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Abstract

We develop a simple model where agents obtain information about job opportunities through an

explicitly modeled network of social contacts. We show that an improvement in the employment status

of either an agent’s direct or indirect contacts leads to an increase in the agent’s employment probability

and expected wages, in the sense of first order stochastic dominance. A similar effect results from

an increase in the network contacts of an agent. In terms of dynamics and patterns, we show that

employment and wages are positively correlated across time and agents; and that the strength of the

correlation depends on the proximity in the network. Moreover, unemployment exhibits persistence in

the sense of duration dependence: the probability of obtaining a job decreases in the length of time that

an agent has been unemployed. Finally, we examine inequality between two groups. If staying in the

labor market is costly (in opportunity costs, education costs, or skills maintenance) and one group starts

with a worse employment status, then that group’s drop-out rate will be higher and their employment

prospects and wages will be persistently below that of the other group.
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1 Introduction

The importance of social networks in labor markets is pervasive and well-documented. Granovetter (1973,

1995) found that over 50% of jobs in a survey of residents of a Massachusetts town obtained jobs through

social contacts. Earlier work by Rees (1966) found numbers of over 60% in a similar study. Exploration in a

large number of studies documents similar figures for a variety of occupations, skill levels, and socio-economic

backgrounds.

In this paper, we take the role of social networks as a manner of obtaining information about job oppor-

tunities as a given and explore its implications for the dynamics of employment and wages. In particular,

we examine a simple model of the transmission of job information through a network of social contacts.

Each agent is connected to others through a network. Information about jobs arrives randomly to agents.

Agents who are unemployed and directly hear of a job use the information to obtain a job. Agents who are

already employed, depending on whether the job is more attractive than their current job, might keep the

job or else might pass along information to one of their direct acquaintances in the network. Also, in each

period some of the agents who are employed randomly lose their jobs. After documenting some of the basic

characteristics and dynamics of this model, we extend it to analyze the decision of agents to exit the labor

force based on the status of their network. This permits us to compare the dynamics of drop-out rates,

employment status, and wages across groups.

We show that this simple model exhibits a variety of characteristics that are consistent with previous

empirical studies on employment and wages. There are four characteristics that we focus on:

• Employment and wages are both positively correlated across agents within and across periods. This
results from the fact that information is passed to a direct acquaintance when an agent is employed, so

that an agent is more likely to find employment if his or her direct acquaintances are employed. This

is in turn linked to the employment status of indirect acquaintances, and so on.

The clustering of employment and inequality of wages across various races and social groups is well-

studied (see the discussion of inequality below). The correlation across likely social contacts is also

documented in recent work by Topa (2001) who demonstrates geographic correlation in unemployment

across neighborhoods tracts in Chicago, and founds a significantly positive amount of social interactions

across such neighborhoods.

• Unemployment exhibits duration dependence and persistence. That is, when conditioning on a history
of unemployment, the expected probability of obtaining a job and expected future wages decrease

in the length of time that an agent has been unemployed. This happens since a longer history of

unemployment is more likely to come when direct and indirect contacts are unemployed, which lowers

the probability of obtaining information about jobs through the social network.

Such duration dependence is well-documented in the empirical literature (e.g., see Schweitzer and Smith

(1974), Heckman and Borjas (1980), Flinn and Heckman (1982), and Lynch (1989)).1 For instance,

Lynch (1989) finds average probabilities of finding employment on the order of .30 after one week of

unemployment, .08 after eight weeks of unemployment and .02 after a year of unemployment.

1Heckman and Borjas (1980) (and some of the literature that followed) distinguish between duration dependence based on

endogenous economic factors such as skills deterioration, and that based on statistical aspects such as unobserved heterogeneity.

We come back to discuss how our model fits into this view.
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• A poor social environment reinforces the incentives to withdraw from the labor force. If staying in the
labor market is costly (in terms of opportunity costs, education costs, skills maintenance, etc.) and

we compare two networks that are identical except that one network starts with a worse employment

status than the other, then the first network’s drop-out rate will be higher.

The fact that participation in the labor force is different across groups such as whites and blacks is

also well-documented. For instance, Card and Krueger (1992) quote a difference in drop-out rates of

2.5 to 3 times for blacks compared to whites. Chandra (2000) provides a breakdown of differences in

participation rates by education level and other characteristics, and finds ratios of a similar magnitude.

• Higher drop-out rates are consistent with persistent employment and wage inequality. Comparing
across networks, if the initial starting state of the network is worse for one group, then the short-run

as well as the long-run steady state distributions of employment and wages will be worse (in the sense

of first order stochastic dominance) for that group. Thus, inequality in wages and employment will

persist. This inequality results from the higher drop-out rate, as those remaining in the labor force end

up with a network with fewer direct and indirect acquaintances, and thus worse prospects for obtaining

job information through their social network.

The persistent inequality in wages between whites and blacks is one of the most extensively studied

areas in labor economics. Smith and Welch (1989) provide statistics breaking the gap down a variety

of dimensions and across time from census data. The gap varies from 25% to 40%, and can only be

partly explained by differences in skill levels, quality of education, and other factors (e.g., see Card

and Krueger (1992), Chandra (2000), Heckman, Lyons and Todd (2000)).

As mentioned above, the importance of social networks in labor markets has been recognized. However,

while there are models that have taken transmission of job information seriously (e.g., Boorman (1975),

Montgomery (1991, 1992, 1994), Calvó-Armengol (2000), Arrow and Borzekowski (2001), Topa (2001)),

this is the first to study explicit networks and the resulting implications for the pattern and dynamics of

employment, wages and inequality across races.

Also, for each of the stylized facts above (with the exception of the clustering) there are other models and

explanations that have been offered in the literature. There are several things to say about the contribution

of the networks model. First, the range of implications that it provides is quite wide, while most models are

aimed at specific aspects of the labor market. Second, many of the predictions it makes are complementary

to previous models. For instance, one (among a number of) explanations that has been offered for duration

dependence is unobserved heterogeneity.2 A simple variant of unobserved heterogeneity is that agents have

idiosyncratic features that are relevant to their attractiveness as an employee and are unobservable to the

econometrician but observed by employers. With such idiosyncratic features some agents will be quickly

re-employed while others will have longer spells of unemployment, and so the duration dependence is due

simply to the unobserved feature of the worker. While the network model also predicts duration dependence,

we find that over the lifetime of a single worker, the worker may have different likelihoods (which are

serially correlated) of reemployment depending on the current state of their surrounding network. Thirdly,

2Theoretical models predicting duration dependence, though, are scarce. In Blanchard and Diamond (1994), long unem-

ployment spells reduce the reemployment probability through a stigma effect that induces firms to hire applicants with lower

unemployment durations (See also Vishwanath (1989) for a model with stigma effect). In Pissarides (1992), duration dependence

arises as a consequence of a decline in worker skills during the unemployment spell.
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it predicts that controlling for the state of the network should help explain the duration dependence. In

particular, it offers an explanation for why workers of a particular type in a particular location (assuming

networks correlate with location) might experience different employment characteristics than the same types

of workers in another location, all other variables held constant. So for example, variables such as location

that capture network effects should interact with other worker characteristic variables which would not be

predicted by other models.3 Fourth, it provides new angles on policy predictions compared to other labor

market models. For instance, in the case of inequality in employment and wages, there is a predicted synergy

across the network. Improving the status of a given agent’s network, improves the outlook for that agent.

This provides a sort of local increasing returns to subsidizing education, and other policies like affirmative

action.4 One implication is that it may be more efficient to concentrate subsidies or programs so that many

agents who are interconnected in a network are affected, rather than spreading resources more broadly so

that only a small fraction of agents in any part of a network are affected.

2 A Model of a Network of Labor Market Contacts

We emphasize at this point that the basic model we develop is a purely mechanical one. That is, there is

no overtly strategic behavior on the part of agents. The network structure is fixed in place and information

flows through it. We simply characterize the resulting stochastic process on employment and wages and

discuss how this depends on initial conditions and the structure of the network. This does not mean that the

model is inconsistent with rational behavior. Every part of the model can be rationalized, and we discuss the

ideas behind each unmodelled feature of the network. We keep the model relatively simple and stark as we

wish to emphasize how the network of information transmission alone can result in interesting dynamics and

patterns in employment and wages. Later in the paper we come back to introduce some strategic choices:

we introduce participation decisions on the part of agents and discuss an equilibrium.

N = {1, . . . , n} is a set of agents.

2.1 Employment Status

Time evolves in discrete periods, t ∈ {0, 1, 2, . . .}.
There are several things that we keep track of over time.

The first is the employment status of agents. At time t, an agent i ∈ N can either be employed (state

sit = 1) or unemployed (state sit = 0). So, the vector st ∈ {0, 1}n represents a realization of the employment
status at time t.

We follow the convention of representing random variables by capitol letters and realizations by small let-

ters. Thus, the sequence of random variables {S0, S1, S2, . . .} comprise the stochastic process of employment
status.

3We thank Eddie Lazear for pointing this out to us.
4In our model, improving the status of one agent has positive external effects on other agents’ expected future employment

and wage status. There are, of course, other factors that might counterbalance this sort of welfare improvement: for instance,

the difficulty that an agent might have adapting to new circumstances under affirmative action as discussed by Akerlof (1997).

Of course, our model is not meant to be comprehensive and so we are simply pointing out some implications of a network

model.
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2.2 Wage Status

In addition to employment status, we track wages over time.

The random variable Wit keeps track of the wage of agent i at time t. We normalize wages to be 0 if

i is unemployed (Sit = 0), and more generally Wit takes on values in IR+. The vector wt = (w1t, . . . , wnt)

represents a realization of the wage levels a time t.

We allow (but do not require) the wage of an agent to depend on how many job opportunities they have

come across. We now discuss how employment and wages evolve over time.

2.3 Labor Market Turnover

The labor market we consider is subject to turnover which proceeds repeatedly through two phases as follows.

• In one phase, each currently employed worker i is fired with probability bi ∈ (0, 1), which is referred
as the breakup rate.

• In the other phase, each agent i is directly informed about at most one job vacancy with some proba-
bility (which may depend on the current state). If an agent directly hears about a job vacancy, then

he or she either keeps that information or passes the job on to one of their direct acquaintances in

the network. Probabilities pij(w) keep track of the probability that i directly hears about a job and

then passes that information on to agent j, given the last period wage status.5 We discuss these pij

functions in more detail below.

As these phases occur repeatedly over time, it is irrelevant whether we index periods so that first the

breakup phase occurs and then the hiring phase occurs, or vice-versa. It turns out to be more convenient to

consider the hiring phase first and then the breakup phase. Thus, our convention is that St and Wt are the

employment and wage status that occurs at the end of period t. So, in the beginning of period t the status is

described by St−1,Wt−1. Next, agents hear about jobs, possibly transfer that information, and hiring takes
place. This results in a new employment and wage pattern. Then, the breakup phase takes place and the

period ends with an employment and wage status St,Wt.

2.4 Specifics of Information Transmission

There are many possible variations to consider on how information is transmitted and how information

affects wages. There are two important dimensions that we consider.

One dimension to consider is whether or not an already employed agent can make use him or herself of

information of a new job. In the case of completely homogeneous jobs (where jobs are fully equivalent and

interchangeable, as in Example 1 below), information about a new opening is of no use to an employed agent,

and so it will be passed on. In the case of heterogeneous jobs (where jobs may have different characteristics

and values to different agents), the new job may be an improvement for an already employed agent and so

that agent might wish to switch jobs, and so the information about the new job is not passed on. However,

there may also be a probability that the new information is not valuable to the agent (e.g., the new job is

worse than their current position) and so they wish to pass it on. Generally, the higher the current wage

5Note that it is possible that an agent hears about more than one job vacancy in a given period, as the agent may hear

about a job directly and also may indirectly hear about jobs from one or more acquaintances.
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of the agent, the higher the probability that the current job will not generate an improving offer and so the

agent will pass on information about a job that he or she hears of directly.

Another dimension for consideration is to whom an employed agent passes job information. The agent

may pass the job information on only to unemployed acquaintances, or may instead select among all of his

or her acquaintances in passing on the job information. In the case where jobs are all homogeneous, it makes

sense for the agent to pass the job information on to an unemployed acquaintance. However, in the case

where jobs are heterogeneous, it may make still sense for the agent to pass the job on to another agent

who is already employed. It is also possible that the agent passes the job information to more than one

acquaintance, and even that they indirectly pass it on to others. We discuss this in more detail below.

We begin with a simple example, as it helps to illustrate the basic structure before discussing the more

general model.

Example 1 Unskilled Labor: Homogeneous Job Networks

Homogeneous job networks are network economies where jobs are all identical (e.g., unskilled labor) and

wages depend only on whether a worker is employed or not. So, there is a single value w > 0 such that wages

are 0 if an agent is unemployed, and w, otherwise, regardless of the number of offers received in the past or

past wages. So here, the variables St and Wt are equivalent in terms of the information that they convey.

Agents keep any news regarding job openings if they are unemployed and otherwise pass news to an

unemployed acquaintance. In choosing who to pass the information to, they may favor some acquaintances

(e.g., are more likely to pass information to an unemployed relative than an unemployed friend), but they

do so in a consistent manner.

In particular, acquaintances are described by the network g, which is an n×n real valued matrix, where
gij > 0 if i is linked to j and gij = 0 if i is not linked to j. The interpretation is that if gij > 0, then

when i hears about a job opening, then i may tell j about the job. As formulated, the network may be

directed and may also include intensities of relationships. In some cases of interest, one should expect such

social relationships to be reciprocal. Such non-directed networks have gij > 0 if and only if gji > 0. Let

U(w) = {j|wj = 0} denote the unemployed workers at state w.
The passing of information from i to j is described by the following probability pij(w)

pij(w) =


ai(w) if j = i and wi = 0,
ai(w)gijP
k∈U(w) gik

if wi > 0, wj = 0, and

0 otherwise,

where ai(w) is the probability that agent i directly hears about a job in the given period as a function of

last period’s state w.

So, agents keep any information they hear about directly if they are unemployed. If they are already

employed, then they pass the information along to their unemployed acquaintances. Here the weighting by

which an agent decides who to pass a job to is proportional to the intensity of the relationship gij .

The General Model of Information Passing

In order to capture a much wider class of information passing possibilities, we model the job transmission

in a general way that allows for a variety of special cases.

The job transmission and offer generation is described by the function pij : IRn+ → [0, 1]n. Here pij(Wt−1)
is the probability that i originally hears about a job and then it is eventually j that ends up with an offer
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for that job. The case where j = i (that is, pii(Wt−1)) represents the situation where i hears about a job
and is the one who eventually gets an offer for the job.

The function pij is a reduced form that can accommodate a very variety of situations. All that is

important for our analysis is to keep track of who first heard about a job and who (if anyone) eventually

ended up getting an offer for the job. In the interim it might be that agents keep any job information they

hear about or it may be that they pass the information on. When passing information, agents may pass it to

just one acquaintance at a time or they may tell several acquaintances about the job. These acquaintances

might also pass the information on to others, and it could be that several agents end up in competition for

the job. And of course, all of this can depend on the current state w. Regardless of this process, we simply

characterize the end result through a probability that any given agent j ends up with an offer for a job that

was first heard about by agent i.

Let pi(w) =
P
j pji(w). So, pi(w) represents the expected number of offers that i will get depending on

the wage state in the last period being w. We assume that the realizations under pji(w) and pki(w) are

independent. Note that this is very different from the realizations under pij and pik, which will generally be

negatively correlated. So we are just assuming that that j and k do not coordinate on whether they pass i

a job. We could allow agents to coordinate on whom they pass information to. This would complicate the

proofs in the paper, but would not alter the qualitative conclusions. In fact, as we let the periods become

small, the probability that more than one job appears in a given period will go to zero in any case, and so

it will be clear that the results extend readily.

We let p denote the vector of functions across i and j. Let w denote the maximum value in the range of

wages. The functions pij are assumed to satisfy the following conditions for any w in the range of wages:

(1) 1 ≥Pj pij(w), and

(2) pi(w) is nondecreasing in w−i and nonincreasing in wi.

(1) requires the probabilities to sum to less than one. Implicit in this is the requirement that i hears

about at most one job directly in a period. As we can (and will) adjust periods to be arbitrarily small, this

is effectively without loss of generality. Allowing the probabilities to sum to less than one allows for the

possibility that i does not hear about a job in a period, or that that the information does not generate an

offer for any agent.

(2) imposes two requirements. The first is that the probability that the expected number of jobs that i

hears about is weakly increasing in the wages of agents other than i. This encompasses the idea that other

agents are (weakly) more likely to directly or indirectly pass information on that will reach i if they are more

satisfied with their own position, and also that they might have better access to such information as their

situation improves. It also encompasses the idea that other agents are (weakly) less likely to compete with

i for an offer if they are more satisfied with their own position. The second requirement is similar but keeps

track of i’s wage. Note that this allows for i to be more likely to directly hear about a job as i’s situation

worsens (allowing for a greater search intensity).6

We remark that (2) is not in contradiction with the fact that some agents might be more qualified than

other agents for a given job. Such qualifications can be completely built into the agents’ identities i, j,

6Note that it is possible to have the probability that an employed agent directly hears about a job vacancy be higher or

lower than the same probability for an unemployed agent, and still be consistent with the conditions (1) and (2).
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etc., which are accounted for in the pij ’s. Condition (2) only describes how changes in agents’ current

circumstances affect job transmission.

2.5 The Determination of Offers, Wages, and Employment

Determination of Offers

The above described process leads to a number of new job opportunities that each agent ends up at the

end of the hiring process. Let Oit be the random variable denoting the number of new opportunities that i

has in hand at the end of the hiring process at time t. Given Wt−1 = w, the distribution of Ot is governed
by the realizations of the pij(w)’s.

Determination of Employment

The employment status then evolves as follows. If agent i was employed at the end of time t − 1, so
Si,t−1 = 1, then the agent remains employed (Sit = 1) with probability (1 − bi) and becomes unemployed
(Sit = 0) with probability bi. If agent i was unemployed at the end of time t − 1, so Si,t−1 = 0, then the
agent becomes employed (Sit = 1) with probability (1− bi) conditional on Oit > 0, and otherwise the agent
stays unemployed (Sit = 0).

Determination of Wages

The evolution of wages is as follows. The function wi : IR+×{0, 1, 2, . . .}→ IR+ describes the wage that

i obtains as a function of i’s previous wage and the number of new job opportunities that i ends up with at

the end of the hiring phase. This function is increasing in past wages and satisfies wi(Wi,t−1, Oit) ≥Wi,t−1.
There may still be a loss of wages, but this occurs during the breakup phase when an agent becomes

unemployed. It is also assumed that wi(Wi,t−1, Oit) is nondecreasing in the number of new offers received,
Oit, and that wi(0, 1) > 0 so that a new job brings a positive wage.

In the case of completely homogeneous jobs, the wage will simply depend on whether the agent is employed

or not. But in the case of heterogeneous jobs, the wage might be increasing in the number of offers an agent

has. This captures the fact that the best match of a larger set of offers is likely to be better, and also that

if an agent has several potential employers then competition between them will bid the wage up.7

We emphasize that this is not at all in contradiction with the previous assumptions on the pij ’s. Wages

are increasing in the offers that an agent eventually obtains, which can be thought of as the “viable” offers.

An agent might hear about a job that is a poor match for him or her (e.g., their current location or position

dominates the new job) and would never lead to a viable offer. It is then perfectly rational for the agent to

pass the job information on to other agents, as might happen under the pij ’s. The important distinction is

that the offers (Oit’s) that are kept track of in the model are only the really viable ones.

For simplicity in what follows, we assume that wi only takes on a finite set of values and that these fall

in simple steps so that if w0 > w are adjacent elements of the range of wi, then w0 = wi(w, 1). This means
that wages are delineated so that an agent may reach the next higher wage level with one offer.

We also assume that wi(w
0, o) ≥ wi(w, o+1) for any o and w0 and w such that w0i > wi. This simply says

that having a higher wage status is at least as good as having one additional offer (at least in expectations).

7One can see the reasoning behind this in search models and, for instance, in Arrow and Borzekowski (2001) where firms

compete for an agent and the best match must pay the value of the second highest match.
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The wage of an agent then evolves according to the following

Wit = wi(Wi,t−1, Oit)Sit

Multiplying the expression by Sit keeps track of whether i loses his or her job during the breakup phase.

An Economy

Given an initial distribution over states µ0 and a specification of N , pi’s, and bi’s, the stochastic process

of employment {S1, S2, . . .} and wages {W1,W2, . . .} is completely specified. We refer to the specification of
(N, p, b) as an economy. We discuss the dependence on the initial distributions over states when necessary.

We remark that keeping track of employment status is redundant given wages, but it is still useful to

distinguish these in the discussion below.

Throughout the paper we fix the starting state to be one of unemployment W0 = S0 = (0, . . . , 0). This

has no effect on long run distributions of the processes, but is helpful in the proofs since then the first period

distributions of wages and employment (in many cases of interest) are independent.

Networks

In the general model, the network through which information is passed is already completely embodied

in the p function. Nevertheless it will still be useful for us to keep track of some acquaintance relationships.

In particular, it is helpful to keep track of agents i and j for which pi(w) is sensitive to changes in wj for

some w.

We will say that i ise acquainted with j if pi(w) 6= pi(w−j , ewj) for some w and ewj .
Since we allow for the possibility of indirect passing of information in the pij ’s, the term “acquaintance”

might be a bit of a misnomer. Nevertheless, we use the term for lack of a better one.

Let

Ni(p) = {j | i is acquainted with j}
In many cases where p is fixed, we simply write Ni.

It is natural to focus on situations where acquaintance relationships are at least minimally reciprocal, so

that i ∈ Nj(p) if and only if j ∈ Ni(p). We maintain this assumption in what follows.8
We can also keep track of further levels of this “acquaintance” relationship. Let

N2
i (p) = Ni(p) ∪ (∪j∈Ni(p)Nj(p)).

and inductively define

Nk
i (p) = N

k−1
i (p) ∪ (∪j∈Nk−1

i (p)Nj(p)).

Nn
i (p) then captures all of the indirect acquaintance relationships of an agent i. We say that i and j are

path connected if j ∈ Nn(p).

The sets Nn
i (p) partition the set of agents, so that all the agents in any element of the partition are path

connected to each other. We denote that partition by Π(p).

8In the absence of such an assumption, some of the statements in the results that follow need to be more carefully qualified.

Generally, all of the nonnegative correlation results will still hold. However, for strictly positive correlations to ensue, it must

be that information can travel sufficiently through the network to have one agent’s status affect another, and so the definition

of path connected would need to be carefully modified to account for such paths.
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3 The Distributions of Employment and Wages

We begin our analysis with two straightforward results that present intuitive observations regarding em-

ployment and wage status. These are useful later on.

Employment states and wage states follow a Markov process, where current states are the wage state.

The following lemmas describe that process as it depends on two features: the current state of the process

(wt) and the transition probabilities (pij ’s).

Lemma 1 Consider any economy (N, p, b), time t > 0, and two states w ∈ IRn+ and w0 ∈ IRn+ and i such
that wi = w

0
i = 0 (so i is unemployed in both states). If w

0
j ≥ wj for all j ∈ N2

i , then the distribution of Sit,

Oit, and Wit conditional on Wt−1 = w0 first order stochastically dominate the corresponding distributions
conditional on Wt−1 = w. If pki(w0) 6= pki(w) for some k (possibly even i), then the first order stochastic
dominance is strict.

Lemma 1 says that improving the wage status of any of an agent’s direct or indirect acquaintances leads

to an increase (in the sense of stochastic dominance) in the probability that the agent will be employed and

the agent’s expected wages.

The proof of Lemma 1 follows from the fact that for any i and j the function pji is nondecreasing in wk

for k 6= i (condition (2)). The proof appears in the appendix.
We offer a parallel result where the state is fixed but the network (pij ’s) improves.

Fix an economy (N, p, b) and consider an alternative social structure p0. We say that p0 one-period
dominates p at w ∈ IRn+ from i’s perspective if p0ki(w) ≥ pki(w) for all k ∈ Ni(p).
We refer to the above as “one-period domination” since i’s perceived status will improve for the next

period under p0 compared to p. However, since p0 and p might differ beyond i’s acquaintances, the long run
comparison between p and p0 might differ from the one period comparison.

As an example, under homogeneous job networks (Example 1), this one period domination condition is

satisfied at w for some i if wi = 0 implies that for each k: g0ki ≥ gki and gkj ≥ g0kj for each j 6= i such that
wj = 0.

Lemma 2 Consider an economy (N, p, b) and an alternative social structure p0 that one-period dominates
p at w ∈ IRn+ from i’s perspective for some i. The distributions of Sit, Oit and Wit conditional on Wt = w

under p0 first order stochastically dominate the corresponding distributions under p. If p0ki(w) 6= pki(w) for
some k (possibly i) and wi = 0, then the first order stochastic dominance is strict.

9

Lemma 2 states that an agent’s probability of being employed, expected number of offers and wages all

go up (in the sense of stochastic dominance) if the agent’s probability of hearing job information through

the network improves. Again, the straightforward proof appears in the appendix.

The lemmas above show how the one-period-ahead employment and wage status of an agent depend on

their direct and indirect acquaintances. The results follow the clear intuition that having more employed

direct acquaintances improves i’s prospects, as does decreasing the competition for information from those

acquaintances. The other indirect relationships in the network and status of other agents does not enter

9The first order stochastic dominance for Oit and Wit is strict even if wi > 0, provided wi < wi.
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the calculation. However, once we take a longer time perspective, the evolution of employment and wages

across time depends on the larger network and status of other agents. This, of course, is because the larger

network and status of other agents affect the employment status of i’s direct and indirect acquaintances.

4 The Dynamics and Patterns of Employment and Wages

Next, we turn to understanding the dynamics and patterns in both employment and wages, as we look

across agents and/or across time.

We first present an example which makes it clear why a full analysis of the dynamics of wages and

employment is more subtle than the results in Lemmas 1 and 2.

Example 2 Negative Conditional Correlations

Consider a homogeneous job network with three agents, N = {1, 2, 3}, with g21 > 0 and g23 > 0. Suppose
the current employment state is St−1 = (0, 1, 0).
Conditional on this state, the employment states S1t and S3t are negatively correlated, as are the wages

W1t and W3t. In a sense, agents 1 and 3 are “competitors” for job information or a job offer from news first

heard through agent 2.

Despite the fact that 1 and 3 are competitors for news from agent 2, in the longer run agent 1 can benefit

from 3’s presence. Agent 3’s presence can ultimately help improve 2’s employment status. Also, when agent

3 is employed then agent 1 is more likely to hear about any job that agent 2 hears about. These aspects of

the problem counter the local (conditional) negative correlation.

A nice way to sort out the short run competition from the longer run benefits of indirect acquaintances is

to allow the periods to become shorter. As the periods shorten, the competitive effects become outweighed

by the longer run benefits. We make this clear below. A natural way to analyze shortened periods is simply

by dividing p and b by some T .10

More formally, starting from some economy (N, p, b), the T -period subdivision, denoted (N, pT , bT ), is

such that bTi =
bi
T and pTij =

pij
T for each i and j.

Before discussing the patterns and dynamics of employment and wages, we define some useful tools.

4.1 Dominance Relations

While first order stochastic dominance is well suited for capturing distributions over a single agent’s status,

we need a richer tool for discussing interrelationships between a number of agents at once. There is a

standard generalizations of first order stochastic dominance relationships that applies to random vectors.

Domination

Consider two probability measures µ and ν on a state space that is a subset of IRn.

µ dominates ν if

Eµ [f ] ≥ Eν [f ]
10In the limit, this simply approximates a continuous time Poisson arrival process.
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for every non-decreasing function f : IRn → IR.11 The domination is strict if strict inequality holds for some

non-decreasing f .

Domination captures the idea that “higher” realizations of the state are likely under µ than under ν. In

the case where n = 1 it reduces to first order stochastic dominance.

Self-Domination

In many cases when we are comparing distributions of wages or employment, we will be looking at

the distribution as it varies conditional on different histories. So, ν is simply µ conditional on different

information. We name this self-domination.

µ self-dominates if

Eµ [f |g ≥ d ] ≥ Eµ [f ]
for every non-decreasing f : IRn → IR, non-decreasing g : IRn → IR and scalar d ∈ IR.12

Self-domination tells us that good news about the state (conditioning on g(x) ≥ d) leads us to higher
beliefs about the state in the sense of domination.

Note that if X is a random vector described by a measure µ, then self-domination of µ implies that Xi

and Xj are non-negatively correlated for any i and j. Essentially, self-domination is a way of saying that

all dimensions of X are non-negatively interrelated. If X were just a two dimensional vector (e.g., there

were just two agents), then this would reduce to saying that there was non-negative correlation between the

agents’ employment status. The definition captures more general interactions between many agents, and

says that good news in the sense of higher values of Xi, i ∈ {i1, . . . , i`} about any subset or combinations of
agents (here, {i1, . . . , i`}) is good (not bad) news for any other set or combinations of agents. This concept
is useful in describing clustering and general forms of positive correlations in employment and wages in what

follows.

Strong Self-Domination

As we often want to establish positive relationships, and not just non-negative ones, we also define a

strong version of self-domination. Since positive correlations can only hold between agents who are path

connected, we need to define a version of strong self-domination that respects such a relationship.

We offer the definition when the support of the distribution µ is finite.

Given is a partition Π of {1, . . . , n} that captures which random variables might be positively related.

A nondecreasing function f : IRn → IR is sensitive to π ∈ Π (relative to µ) if there exist x and exπ such
that f(x) 6= f(x−π, exπ) and x and x−π, exπ are in the support of µ.
Given a nondecreasing function g : IRn → IR, we say that g ≥ d reveals information about π ∈ Π (relative

to µ) if there exist x and exπ such that g(x) ≥ d > g(x−π, exπ) and x and x−π, exπ are in the support of µ.
A measure µ on IRn strongly self-dominates relative to the partition Π if it self-dominates and for any

π ∈ Π, nondecreasing functions f and g

Eµ [f |g ≥ d ] > Eµ [f ]
11We can take the probability measures to be Borel measures and Eµ[f ] simply represents the usual

R
IRn

f(x)dµ(x).

12Eµ [f |g ≥ d ] =
R
x∈IRn:g(x)≥d

f(x)dµ(x)R
x∈IRn:g(x)≥d

dµ(x)
.
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whenever f is sensitive to π and g ≥ d reveals information about π.
Strong self-domination captures the idea that better information about any of the dimensions in π leads

to unabashedly higher expectations regarding all of the dimensions in π. One implication of this is that Xi

and Xj are positively correlated for any i and j in π.

4.2 Employment Dynamics and Patterns

We are now ready to state the central theorems concerning the dynamics of employment and wages. We

begin with employment.

Recall that Π (p) is the partition of the agents so that all the agents in any element of the partition are

path connected to each other under p.

Theorem 3 Consider any economy (N,p, b). There exists T 0 such that µT strongly self-dominates relative
to Π(p) for any T ≥ T 0, where µT is the (unique) steady state distribution on employment associated with
the T -period subdivision of (N, p, b).13

Corollary 4 Consider any economy (N, p, b). There exists T 0 such that for any T ≥ T 0, and i and j, Si and
Sj are non-negatively correlated under the steady state distribution µT . If i and j are path connected, then

the correlation is positive.

Theorem 3 establishes the positive interrelationships between the employment of any collections of path

connected agents under the steady state distribution. Despite the short run conditional negative correlations

between competitors for jobs and information, in the longer run (with smaller subdivisions) any intercon-

nected agents’ employment is positively correlated. This is consistent with the sort of clustering observed

by Topa (2001).

The proof of Theorem 3 is long and appears in the appendix. The proof can be broken down into several

steps. The first step shows that for large enough T the steady state distribution is approximately the same

as one for a process where the realizations of pij(w) across different j’s is independent. Essentially, the

idea is that for large enough T , the probability that just one job is heard about comes to overwhelm the

probability that more than one job is heard about. This is also true under independence. The proof then uses

a characterization of steady state distributions by Freidlin and Wentzel (1984) (as adapted to finite processes

by Young (1993)) to verify that one can simply keep track of these probabilities of just a single job event to

get the approximate steady state distribution for large enough T . Next, note that under independence of

job hearing, the negative correlation effects of the example are no longer an issue. So we can then establish

that the conclusions of the theorem are true under the independent process. Finally, we come back to show

that the same still holds under the true (dependent) process, for large enough T .

Example 3 Correlation and Network Structure.

13Having fixed an initial state W0, an economy induces a Markov chain on the state Wt. Note that this does not correspond

to a Markov chain on the state St, as the probability of transitions from St to St+1 can still depend on Wt and hence on t

for a given starting distribution. Nevertheless, as the wage states do form a Markov chain, there is a steady state distribution

induced on the wage state W . As S is a coarsening of W , there is a corresponding steady state distribution on S.
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Consider a simple homogeneous network setting (Example 1) with n = 4 agents. Let ai(w) = bi =
1
2 for

all i and w, so the probability of any agent hearing (directly) about a job or losing a job in a given period

is equal to one half.

If there is no network relationship at all, Prob(Si = 0) = 2/3 under the steady state distribution.

If we move to a single link g12 = g21 = 1, then Prob(Si = 0) = .629 and Corr(Si, Sj) = .037, where

i, j ∈ {1, 2}. So the probability of unemployment falls and the two linked agents employment statuses are
correlated.

If we move to a “triangle,” g12 = g23 = g31 = 1 (with reciprocal relationships where gki = gik), then

Prob(Si = 0) = .621 and Corr(Si, Sj) = .023 for each of the linked agents. The probability of unemployment

falls further, and the correlation between any two employed agents also falls.

If we move to a “square,” g12 = g23 = g34 = g41 = 1 (again with reciprocal relationships), then

Prob(Si = 0) = .617 and Corr(S1, S2) = .022 while Corr(S1, S3) = .010. The probability of unemployment

falls further, and the correlation between any two employed agents also falls.14 Here the correlation between

directly connected agents is higher than for indirectly connected agents.

Example 4 Bridges and Asymmetries

[Add other example from seminar slides with 14 agents to illustrate asymmetries and role of bridges.]

While Theorem 3 provides results on the steady state distribution, we can deduce similar statements

about the relationships between employment at different times.

Theorem 5 Consider any economy (N, p, b). There exists T 0 such for any T ≥ T 0, any nondecreasing
functions f and g, and any times t and t0

ET [f(St) |g(St0) ≥ d ] ≥ ET [f(St)] ,

with strict inequality whenever there is some π ∈ Π(p) such that f is sensitive to π and g ≥ d reveals

information about π, if we start under the steady state distribution µT where ET is the expectation associated

with the T -period subdivision of (N, p, b).

Although Theorem 5 is similar to Theorem 3 in its structure, it provides different implications. Theorem

3 addresses the steady state distribution, or the expected long run behavior of the system. Theorem 5

addresses any arbitrary dates in the system.15

It is important in Theorem 5 that we start from the steady state distribution. For instance, if we start

from a given state, such as that in Example 2, we could end up with a negative correlation.

14While the changes across networks are marked, the magnitude diminishes quickly in the size of the network in this example.

This is partly due to the choice of a=b=1/2, which makes calculations easy. For smaller a and b, employment changes are rarer

and then the network status becomes more important as the passing of information becomes a more central way of obtaining

jobs, while with high a and b, direct news plays a larger role.
15Theorem 3 almost seems to be a corollary of Theorem 5, since as we let t and t0 become large, the distributions of St and

St0 approach the steady state distribution. However, we cannot deduce Theorem 3 from Theorem 5 since it is not ruled out

that the positive correlation vanishes in the limit under Theorem 5, while we know that this is not the case from Theorem 3.
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4.3 Patterns and Dynamics of Wages

One might imagine that we can directly state a parallel result to Theorem 3 for wages instead of em-

ployment status. However, when trying to prove similar statements about wages, we run into a minor

complication.

To see the difficulty, consider a situation where agents are more likely to pass job information on to

acquaintances with lower wages than to acquaintances with higher wages. In such a situation, an agent who

has a low wage, but whose wage is still higher than some other agents who are competitors for information

about a job, might end up with a next period expected wage that is lower than what they would expect

if they quit their job! This can happen because if they were to quit their job, their acquaintances would

be more likely to pass information to them, and they might have a positive probability of obtaining several

offers at once.

This difficulty is overcome when we look at fine enough subdivisions of a period, as then the probability

of obtaining more than one offer becomes negligible compared to the probability of obtaining one offer,

provided the probability of obtaining at least one offer is not zero. That last case is ruled out by the

following assumption.

(3) p is weakly positive if for any w and i such that pi(w) > 0 it follows that pi(w−i, w0i) > 0 for any

w0i < wi.

Weak positivity requires that if there is some chance that i obtains an offer at one wage level, then that

probability remains positive as long as i is not at the highest wage level (holding others wages fixed). This

assumption is easily satisfied by homogeneous job networks, and is quite natural more generally.16

Theorem 6 Consider a network economy (N, p, b) with a weakly positive p. There exists a large enough T 0

such that µT strongly self-dominates for any T ≥ T 0, where µT is the (unique) steady state distribution on
wages associated with the T -period subdivision of (N, p, b).

Corollary 7 Consider a network economy (N, p, b) with a weakly positive p. There exists T 0 such that for
any T ≥ T 0, and i and j, Wi and Wj are non-negatively correlated under the steady state distribution µT .

If i and j are path connected, then the correlation is positive.

At the steady state, there is a clustering of wage levels and employed workers tend to be acquainted

with workers earning similar wages. We also have an analog of Theorem 5, stating that this positive in-

terrelationships between agents’ wages hold both under the steady distribution and at any time along the

dynamics.

Theorem 8 Consider any economy (N, p, b) with a weakly positive p. There exists T 0 such for any T ≥ T 0,
any nondecreasing functions f and g, and any times t and t0

ET [f (Wt) |g (St0) ≥ d ] ≥ ET [f(Wt)] ,

with strict inequality whenever there is some π ∈ Π(p) such that f is sensitive to π and g ≥ d reveals

information about π, if we start under the steady state distribution µT where ET is the expectation associated

with the T -period subdivision of (N, p, b).

16Note also that any p is arbitrarily close to one satisfying this condition.
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5 Duration Dependence and Persistence in Unemployment

We now turn to the theorem outlining the duration dependence that we discussed in the introduction.

Say that i’s job contacts are non-degenerate, if there exists j ∈ Ni(p) with j 6= i.
Theorem 9 Consider an economy (N, p, b). If i’s job contacts are non-degenerate, then there exists T 0 such
that starting from the steady state distribution at time 0,

ProbT (Si,t+1 = 1|Sit = 0, Si,t−1 = 0) < ProbT (Si,t+1 = 1|Sit = 0) ,
for all T -period subdivisions of (N,p, b) where T ≥ T 0.
The idea behind Theorem 9 is as follows. Longer past unemployment histories lead to worse inferences

regarding the overall state of the network. This leads to worse inferences regarding the probability that

an agent will hear indirect news about a job. That is, the longer i has been unemployed, the higher the

expectation that i’s acquaintances (direct and indirect) are themselves also unemployed. This makes it more

likely that i’s acquaintances will take any information they hear of directly, and less likely that they will

pass it on to i. In other words, a longer individual unemployment spell worsens one’s social environment,

which in turn harms individual future employment prospects.

Example 5 Duration Dependence.

Consider a simple homogeneous network setting (Example 1) with n = 2 agents. Let ai(w) = bi =
1
2 for

all i and w, so the probability of any agent hearing directly about a job or losing a job in a given period is

equal to one half.

Consider the simple network: g12 = g21 = 1.

Here, starting under the steady state distribution, for any t: E(Sit) = .371, E(Sit = 1|Sit−1 = 0) = .294,
andE(Sit|Sit−1 = 0, Sit−2 = 0) = .286. The same claims hold for large t starting from any initial distribution.
As we increase the length of unemployment, the probability of employment continues to drop.

[[add in other examples.]]

Let us discuss some aspects of the resulting aggregate employment dynamics. In our model, the stochastic

processes that regulate each individual employment history are interrelated. In particular, past employment

within a closed-knit of acquaintances breeds future employment for these acquainted individuals. Any shock

to or change in employment has both a contemporaneous and a delayed impact on labor outcomes. In

other words, duration dependence for individual dynamics generates persistence for aggregate employment

dynamics. This means that individual employment does not follow a Markov process, but exhibits the

duration dependence documented in Theorem 9. This also means that the process governing aggregate

employment exhibits special features. The higher the overall employment rate, the faster rate at which

unemployed vacancies are filled. So, the closer one comes to full employment, the harder it is to leave

full employment. The converse also holds so that the lower the employment rate, the lower the chance

that vacancies are filled. The process will oscillate between full employment and unemployment. But it

exhibits a certain stickiness and attraction so that the closer it gets to one extreme (high employment or

high unemployment) the greater the pull is from that extreme. This leads to a sort of boom and bust effect.17

17We have not explicitly modeled equilibrium wages and the job arrival process. Incorporating these effects might mitigate

some of the effects our model exhibits. However, taking the arrival process as exogenous helps us show how the network effects

pushes the process to have certain characteristics.
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Note also that, given an aggregate unemployment rate, filled jobs need not be evenly spread on the

network, and this can even be amplified in cases where the network is asymmetric in some ways to begin

with (as in Example 4). As a result temporal patterns may be asynchronous across different parts of the

network, with some parts experiencing booms and other parts experiencing recessions at the same time.

6 Dropping Out, Inequality in Wages and Employment

We now turn to the discussion of agents’ decisions of whether or not to stay in the labor force. This effectively

endogenizes the network or function p.

Staying in the labor market requires payment of a expected present value of costs ci ≥ 0. These include
costs of education, skills maintenance, opportunity costs, etc. Let xi ∈ {0, 1} denote i’s decision of whether
to stay in the labor market. Each agent discounts future wages at a rate 0 < δi < 1. Effectively, we

normalize the outside option to have a value of 0, so that an agent chooses to stay in the labor force when

the discounted expected future wages exceed the costs.

When an agent i exits the labor force, we reset the p’s so that pij(w) = pji(w) = 0 for all j and w, but

do not alter the other pkj ’s. The agent who drops out has his or her wage set to zero.
18 Therefore, when an

agent drops out, it is as if the agent disappeared from the economy.

Fix an economy (N, p, b) and a starting state W0 = w. A vector of decisions x is an equilibrium if for

each i ∈ {1, . . . , n} xi = 1 implies

E

"X
t

δtiWit |W0 = w, x−i

#
≥ ci,

and xi = 0 implies the reverse inequality.

In our model, having more agents participate is better news for a given agent as it effectively improves

the agent’s network connections and prospects for future employment. This results in the “drop-out” game

being supermodular (see Topkis (1979)) which leads to the following lemma.

Lemma 10 Consider any economy (N, p, b) with a weakly positive p, state W0 = w, and vector of costs

c ∈ IRn+. There exists T 0 such that for any T -period subdivision of the economy (T ≥ T 0), there is a unique
equilibrium x∗(w) such that x∗(w) ≥ x for any other equilibrium x.

We refer to the equilibrium x∗(w) in Lemma 10 as the maximal equilibrium.

Theorem 11 Consider an economy (N, p, b) with a weakly positive p and where at least two agents are path

connected, and for each i a costs ci ∈ IR+ and discount rate 0 < δi < 1. Consider two starting wages states,

w0 ≥ w with wi 6= w0i. There exists T 0 such that for any T -period subdivision (T ≥ T 0), the set of dropouts
following w0 is a subset of that under w under the maximal equilibria; and for some specifications of the costs
and discount rates the inclusion is strict. Moreover, if x∗(w)i = x∗(w0)i = 1, then the distributions of Wit

and Sit for any t under the maximal equilibrium following w0 first order stochastic dominate those under
18This choice is not innocuous, as we must make some choice as to how to reset the function pkj when i drops out, as this is

a function of wi. How we set this has implications for agent j if agent j remains in the economy.
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the maximal equilibrium following w, with strict dominance for large enough t if x∗(w)j 6= x∗(w0)j for any
j who is path connected to i. In fact for any increasing f : IRn+ → IR and any t

ET [f(Wt) |W0 = w
0, x∗(w0) ] ≥ ET [f(Wt) |W0 = w, x

∗(w) ] ,

with strict inequality for some specifications of c and δ.

Theorem 11 shows how persistent inequality can arise between two otherwise similar groups. If two

different social groups (even with identical network relationships) differ in their starting wage state, the

resulting drop-out rates will differ. If the starting state is higher for one group, then that group will

have fewer drop-outs (a subset) than the other group. Because dropping out hurts the prospects for the

group further, differences in drop out rates end up generating persistent inequality between the two groups.

The wage distribution and employment outcomes may thus differ among two social groups with identical

economic characteristics that just differ in their starting state. In fact, many empirical studies illustrate how

accounting for volunteer drop-outs from the labor force affects negatively the standard measures of black

economic progress (e.g. Chandra (2000), Heckman et al. (2000)).

[[add in examples.]]

7 Concluding Discussion

While this model is too stylized to provide specific policy implications, we mention some lessons that still

can be learned about policy in the presence of network effects. One lesson is that the dynamics of the model

show that policies that affect current employment or wages will have both delayed and long-lasting effects.

Another lesson is that there is a positive externality between the status of connected individuals. So, for

instance, if we consider improving the status of some number of individuals who are scattered around the

network, or some group that are more tightly clustered, there will be two sorts of advantages to concentrating

the improvements in tighter clusters. The first is that this will improve the transition probabilities of those

directly involved, but the second is that this will improve the transition probabilities of those acquainted

with these individuals. Moreover, concentrated improvements lead to a greater improvement of the status

acquaintances then dispersed improvements. This will then propagate through the network. To get a better

picture of this, consider the drop-out game. Suppose that we are in a situation where all agents decide to

drop out. Consider two different subsidies: in the first, we pick agents distributed around the network to

subsidize; while in the second we subsidize a group of agents that are clustered together. In the first case,

other agents might now just have one (if any) acquaintance who is in the market. This might not be enough

to induce them to enter, and so nobody other than the subsidized agents enter the market. This hurts both

their prospects and does not help the drop- out rate other than through the direct subsidy. In contrast in

the second clustered case, a number of agents now have several acquaintances who are in the market. This

may induce them to enter. This can then have a contagion effect, carrying over to agents acquainted with

them and so on. This decreases the drop-out rate beyond the direct subsidy, and then improves the future

status of all of the agents involved even further through the improved network effect.

Let us also mention some possible empirical tests of the model. To the extent that direct data on network

relationships is available, one can directly test the model. However, even without such detailed information,

there are other tests that are possible. For instance, there is data concerning how the reliance on networks

for finding jobs varies across professions, age and race groups, etc. (see the table in Montgomery (1991), for
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instance to see some differences across professions). Our model then predicts that the intensity of clustering

and duration dependence should also vary across these socio-economic groups. Moreover, even within a

specific socio-economic group, our model predicts differences across separate components of the network as

the local status of the acquaintances changes.

As we have mentioned several times, we treat the network structure as largely given, except to the extent

that we consider drop outs in the last section. Of course, people do have some important control over whom

they socialize with both in controlling through direct friendships they undertake as well as through making

education and career choices that affect whom they meet and fraternize with on a regular basis. Examining

the network formation and evolution process in more detail could provide a fuller picture of how the labor

market and the social structure co-evolve by mutually influencing each other: network connections shape

the labor market outcomes and, in turn, are shaped by them.19

In addition to further endogenizing the network, we can also look deeper behind the pij ’s. There are a

wide variety of explanations (especially in the sociology literature, for instance see Granovetter (1995)) for

why networks are important in job markets. The explanations range from assortive matching (employers

can find workers with similar characteristics by searching through them), to information asymmetries (in

hiring models with adverse selection), and simple insurance motives (to help cope with the uncertainty due

to the labor market turnover). In each different circumstance or setting, there may be a different impetus

behind the network. This may in turn lead to different characteristics of how the network is structured and

how it operates. Developing a deeper understanding along these lines might further explain differences in

the importance of networks across different occupations.

Another aspect of changes in the network over time, is that network relationships can change as workers

are unemployed and lose contact with former acquaintances. To some extent that can be captured in the

way we have set up the pij ’s to depend on the full status of all workers. So we do allow the strength of a

relationship between two agents to depend, for instance, on their employment status. But beyond this, the

history of how long one has been at a current status might also affect the strength of connections. Long

unemployment spells can generate a de-socialization process leading to a progressive removal from labor

market opportunities and to the formation of unemployment traps. This is worth further investigation.

Finally, as we have mentioned at several points, we have not formally modeled the job arrival process

or an equilibrium wage process. Extending the model to endogenize the labor market equilibrium so that

probability of hearing about a job depends on current overall employment and wages are equilibrium ones,

is an important next step in developing a network-labor market model. This would begin to give insights

into how network structure influences equilibrium structure.

19See Holland and Leinhardt (1977) for an early model of network co-evolution. There is a growing literature on the formation

of networks, that now provides a ready set of tools for analyzing this problem. See Dutta and Jackson (2001) for a brief overview

and references.
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Appendix

(still partly incomplete.)

Proof of Lemmas 1 and 2: We prove the statements for the distribution of Oit. The first order stochastic

dominance statements for Wit and Sit then follow easily, since Wit is simply w(0, Oit) with probability 1− b
and 0 with probability b, and similarly Sit = 1 when Oit > 0 with probability 1− b, and is 0 otherwise. We
remark on the strict first order stochastic dominance for Wit and Sit at the end of the proof.

Fix some w and p. Consider i such that wi = 0. Fix any agent k 6= i and consider any C ⊂ N \ {k}. Let

PkC(w) = (×j∈Cpji(w))(×j∈N\(C∪k)(1− pji(w))).

Thus, P kC(w) is the probability that i hears of job offers from each agent in C and none of the agents in

N \ (C ∪ k). We can then write the probability that i obtains at least h offers as

Prob ({Oit ≥ h} | p,Wt−1 = w) =
X

C⊂N\k:|C|≥h
(1− pki(w))P kC(w) +

X
C⊂N\k:|C|≥h−1

pki(w)P
k
C(w).

Simplifying, we obtain

Prob ({Oit ≥ h} | p,Wt−1 = w) =
X

C⊂N\k:|C|≥h
P kC(w) +

X
C⊂N\k:|C|=h−1

pki(w)P
k
C(w). (1)

To establish first order stochastic dominance of a distribution of Oit conditional on Wt−1 = w0 over that
conditional onWt−1 = w (and/or similarly comparing p0 and p), we need only show that Prob ({Oit ≥ h} | p0,Wt−1 = w)
is at least as large Prob ({Oit ≥ h} | p,Wt−1 = w) for each h. Strict dominance follows if there is a strict
inequality for any h.

Note that from (1) we can write Prob ({Oit ≥ h} | p,Wt−1 = w) as a function of the pki’s, which are in
turn functions of w. Since P kC(w) is independent of pki(w) for any k ∈ N , it follows from equation (1), that

Prob ({Oit ≥ h}| p,Wt−1 = w), viewed as a function of the pki’s, is non-decreasing in the pki’s. Moreover, it
is increasing in pki whenever there is some h such that P

k
C(w) > 0 for some C ⊂ N \ {k} : |C| = h− 1.

Thus, if p0ji(w0) ≥ pji(w) for each j ∈ N , then we have first order stochastic dominance, and that
is strict if the inequality is strict for some k such that there is some h such that P kC(w) > 0 for some

C ⊂ N \ {k} : |C| = h − 1. Note that since pji(w) < 1 for all j ∈ N , it follows that 1 − pji(w) > 0 for all
j ∈ N . This implies that when h = 1, PkC(w) > 0 for C = ∅ corresponding to |C| = h − 1 = 0. Thus, we
get strict first order stochastic dominance if we have p0ji(w

0) ≥ pji(w) for each j ∈ N with strict inequality

for any j. Therefore, any changes which lead all pji’s to be at least as large (with some strictly larger), will

lead to the desired conclusions regarding (strict) first order stochastic dominance.

To establish the strict part of first order stochastic dominance for Sit and Wit, it is sufficient to conclude

first order stochastic dominance and additionally that

Prob ({Oit ≥ 1} | p0,Wt−1 = w0) > Prob ({Oit ≥ 1} | p,Wt−1 = w) .

As argued above (the case of h = 1), this holds whenever p0ji(w
0) ≥ pji(w) for all j with strict inequality for

some j; as in the premise of the results.
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Next we prove Theorem 6. Theorem 3 can then be proven as a special case noting that any nondecreasing

function f and g on employment can be written as a corresponding nondecreasing function of wages (which

maintains the sensitivity and information revealing characteristics).20

The following lemmas are useful in the proof of Theorem 6.

Lemma 12 Consider two measures µ and ν on IRn which have supports that are a subset of a finite set

W ⊂ IRn. µ dominates ν if and only if for each w ∈W there exists φw :W → [−1, 1] such that

µ(w0) = ν(w0) +
X
w

φw(w
0),

where each φw satisfies 
φw (w

0) ≥ 0 if w0 = w
φw (w

0) ≤ 0 if w0 ≤ w, w0 6= w and
φw (w

0) = 0 otherwise.

and

φw(w) +
X
w0 6=w

φw(w
0) = 0.

Strict domination holds if φw(w) > 0 for some w.

Thus, µ is derived from ν by a shifting of mass “upwards” under the partial order ≥ over states w ∈W .

Proof of Lemma 12: This can be established from Theorem 18.40 in Aliprantis and Border (2000).

Let

E = {E ⊂W | w ∈ E,w0 ≥ w⇒ w0 ∈ E}.
E is the set of subsets of states such that if one state is in the event then all states with at least as high

wages (person by person) are also in.

Lemma 13 Consider two measures µ and ν on W .

µ (E) ≥ ν (E)

for every E ∈ E, if and only if µ dominates ν. Strict domination holds if and only if the first inequality is
strict for at least one E ∈ E.

Proof of Lemma 13: First, suppose that for every E ∈ E :

µ (E) ≥ ν (E) . (2)

Consider any non-decreasing f . Let the elements in its range be enumerated r1, . . . , rK , with rK > rk−1 . . . >
r1. Let EK = f

−1(rK). By the non-decreasing assumption on f , it follows that EK ∈ E. Inductively, define
Ek = Ek+1 ∪ f−1(rk−1). It is also clear that Ek ∈ E. Note that

f(w) =
X
k

(rk − rk−1)IEk(w).

20Theorem 3 does not need the extra assumption of weak positivity. So Lemma 14 can be proven without this assumption

when dealing with employment states rather than wage states. Thus, Theorem 3 is not quite a corollary, but can be proven by

following the same steps and noting that this assumption is not necessary to reach the same conclusions for employment states.
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Thus,

Eµ(f(Wt)) =
X
k

(rk − rk−1)µ(Ek)

and

Eν(f(Wt)) =
X
k

(rk − rk−1)ν(Ek).

Thus, by (2) it follows that Eµ(f(Wt)) ≥ Eν(f(Wt)) for every non-decreasing f . This implies the dominance.

Note that if µ(E) > ν(E) for some E, then we have Eµ(IE(Wt)) > Eν(IE(Wt)), and so strict dominance

is implied.

Next let us show the converse. Suppose that µ dominates ν. For any E ∈ E consider f(w) = IE(w) (the
indicator function of E). This is a non-decreasing function. Thus, Eµ(IE(Wt)) ≥ Eν(IE(Wt)) and so

µ (E) ≥ ν (E) .

To see that strict dominance implies that µ (E) > ν (E) for some E, note that under strict dominance we

have some f for which

Eµ(f(Wt)) =
X
k

(rk − rk−1)µ(Ek) > Eν(f(Wt)) =
X
k

(rk − rk−1)ν(Ek).

Since µ(Ek) ≥ ν(Ek) for each Ek, this implies that we have strict inequality for some Ek.

Fix the economy (N, p, b). Let PT denote the matrix of transitions between different w’s under the T

period subdivision. So PTww0 is the probability that Wt = w
0 conditional on Wt−1 = w.

Let PTwE =
P
w0∈E P

T
ww0 .

Lemma 14 Consider an economy (N, p, b) with a weakly positive p. Consider w0 ∈ W and w ∈ W such

that w0 ≥ w, and any t ≥ 1. Then there exists T 0 such that for all T > T 0 and E ∈ E

PTw0E ≥ PTwE.

Moreover, if w0 6= w, then the inequality is strict for at least one E.

Proof of Lemma 14: Let us say that two states w0 and w00 are adjacent if w0j 6= w00j for only one j and
then w0j and w

00
j take on adjacent values in the range of j’s wage function.

We show this for w and w0 adjacent, as the statement then follows from a chain of comparisons across

such w0 and w. Let ` such that w0` > w`. By definition of two adjacent wage vectors, w
0
i = wi, for all i 6= `.

We write

PTw0E =
X
o

ProbTw0(Wt ∈ E|Ot = o)ProbTw0(Ot = o)

and similarly

PTwE =
X
o

ProbTw(Wt ∈ E|Ot = o)ProbTw(Ot = o).

Note that p`j(w
0) ≥ p`j(w) for all j 6= `. Also since w0k = wk for all k 6= ` it follows that pij(w0) ≥ pij(w)

for all j 6= ` and for all i. These inequalities imply that ProbTw0(O−`,t) dominates ProbTw(O−`,t). It is only
`, whose job prospects may have worsened.
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However, given that w0` > w`, given our assumption on wages (that wi(w
0, o) ≥ wi(w, o+1) for any o and

w0 and w such that w0i > wi), it is enough to show that for any a, ProbTw0(O−`,t ≥ a) ≥ ProbTw(O−`,t ≥ a+1).
For large enough T , given the weak positivity of p, this holds.

To see the strict domination, consider E = {w|w` ≥ w0`}, and note that then, since there is a probability
that ` hears 0 offers under w, the inequality is strict.

Given a measure ξ on W , let ξPT denote the measure induced by multiplying the (1 × n) vector ξ by
the (n × n) transition matrix PT . This is the distribution over states induced by a starting distribution ξ

multiplied by the transition probabilities PT .

Lemma 15 Consider an economy (N, p, b) with a weakly positive p and two measures µ and ν on W . There

exists T 0 such that for all T > T 0, if µ dominates ν, then µPT dominates νPT . Moreover, if µ strictly

dominates ν, then µPT strictly dominates νPT .

Proof of Lemma 15:

[µPT ](E)− [νPT ](E) =
X
w

PTwE (µw − νw) .

By Lemma 12

[µPT ](E)− [νPT ](E) =
X
w

PTwE

ÃX
w00

φw00(w)

!
.

Reordering the summations, and noting the properties of φ, this becomes

[µPT ](E)− [νPT ](E) =
X
w00

φw00(w00)PTw00E + X
w 6=w00:w00≥w

φw00(w)P
T
wE

 .
Lemma 14 implies that for large enough T , PTw00E ≥ PTwE whenever w00 ≥ w. Thus since φw00(w00) ≥ 0 and
φw00(w00) +

P
w≤w00,w 6=w00 φw00(w) = 0, the result follows.

Suppose that µ strictly dominates ν. It follows from Lemma 12 that there exists some w00 such that
φw00 (w00) > 0. Let w ≤ w00, w 6= w00. By Lemma 14, there exists some E ∈ E such that PTw00E > PTwE . With
such E, [µPT ](E) > [νPT ](E), implying by Lemma 13 that PTµ strictly dominates PTν.

Proof of Theorem 6: Recall that PT denotes the matrix of transitions between different w’s. Since PT

is an irreducible and aperiodic Markov chain, it has a unique steady state distribution that we denote by

µT . The steady state distributions µT converge to a unique limit distribution (see Young (1993)), which we

denote µ∗.
Let P

T
be the transition matrix where the process is modified as follows. Starting in state w, in the hiring

phase each agent j independently hears about a new job (and at most one) with probability
P
i
pij(w)
T , while

the breakup phase is as before with independent probabilities bi
T of losing jobs. Let µT be the associated

(again unique) steady state distribution, and µ∗ = limT µT (which is well-defined as shown below).
The following claims establish the theorem.

Claim 1 µ∗ = µ∗.

Claim 2 µ∗ strongly self-dominates.

Claim 3 There exists T 0 such that µT strongly self-dominates for all T ≥ T 0.
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The following lemma is useful in the proof of Claim 1.

Let P be a transition matrix for an aperiodic, irreducible Markov chain on a finite state space Z.

For any z ∈ Z, let a z-tree be a directed graph on the set of vertices Z, with a unique directed path
leading from each state z0 6= z to z. Denote the set of all z-trees by Tz.
Let

pz =
X
τ∈Tz

[×z0,z00∈τPz0z00 ] . (3)

Lemma 16 Freidlin and Wentzel (1984)21: If P is a transition matrix for an aperiodic, irreducible Markov

chain on a finite state space Z, then its unique steady state distribution µ is described by

µ(z) =
pzP

z0∈Z pz0
,

where pz is as in (3) above.

Proof of Claim 1: Given w ∈W , we consider a special subset of the set of Tw, which we denote T ∗w . This
is the set of w-trees such that if w0 is directed to w00 under the tree τ , then w0 and w00 are adjacent. As
PTw0,w00 goes to 0 at the rate 1/T when w

0 and w00 are adjacent,22 and other transition probabilities go to 0
at a rate of at least 1/T 2, it follows from Lemma 16 that µT (w) may be approximated for large enough T byP

τ∈T ∗w
£×w0,w00∈τPTw0w00¤PbwPτ∈T ∗bw £×w0,w00∈τPTw0w00¤ .

Moreover, note that for large T and adjacent w0 and w00, PTw0w00 is either
bi
T + o(1/T

2) (when w0i > w
00
i ) or

pi(w
0)

T + o(1/T 2) (when w0i < w
00
i ), where o(1/T

2) indicates a term that goes to zero at the rate of 1/T 2. For

adjacent w0 and w00, let ePTw0w00 = bi
T when w0i > w

00
i , and

pi(w
0)

T when w0i < w
00
i . It then follows that

µ∗(w) = lim
T→∞

P
τ∈T ∗w

h
×w0,w00∈τ ePTw0w00iPbwPτ∈T ∗bw
h
×w0,w00∈τ ePTw0w00i .

By a parallel argument, this is the same as µ∗(w).

Proof of Claim 2:

We use the following observation, for which we omit the proof.

Claim 4 If the Wi’s are independent under a measure µ then for any E ∈ E and E0 ∈ E

µ(EE0) ≥ µ(E)µ(E0).
21See Chapter 6, Lemma 3.1; and also see Young (1993) for the adaptation to discrete processes.
22This assumes that PT

w0,w00 6= 0. To handle other cases (where some adjacent transition probabilities are 0), we can argue

as follows. For any non-adjacent transition which has a non-zero probability, we can break it into some sequence of adjacent

transitions which (by weak positivity) must be positive. The sum of those adjacent transition probabilities will go to zero at the

rate of 1/T , while the non-adjacent transition probability goes at a rate of at least 1/T 2. We can thus replace any non-adjacent

transition via a sequence of adjacent transitions and reduce the resistance of the tree.
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Starting from an independent initial distribution over wage states, we show that for Et ∈ E and E0t0 ∈ E,

Prob
T
(E0t0 |Et) ≥ Prob

T
(E0t0) .

The proof is by induction. The case t = 0 follows from Claim 4. Let A ∈ E be an event independent from
time t (for instance, A is an event from t− 1 or before, or A is a t = 0 event). We show that if for all Et ∈ E

Prob
T
(Et|A) ≥ ProbT (Et)

then,

Prob
T
(Et+1|A) ≥ ProbT (Et+1)

for any Et+1 ∈ E.
We have,

Prob
T
(Et+1|A)− ProbT (Et+1) =

X
wt

Prob
T
(Et+1|wt)

h
Prob

T
(wt|A)− ProbT (wt)

i
.

By Lemma 12 and the definition of domination, it follows that there exists a φwt for each wt such that

Prob
T
(Et+1|A)− ProbT (Et+1) =

X
w0t

Prob
T
(Et+1|wt)

"X
wt

φwt(w
0
t)

#
.

Therefore,

Prob
T
(Et+1|A)− ProbT (Et+1) =

X
wt

X
w0t

φwt(w
0
t)Prob

T
(Et+1|w0t)

 .
We rewrite this as

Prob
T
(Et+1|A)− ProbT (Et+1) (4)

=
X
wt

φwt(wt)ProbT (Et+1|wt) + X
w0t≤wt,w0t 6=wt

φwt(w
0
t)Prob

T
(Et+1|w0t)

 .
Lemma 14 implies that

Prob
T
(Et+1|wt) ≥ ProbT (Et+1|w0t)

for eachw0t≥wt , w
0
t 6= wt. Also, we know from the definition of domination that φwt(wt)+

P
w0t 6=wt,w0t≤wt φwt(w

0
t) =

0. Thus, equation (4) implies that Prob
T
(Et+1|A) ≥ ProbT (Et+1). Therefore, by induction using Lemma

15 (using Prob
T
in place of PT ) it follows that for every E ∈ E and for any t0 > t,

Prob
T
(Et0 |A) ≥ ProbT (Et0) .

Moreover, if we have strict domination at time t then we also have strict domination at any t0 > t.
We now deal with the case t0 = t. We want to show that for any Et, E0t ∈ E, and for any t

Prob
T
(E0t|Et) ≥ Prob

T
(E0t) .

This is equivalent toX
wt−1

Prob
T
(E0t|wt−1, Et)Prob

T
(wt−1|Et) ≥

X
wt−1

Prob
T
(E0t|wt−1)Prob

T
(wt−1) .
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Claim 4 implies that

Prob
T
(E0t|wt−1, Et) ≥ Prob

T
(E0t|wt−1) ,

for all wt−1. We just need to show that Prob
T
(wt−1|Et) ≥ ProbT (wt−1), for all wt−1, which follows from

the previous induction argument.

Proof of Claim 3: Claims 1 and 2 imply that µ∗ strongly self-dominates. Next note that Eµ∗(f |g ≥ k) =
Eµ∗(f) implies that there does not exist i and j who are path connected, for which f is sensitive to i and g ≥ k
reveals information about j. This implies that none of the agents for whom g reveals any information are in

any way connected to any of the agents for whom f is sensitive. This implies that EµT (f |g ≥ k) = EµT (f).
For any other f and g, Eµ∗(f |g ≥ k) > Eµ∗(f), and so for large enough T , EµT (f |g ≥ k) > EµT (f). As

given the finite W , we need only check this for a finite set of functions f and g (see the proof of Lemma 13),

the result then follows.

That completes the proof of Theorem 6.

Proof of Theorem 9: We need to show that for large enough T

ProbT (Si,t+1 = 1|Sit = 0, Si,t−1 = 0) < ProbT (Si,t+1 = 1|Sit = 0) .

Let Et refer to St ∈ E, and Eti0 be the event that Sit = 0.
First, we claim that ProbT (·|Et−1i0 ) as viewed as a measure on time t strongly self-dominates. To see this,

not that from Lemma 15 we need only show that this is true when ProbT (·|Et−1i0 ) viewed as a measure on

time t− 1. The conclusion that ProbT (·|Et−1i0 ) strongly self-dominates viewed as a measure on time t− 1
follows from an extension of Claim 2.

This implies that

ProbT (Eti0|Et−1i0 ) ≥ ProbT (Eti0|Et, Et−1i0 ),

with strict inequality for any Et ∈ E which is sensitive to Nn
i (p).

23 By repeated use of Bayes’ rule, this

implies that

ProbT (Et|Et−1i0 ) ≥ ProbT (Et|Eti0, Et−1i0 ),

with strict inequality for any Et ∈ E which is sensitive to Nn
i (p). Then again applying Lemma 15 we can

deduce the same strict inequalities at time t+ 1.24

Proof of Lemma 10: Consider what happens when an agent i drops out: The resulting w0 is dominated
by the w if that agent does not drop out. Furthermore, from Lemma 15 for large enough T , the next period

wage distribution over other agents when the agent drops out is dominated by that when the agent stays

in, if one were to assume that the agent were still able to pass job information on. This domination then

easily extends to the case where the agent does not pass any job information on. Iteratively applying this,

the future stream of wages of other agents is dominated when the agent drops out relative to that where the

agent stays in. This directly implies that the drop-out game is supermodular. The lemma then follows from

the theorem by Topkis (1979).

23We defined sensitivity for functions, but as Et can be represented by an indicator function, this directly translates.
24While Lemma 15 does not state that the strict inequalities are preserved on given elements of the partition Π(p), it is easy

extension of the proof to see that this is true.
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Proof of Theorem 11: Let w ≥ w0 and x ∈ {0, 1}n. We first show that

E [f(Wt) |W0 = w
0, x ] ≥ E [f(Wt) |W0 = w, x ] .

We deduce from Lemma 14 that for a fine enough T−period subdivision,

E [f(Wt) |W0 = w
0, x ] ≥ E [f(Wt) |W0 = w, x ]

for t = 1 and for every non-decreasing f . Lemma 15 and a simple induction argument then establish the

inequality for all t ≥ 1. The inequality is strict whenever f is increasing and w0 > w.
Let now x, x0 ∈ {0, 1}n, with x0 ≥ x. Following the same lines than the proof of Lemma 14 we can show

that, for a fine enough T -period subdivision,

E [f(Wt) |W0 = w, x
0 ] ≥ E [f(Wt) |W0 = w, x ]

for t = 1 and for every non-decreasing f . The same induction argument than before extends the result to

all t ≥ 1. Again, f increasing and x0 > x imply a strict inequality.
Let w0 ≥ w. We now show that x∗i (w0) = 0 implies x∗i (w) = 0. Suppose not. Let i such that x∗i (w0) = 0

and x∗i (w) = 1. We distinguish two cases.
Suppose first that x∗−i (w

0) ≥ x∗−i (w). From x∗i (w
0) = 0, we deduce that

E

"X
t

δtiWit

¯̄
W0 = w

0, x∗−i (w
0)

#
< ci.

As x∗−i (w
0) ≥ x∗−i (w), it is also true that

E

"X
t

δtiWit

¯̄
W0 = w

0, x∗−i (w)

#
< ci.

Finally, w0 ≥ w imply that
E

"X
t

δtiWit

¯̄
W0 = w, x

∗
−i (w)

#
< ci,

in contradiction with x∗i (w) = 1.
Suppose now that x∗−i (w) > x∗−i (w

0). Then, x∗ (w) > x∗ (w0). We construct an equilibrium y for the

wage w0 the following way. For all i such that x∗i (w) = 1, let yi (w
0) = 1. By definition, x∗i (w) = 1 is

equivalent to

E

"X
t

δtiWit

¯̄
W0 = w, x

∗
−i (w)

#
≥ ci,

implying that

E

"X
t

δtiWit

¯̄̄
W0 = w

0
, x∗−i (w)

#
≥ ci.

Note that this inequality also implies that

E

"X
t

δtiWit |W0 = w
0, y−i

#
≥ ci,
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for all y ≥ x∗ (w). Now, for all i such that x∗i (w) = 0 do the following. If

E

"X
t

δtiWit

¯̄
W0 = w

0, x∗−i (w)

#
≥ ci,

let yi = 1, otherwise, let yi = 0. Iterate the process. That is, for all i such that yi = 0, let yi = 1 whenever

E

"X
t

δtiWit |W0 = w
0, y−i

#
≥ ci,

and keep yi = 0, otherwise. After a finite number of iterations, this iterative process stops. By construc-

tion, y is an equilibrium for w0, and y ≥ x∗ (w) > x∗ (w0), in contradiction with x∗ (w0) being a maximal
equilibrium.
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