p V ′[1 + t̂∗∗(s)] + [1− p ] V ′[t̂∗∗(s)] =

= γ
{
p V ′[−t̂∗∗(s)] + [1− p ] V ′[1− t̂∗∗(s)]

}
∀ s ∈ A0

(20)

22Therefore, A0 can be thought of as the set of states in which the first feature is equal to 0, while
A1 is the set of states in which it is equal to one. Notice also that, the images Â0 and Â1 in the
continuous state space Ŝ can be, loosely speaking, be thought of as the real intervals [0, 1/2] and
(1/2, 1] respectively.
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and

p V ′[1 + t̂∗∗(s)] + [1− p ] V ′[t̂∗∗(s)] =

= γ
{
p V ′[−t̂∗∗(s)] + [1− p ] V ′[1− t̂∗∗(s)]

}
∀ s ∈ A1

(21)

Using (20), (21) and the concavity of V it is a matter of routine to check that t̂∗∗

must be as follows.

t∗∗(s) =

{
t0 if s ∈ A0

t1 if s ∈ A1

(22)

with t1 < t0.

Intuitively, the two agents face two sources of uncertainty. These are the two

events s ∈ A0 as opposed to s ∈ A1, and s ∈ Z as opposed to s ∈ Z. The first event

is insurable since A0 and A1 are finitely definable sets. Because of the fine variability

that underlies Z, the second cannot be usefully captured by a finite contract, except

for the fact that it is correlated with the first. The optimal co-insurance contract

between the agents then exhibits partial insurance against the event s ∈ A0 as opposed

to s ∈ A1.

Our second leading example involves a co-insurance problem that cannot be par-

titioned (as was the case with our first example above) into subsets within which

finite invariance holds. Typically in this type of problem an optimal finite contract

does not exist. In this case, in the light of Proposition 5, we proceed to characterize

the solution to the auxiliary problem, which we know completely pins down the limit

behavior of any optimizing sequence of finite contracts.

To describe the density µ and the characteristic function f of Z for our second

example, we need to introduce some extra notation first. Let A(s1, . . . , sm) be the set

of states of nature s ∈ S such that the first m digits of each state s are equal to the

finite sequence (s1, . . . , sm), si ∈ {0, 1}. Clearly this set A(s1, . . . , sm) =
⋂m

i=1 A(i, si)

is finitely definable.
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We consider an S that satisfies Assumption 1 and such that

µ(A(s1, . . . , sm)) =
1

2m
(23)

so that in a well defined sense the distribution of states is “uniform” across the state

space S.23

Intuitively, in this example the likelihood of Z is an increasing function of the

state s. Formally, we let

µ(Z|A(s1, . . . , sm)) =

(
m∑

i=1

si

2i
+

1

2m+1

)
(24)

for every A(s1, . . . , sm), every sequence (s1, . . . , sm) and every m.

It is not hard to see that, given (23) and (24), the auxiliary problem in this case

entails a distribution µ̂ that is uniform on {0, 1}N and an f̂(s) = s.24 Therefore the

first order conditions (19) for the auxiliary problem in this case read

s V ′[1 + t̂∗∗(s)] + (1− s) V ′[t̂∗∗(s)] =

= γ
{
s V ′[−t̂∗∗(s)] + (1− s) V ′[1− t̂∗∗(s)]

}
∀ s ∈ Ŝ

(25)

Using the implicit function theorem and the concavity of V (·), the solution to the

auxiliary problem t̂∗∗(s) must satisfy

d

d s
t̂∗∗(s) < 0

In the special case V (x) = x − x2/2 some straightforward calculations yield a

23It is implicit in the way we set things up in this example that we add to each s viewed as a
sequence of 0’s and 1’s its interpretation as a real number in [0, 1] by setting the “value” of each
state as a real number equal to

∑m
i=1 si/2i. See also footnote 24 below.

24 Without grinding through the tedious details notice that if we let s =
∑m

i=1(s
i/2i) and s =∑m

i=1(s
i/2i) + (1/2m) then µ(A(s1, . . . , sm)) =

∫ s

s
ds and µ(Z|A(s1, . . . , sm)) =

∫ s

s
sds.
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closed-form solution for t̂∗∗(s). In this case t̂∗∗(s) is linear and takes the form.25

t̂∗∗(s) =
1

1 + γ
− s

As in our first example, the parties to our coinsurance problem face an environment

in which risk can be decomposed into two parts. An uncertain state, and a likelihood

of Z that is a function of the state itself. While it is impossible for the parties

to capture directly the event s ∈ Z with any finite contract, they find it mutually

advantageous to make their co-insurance contract reflect the fact that as s increases

so does the likelihood that s does in fact belong to Z.

Using Proposition 5 we know that any sequence of finite contracts that approxi-

mates a risk-sharing arrangement that is both feasible and optimal, in the limit will

behave like the increasing function t̂∗∗. Even in the limit, the parties will only achieve

partial co-insurance against the risk they are faced with.

10. Conclusions

We have shown that it is possible to construct a contracting environment in which

some contingencies have the following properties. Their probabilities and conse-

quences are understood by all concerned, and all agents involved use this information

to compute expected utilities arising from any possible finite ex-ante contract. Yet

these contingencies are unforeseen in the sense that any attempt to describe them in

a finite ex-ante agreement must fail. The contracting parties cannot describe ex-ante

these contingencies to any degree that will improve their expected utilities relative to

an agreement that ignores them altogether.

Given that these unforeseen contingencies cannot be taken into account ex-ante,

ours may be taken as a model that formalizes the underpinnings of many contributions

in the incomplete contracting literature. On the other hand, following the critique

put forward by Maskin and Tirole (1999) our model may be one of a world in which

the agents are forced to resort to mechanisms that implement the desired outcome

25Notice that clearly 0 < t̂∗∗(0) = 1/(1 + γ) < 1 and −1 < t̂∗∗(1) = −γ/(1 + γ) < 0.
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ex-post. In our view, whether the former or the latter is the case depends on many

other details of the situation at hand.

Appendix

Proof of Proposition 1: Consider the set Ŝ of infinite sequences of 0s and 1s, Ŝ = {0, 1}N, with

typical element ŝ and let ŝi be the i-th digit of the sequence ŝ. Let also

Â(i, j) = {ŝ ∈ Ŝ such that ŝi = j} (A.1)

Let H denote the set of all infinite sequences {ŝ1, . . . , ŝn, . . .} with ŝn ∈ Ŝ for every n. Let

{s̃n}∞n=1 be an infinite sequence of i.i.d. random variables with (countably additive) distribution µ̂

over Ŝ, and let P be the (product) probability distribution that this yields for H.

For any i and j now consider the event M(i, j) ⊂ H such that lim
N→∞

(1/N)
∑N

n=1 χÂ(i,j)(ŝn) =

µ̂(Â(i, j)). By the law of large numbers, P (M(i, j)) = 1 for every i and j.

Now define,

M =
⋂
i∈N

j∈{0,1}

M(i, j) (A.2)

Clearly, since P (M(i, j)) = 1 for every i and j, and of course P is countably additive, we must also

have P (M) = 1, and therefore M 6= ∅.

It is now sufficient to choose S to be equal to any element of M to prove the claim.

Proof of Proposition 2: Fix (p1, . . . , pM ) as in the statement of the proposition, and assume for

the moment that A = S. Assume that S is as in Proposition 1, and that it has the property that

any finitely definable set B contains a countable infinity of elements. This is clearly possible from

the construction in the proof of Proposition 1.

Define a stochastic process {h̃1, . . . , h̃n, . . .} where each random variable h̃n takes values in

the finite set {f1, . . . , fM}. Let H denote the set of all realizations of this process, and let P be

the probability distribution on H under which {h̃1, . . . , h̃n, . . .} are i.i.d. random variables with

distribution (p1, . . . , pM ). Notice that a realization h ∈ H of this process can be taken to be a

candidate for our f : S → {f1, . . . , fM}, so that the realized value hn of h̃n is the value assigned

to f(sn). We now proceed to show that the claim can be proved by setting f equal to any such

realization of this process in a set of probability 1.
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Let any h ∈ H be given and let B(m,h) be the set of states sn such that (sn ∈ B) and

(f(sn) = hn = fn). The law of large numbers holds for any B ∈ A in the following sense. There is

a set HB ⊂ H with P (HB) = 1 such that h ∈ HB implies that

lim
N→∞

1
N

N∑
n=1

χB(m,h)(sn) = pm µ(B). (A.3)

Since P (HB) = 1, clearly Q =
⋂

B∈AHB also has probability 1. Therefore Q 6= ∅. Now select any

element h = {h1, . . . , hn, . . .} of Q, and set f(sn) = hn for every n. This is our candidate f(·).

Since equation (A.3) holds for any B ∈ A it is obvious that f(·) satisfies finite invariance as in

Definition 7 over the whole of S. Again from the fact that equation (A.3) holds for any B ∈ A, it

is clear that f(·) has well defined frequencies as in Definition 5. Lastly, again from equation (A.3)

it is immediate that for any B ∈ A with µ(B) > 0 we must have that µ(Fi|B) = pi for every

i ∈ {1, . . . ,M}, as required.

The argument for A ⊂ S is completely analogous to the one we have just given. The details are

therefore omitted.

Lemma A.1: Consider problem (12). Let Z be such that its characteristic function

f(s) =

{
1 if s ∈ Z
0 if s ∈ Z

(A.4)

has well-defined frequencies, as in Definition 5. Let also f be finitely invariant over A ∈ A with

µ(A) > 0, as in Definition 7.

Let any finite contract t(·) ∈ F that is feasible in problem (12) be given, and {t1, . . . , tM} be

the range of t(·). Finally, for every i = 1, . . . ,M , let Ti be the inverse image of ti under t(·).

Assume now that t(·) has the following property. There exist an i ∈ {1, . . . ,M} and a j ∈
{1, . . . ,M} such that µ(A ∩ Ti) > 0 and µ(A ∩ Tj) > 0. Then there exists another finite contract

t′(·) ∈ F that is constant over (A∩ Ti) ∪ (A∩ Tj), which is also feasible in problem (12) and which

yields a higher expected utility for agent 1.

Proof: Let t′(·) be the same as t(·) for every sn 6∈ (A ∩ Ti) ∪ (A ∩ Tj), and set

t′(sn) =
µ(Ti)ti + µ(Tj)tj

µ(Ti) + µ(Tj)
∀sn ∈ (A ∩ Ti) ∪ (A ∩ Tj) (A.5)

The claim now follows directly by concavity of V , defining U1 and U2 as in (1) and (2). The

rest of the details are omitted.
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Lemma A.2: Let Z be such that its characteristic function, as in (A.4), has well-defined frequencies

(as in Definition 5) and displays finite invariance (as in Definition 7) over the entire state space S .

Then an optimal finite contract t∗∗ that solves problem (12) exists unique, up to a set of states of

µ-measure zero. Moreover, t∗∗(sn) = 0 for all sn ∈ S, up to a set of states of µ-measure zero.

Proof: Let Z as in the statement of the Lemma be given. Consider now the following maximization

problem.

max
x

V (1 + x) µ(Z) + V (x) µ(Z)

s.t. V (−x) µ(Z) + V (1− x) µ(Z) ≥ V (0)µ(Z) + V (1)µ(Z)

x ∈ R

(A.6)

The strict concavity of V (·) implies that problem (A.6) has a unique solution by completely

standard arguments. Let this solution be denoted by x̃.

The expected utility V (−x) µ(Z) + V (1 − x) µ(Z) is monotonically decreasing in x. Therefore

the constraint in problem (A.6) is satisfied only when x ≤ 0. Since the objective function in problem

(A.6), V (1 + x) µ(Z) + V (x) µ(Z), is monotonically increasing in x we conclude that the unique

solution of problem (A.6) is x̃ = 0.

From Lemma A.1 above it is immediate that a solution to problem (A.6) must yield a solution

to problem (12). Therefore setting t∗∗(sn) = 0 for every sn ∈ S yields the unique (up to a set of

µ-measure zero) solution to problem (12).

Proof of Proposition 3: Let S be as in Proposition 1. Using Proposition 2 we can now choose Z
such that its characteristic function has well defined frequencies, displays finite invariance over the

whole of S and exhibits fine variability of degree 1 over S with µ(Z) ∈ (0, 1). The claim now follows

directly from Lemma A.2.

Lemma A.3: Let Âσ be the σ-algebra generated by the algebra Â. For any finitely additive

measure λ on A there is a unique countably additive measure λ̂ on Âσ such that for every Â ∈ Â
we have that λ̂(Â) = λ(Â ∩ S).

Proof: Let λ̂ be the measure on Â defined by λ̂(Â) = λ(Â ∩ S). Obviously, λ̂ is a finitely additive

probability measure on Â. The lemma claims that λ̂ can be uniquely extended to a countably

additive measure on Âσ. The result follows from an application of the Kolmogorov Existence

Theorem (Billingsley 1979, p. 433). This result guarantees that the extension we seek exists as

required, provided that a consistency condition is satisfied.
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To define consistency formally, for any finite set of indices Y ≡ {y1, . . . , yn} ⊂ N, define ÂY ⊂
Â to be the algebra of subsets of Ŝ generated by the features of a state in positions {y1, . . . , yn}.
Let λ̂Y denote the restriction of λ̂ to ÂY . Consistency requires that for any two sets of indices Y

and Z such that Y ⊂ Z, λ̂Y is the marginal of λ̂Z on ÂY . This is obviously satisfied because the

λ̂Y ’s are obtained as the restrictions of the finitely additive measure λ̂.

Proof of Proposition 4: Obviously, µ satisfies the assumption of Lemma A.3 and so it has a

unique countably additive extension, µ̂ on Âσ.

To prove the second claim, for every A ∈ A let φ(A) ≡ µ(A ∩ Z). Note that φ is well defined

since we are assuming that Z has well defined frequencies. Clearly, φ is a finitely additive measure

on S and so Lemma A.3 applies again, yielding a unique countably additive measure φ̂ on Âσ.

The desired function f̂ in the statement of the proposition (if it exists) must be the Radon-

Nikodym derivative of φ̂ with respect to µ̂. For such derivative to exist, we must show that φ̂ is

absolutely continuous with respect to µ̂. To prove the latter, we use a characterization of absolute

continuity in Shiryayev (1984). Define Âm to be the finite algebra of subsets of Ŝ generated by the

first m features of each state. Clearly Âm ⊂ Âm+1, and
⋃

m Âm generates Âσ. Define

zm(s) ≡ φ̂(Âm(s))
µ̂(Âm(s))

where Âm(s) is the smallest set in Âm containing s (this is well defined since Âm is a finite algebra).

It is known that the family of functions {zm}∞m=1 is a martingale under µ̂ (Shiryayev 1984, p.

493), and thus converge µ̂-almost everywhere to a limiting function z∞ : Ŝ → R, measurable with

respect to Âσ. It is known (Shiryayev 1984, p. 493) that φ̂ is absolutely continuous with respect to

µ̂ if and only if φ̂({s : z∞(s) = ∞}) = 0. To see this, note that since φ̂ agrees with φ on every A ∈
Âm, using the definition of φ we immediately have that

zm(s) ≡ φ̂(Âm(s))
µ̂(Âm(s))

≤ 1

Thus, there is a uniform bound on the values of zm(s) for every s and m, so φ̂({s : z∞(s) =

∞}) = 0 as required.

In summary, φ̂ is countably additive measure on Âσ that is absolutely continuous with respect

to µ̂. It follows, by the Radon-Nikodym theorem that there is a measurable function f̂ (unique up

to equivalence) such that for every Â ∈ Âσ we have that φ̂(Â) =
∫

Â
f̂ dµ̂. This function clearly

satisfies all the required properties and hence the proposition is proved.
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Lemma A.4: A solution to the auxiliary problem (17) exists.

Proof: Let V̂ ∗∗ be the supremum (clearly finite) of the maximand of problem (17) over the feasible

set.

Let {t̂n}∞n=1 be a sequence of bounded measurable functions Ŝ → R such that

lim
n→∞

∫
Ŝ

f̂(s) V [1 + t̂n(s)] + [1− f̂(s)]V [t̂n(s)] dµ̂ = V̂ ∗∗ (A.7)

We first note that, passing to subsequences if necessary, if the sequence {t̂n}∞n=1 converges for

a set of s ∈ Ŝ of µ̂-measure 1, then the limit function, denoted t̂, is measurable. Since {t̂n}∞n=1 is

bounded, the Dominated Convergence Theorem implies that

lim
n→∞

∫
Ŝ

f̂(s)V [1 + t̂n(s)] + [1− f̂(s)]V [t̂n(s)] dµ̂ =

∫
Ŝ

f̂(s)V [1 + t̂(s)] + [1− f̂(s)]V [t̂(s)] dµ̂ = V̂ ∗∗

(A.8)

Hence, in this case there is nothing further to prove. So, it suffices to show that {t̂n}∞n=1 contains a

subsequence that converges in the sense above.

By way of contradiction, suppose that no subsequence of {t̂n}∞n=1 converges for a set of s ∈ Ŝ
of µ̂-measure 1. This implies that {t̂n}∞n=1 does not converge in measure. Hence, we can conclude

that there exists an ε > 0 such that for every positive integer M there are n, m > M such that

µ̂{s ∈ Ŝ such that |t̂n(s)− t̂m(s)| > ε} > ε (A.9)

Now let and n and m as in (A.9) be given. Using our assumptions on V (concavity and Inada) it is

now clear that if, for some λ ∈ (0, 1), we let t̃n,m(s) = λt̂m(s) + (1− λ)t̂n(s) for every s ∈ Ŝ, (A.9)

implies that there exists δ > 0 such that either∫
Ŝ

f̂(s) V [1 + t̃n,m(s)] + [1− f̂(s)]V [t̃n,m(s)] dµ̂ ≥

δ +
∫
Ŝ

f̂(s) V [1 + t̂m(s)] + [1− f̂(s)]V [t̂m(s)] dµ̂

(A.10)
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or∫
Ŝ

f̂(s) V [1 + t̃n,m(s)] + [1− f̂(s)]V [t̃n,m(s)] dµ̂ ≥

δ +
∫
Ŝ

f̂(s) V [1 + t̂n(s)] + [1− f̂(s)]V [t̂n(s)] dµ̂

(A.11)

or both must hold. But since n and m can be chosen arbitrarily large, (A.10) and (A.11) together

with the fact that δ > 0 clearly contradict (A.7).

Lemma A.5: Any solution to the auxiliary problem (17) satisfies the first order conditions specified

in Proposition 6 up to a set of states of µ̂-measure zero, and the reservation expected utility constraint

with equality.

Hence the solution to the auxiliary problem is in fact unique, up to a set of states of µ̂-measure

zero.

Proof: From Lemma A.4, we know that a solution to the auxiliary problem exists. The assertion

that the constraint in problem (17) must be satisfied with equality follows trivially from the state-

by-state monotonicity of the maximand and of the left-hand side of the constraint.

We now proceed by contradiction. Suppose now that there exists a set of states of positive

µ̂-measure over which (19) is violated in some solution t̂∗∗ to problem (17). It follows from the

concavity of V , and from the fact that t̂∗∗ must satisfy the constraint in (17) with equality, that

we can find two sets of states A′ and A′′ in Â with µ̂(A′) > 0 and µ̂(A′′) > 0 which are such that,

whenever s′ ∈ A′ and s′′ ∈ A′′ we have that

f̂(s′) V ′[1 + t̂∗∗(s′)] + [1− f̂(s′)]V ′[t̂∗∗(s′)]

f̂(s′)V ′[−t̂∗∗(s′)] + [1− f̂(s′)]V ′[1− t̂∗∗(s′)]
>

f̂(s′′) V ′[1 + t̂∗∗(s′′)] + [1− f̂(s′′)]V ′[t̂∗∗(s′′)]

f̂(s′′) V ′[−t̂∗∗(s′′)] + [1− f̂(s′′)]V ′[1− t̂∗∗(s′′)]

(A.12)

Next, define a new solution candidate as t̃∗∗ as follows. For every s ∈ Ŝ ∩A
′∩A

′′
let t̃∗∗(s) = t̂∗∗(s).

For every s ∈ A′ set t̃∗∗(s) = t̂∗∗(s) + ε, and for every s ∈ A′′ set t̃∗∗(s) = t̂∗∗(s)− ξ, where ε > 0 is

an arbitrarily small number and ξ is chosen so that∫
Ŝ

f̂(s) V [−t̃∗∗(s)] + [1− f̂(s)]V [1− t̃∗∗(s)] dµ̂ =∫
Ŝ

f̂(s) V [−t̂∗∗(s)] + [1− f̂(s)]V [1− t̂∗∗(s)] dµ̂
(A.13)
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Using (A.12), the fact that ε and ξ are chosen so that (A.13) holds, and the concavity of V , completely

standard arguments can now be used to show that∫
Ŝ

f̂(s)V [1 + t̃∗∗(s)] + [1− f̂(s)]V [t̃∗∗(s)] dµ̂ >∫
Ŝ

f̂(s) V [1 + t̂∗∗(s)] + [1− f̂(s)]V [t̂∗∗(s)] dµ̂
(A.14)

Since (A.14) together with (A.13) clearly contradicts the assumption that t̂∗∗ solves the auxiliary

problem (17) the proof is now complete.

Lemma A.6: Recall that V ∗∗ denotes the supremum of expected utility that agent 1 can achieve

with any finite contract, while V̂ ∗∗ denotes the value of the maximand of the auxiliary problem (17)

under the (unique up to equivalence) optimal contract t̂∗∗. Then V ∗∗ = V̂ ∗∗.

Proof: To prove the claim, note that if V ∗∗ > V̂ ∗∗, then we can find a finite contract t : S → R such

that its translation to the state space Ŝ improves on V̂ ∗∗, immediately contradicting the definition

of V̂ ∗∗. Hence V ∗∗ ≤ V̂ ∗∗

Suppose now that V ∗∗ < V̂ ∗∗. Since the solution to the auxiliary problem t̂∗∗ is measurable, we

can find a finite contract t̂ : Ŝ → R that approximates t̂∗∗ in the sense that

V ∗∗ <

∫
Ŝ

f̂(s) V [1 + t̂(s)] + [1− f̂(s)]V [t̂(s)] dµ̂ < V̂ ∗∗ (A.15)

However, (A.15) immediately implies that the translation to the state space S of the contract

t̂ : Ŝ → R yields an expected utility to agent 1 that exceeds V ∗∗. Since this contradicts directly the

definition of V ∗∗, the proof is now complete.

Proof of Proposition 5: A proof of 1 is not required since the claim is a direct consequence of

Lemmas A.4 and A.5.

To prove the sufficiency claim in 2, let t̂∗∗ : Ŝ → R be a finite contract that solves the auxiliary

problem. Clearly, its translation t∗∗ : S → R to the state space S is feasible in the original problem,

and yields an expected utility to agent 1 equal to V̂ ∗∗. But, by Lemma A.6 we know that V̂ ∗∗ =

V ∗∗, and hence the claim is proved.

To prove the necessity claim in 2 assume that there is no finite contract that solves the auxiliary

problem, and that finite contract t∗∗ : S → R is a solution to the original problem. Clearly, the

translation of t∗∗ : S → R to the state space Ŝ — denoted t̂∗∗ : Ŝ → R — is a finite contract that

is feasible in the auxiliary problem. Moreover, the value of the maximand of the auxiliary problem
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under t̂∗∗ : Ŝ → R is V ∗∗. Hence, by Lemma A.6, the finite contract t̂∗∗ : Ŝ → R solves the auxiliary

problem, establishing a contradiction.

To prove 3, it is sufficient to repeat the argument used in the proof of the sufficiency claim in 2

above.

To prove 4, we proceed by contradiction. Suppose then that for some optimizing sequence

{t∗∗n }∞n=1, some A in A and corresponding Â ∈ Â with µ(A) > 0, equation (18) is violated. Since

the sequence on the left-hand side of (18) is clearly bounded, passing to subsequences if necessary,

we can assume without loss of generality that the limit on the left-hand side of (18) is well defined

and (by the contradiction hypothesis) it is not equal to the right-hand side.

Notice that {t∗∗n }∞n=1 is an optimizing sequence of finite contracts with t∗∗n : S → R for every n.

Now consider a sequence of contracts {t̂n}∞n=1 with each t̂n : Ŝ → R being the translation of t∗∗n to

the state space Ŝ. Using Lemma A.6, we know that equation (A.7) holds for the sequence {t̂n}∞n=1.

Hence, exactly as in the proof of Lemma A.4, we know that there exists a subsequence {t̂nm}∞m=1

that converges pointwise on a set of states s ∈ Ŝ of µ̂-measure 1. Let t̃ : Ŝ → R be the limit of this

subsequence. Clearly, t̃ is measurable.

Next, observe that since {t∗∗n }∞n=1 is an optimizing sequence, using Lemma A.6, and the way

that t̃ has been constructed, we know that it must be a solution to the auxiliary problem.

Now recall that by our contradiction hypothesis there exists an A in A and corresponding Â ∈
Â with µ(A) > 0, such that the limit on left-hand side of (18) is well defined and is different from

the right-hand side. Because of the way we have constructed t̃, it is also clear that

lim
n→∞

E[U1(t∗∗n )|A] =
1

µ̂(Â)

∫
Â

f̂(s)V [1 + t̃(s)] + [1− f̂(s)]V [t̃(s)] dµ̂ (A.16)

Therefore, our contradiction hypothesis leads us to conclude that∫
Â

f̂(s) V [1 + t̃(s)] + [1− f̂(s)]V [t̃(s)] dµ̂ 6=∫
Â

f̂(s) V [1 + t̂∗∗(s)] + [1− f̂(s)]V [t̂∗∗(s)] dµ̂
(A.17)

Hence t̃ and t̂∗∗ differ on a set of positive µ̂-measure. However, since both t̃ and t̂∗∗ are solutions to

the auxiliary problem this directly contradicts Lemma A.5. Hence the proof is now complete.

Proof of Proposition 6: The claim is proved in Lemma A.5.
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