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The Numerical Reliability 
of Econometric Software 

B. D. MCCULLOUGH 
and 

T-. D. VINOD 

1. Introduction 

Numerical software is central to our comput- 
erized society; it is used . . . to analyze fu- 
ture options for financial markets and the 
economy. It is essential that it be of high 
quality; fast, accurate, reliable, easily moved 
to new machines, and easy to use. (Ford and 
Rice 1994) 

A PART FROM COST considerations, 
A economists generally choose their 
software by its user-friendliness or for 
specialized features. They rarely worry 
whether the answer provided by the soft- 
ware is correct (i.e., whether the soft- 
ware is reliable). The economist, whose 
degree is not in computer science, can 
hardly be faulted for this: is it not the job 
of the software developer to ensure reli- 
ability? Caveat emptor. Would a re- 
viewer notice if the software is inaccu- 
rate? We think not. We surveyed five 
journals that regularly publish reviews of 
econometric software. For the years 

1990-97, over 120 reviews appeared. All 
but three paid no attention to numerical 
accuracy, and only two applied more 
than a single test of numerical accuracy 
(Michael Veall 1991, and McCullough 
1997, but see also Vinod 1989 and Colin 
McKenzie 1998). Since computation is 
the raison d'etre of an econometric pack- 
age, this lacuna is all the more puzzling 
given the failure of many statistical pack- 
ages to pass even rudimentary bench- 
marks for numerical accuracy (James Le- 
sage and Stephen Simon 1985; Bernhard, 
Herbold, and Meyers 1988; Gunther 
Sawitkzi 1994b; Udo Bankhofer and An- 
dreas Hilbert 1997). One would think 
that similar assessments of econometric 
software have been conducted, but the 
economics profession has no history of 
benchmarking econometric software. 

1.1 Econometric Software Has Bugs 

Consider full information maximum 
likelihood (FIML) estimation of Klein's 
Model I using Klein's original data. The 
consumption (Ct), investment (It), and 
wage (Wt) equations are given by 

Ct = a0t + aiC(WtP+ Wtg) + oC2Pt + OC3Pt-l 

It = Po + I3lPt + P2Pt-l + P3K-1 

Wt=yo + y1Et +y2Et1 +y3(t - 1931). 

1 McCullough: Federal Communications Com- 
mission. Vinod: Fordham University. For com- 
ments and useful suggestions, thanks to Reginald 
Beardsley, Robert Cavazos, Francisco Cribari, 
Douglas Dacy, Jerry Duvall, William Greene, David 
Kendrick, Robert Kieschnick, David Letson, Charles 
Renfro, and Janet Rogers. We are especially in- 
debted to Frank Wolak and two referees, who made 
substantial contributions. The views expressed 
herein are the authors', and not necessarifvy those 
of the Commission. Email: bmccullo@fcc.gov and 
vinod@murray.fordham.edu 
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TABLE 1 
VARIOUS FIML REsuLTs FOR KLEIN'S MODEL I 

(standard errors in parentheses, asterisk denotes 5% significance) 

?to ai a2 cX3 

Berndt 17.165* 0.791* -0.062 0.310 
(7.363) (0.066) (1.09) (0.629) 

Greene 17.8* 0.853* -0.214 0.351* 
(2.12) (0.047) (0.096) (0.101) 

C&P 18.34* 0.8018* -0.2324 0.3857 
(2.485) (0.0359) (0.3120) (0.2174) 

0 pi b2 03 

Berndt 29.837 -0.625 1.020 -0.173 
(23.77) (1.48) (0.999) (0.106) 

Greene 17.2* 0.130 0.140) -0.136* 
(6.47) (0.137) (0.613) (0.038) 

C&P 27.26* -0.8010 1.052* -0.1481* 
(7.938) (0.4914) (0.3525) (0.0299) 

YO 71 g2 73 

Berndt 4.790 0.278* 0.257* 0.213* 
(4.82) (0.084) (0.052) (0.078) 

Greene 1.41 0.498* 0.087* 0.403* 
(0.943) (0.018) (0.015) (0.021) 

C&P 5.794* 0.2341* 0.2847* 0.2348* 
(1.804) (0.0488) (0.0452) (0.0345) 

William Greene (1997, p. 760), Ernst 
Berndt (1990, p. 553), and Giorgio 
Calzolari and Lorenzo Panattoni (1988) 
present FIML parameter estimates and 
standard errors as found in Table 1. Note 
that the magnitude, significance, and 
even sign of the parameter estimates dif- 
fer. Which set of estimates, if any, is cor- 
rect? How much faith can be placed in 
the FIML estimates reported in journal 
articles? 

As another example, Michael Lovell 
and David Selover (1994) attempted to 
fit a Cochrane-Orcutt AR(1) correction 
to three data sets by means of four dif- 
ferent packages. For the first data set, 
estimates of p ranged from 0.36 to 
-0.79, with slope estimates for the pa- 
rameter of interest ranging from -35.1 
to -30.96. For the second data set, p 
estimates ranged from 0.31 to 0.93, 

with slope estimates ranging from -2.83 
to 3.06. For the third data set, p esti- 
mates ranged from 0.84 to 1.001, with 
slope estimates ranging from 0.26 to 
0.92. Sometimes these differences 
could be traced to differences in algo- 
rithms, in which case the differences 
are acceptable. Other times, they could 
not. Paul Newbold, Christos Agiaklo- 
glou and John Miller (1994) used 15 
packages to fit ARMA models to five 
separate time series, with similar re- 
sults. They also documented cases in 
which two packages generate the same 
parameter estimates, but markedly dif- 
ferent forecasts. This has important im- 
plications for estimates of the long-run 
persistence of macroeconomics shocks 
(i.e., cumulative impulse response 
functions), as in John Campbell and 
N. Gregory Mankiw (1987). Such 



McCullough and Vinod: The Numerical Reliability of Econometric Software 635 

important results might be quite sen- 
sitive to the choice of software, a 
possibility overlooked in textbooks. 

When discussing the solution to non- 
linear estimation problems, textbooks 
invariably mention that for a given 
problem, one algorithm might yield a 
solution, while another algorithm might 
fail to produce a solution. Just as invari- 
ably, no mention is made that when 
both algorithms solve the problem, one 
solution is likely to be more accurate 
than the other. As our FIML example 
makes clear, there is a distinct possibil- 
ity that neither "solution" is correct, but 
this issue is never raised. Neither do 
textbooks warn students that even sim- 
ple linear procedures, such as calcula- 
tion of the correlation coefficient, can 
be horrendously inaccurate. 

Suppose a multiple regression pro- 
duced a high R2 with low t-statistics. A 
first thought might be "multicollinear- 
ity." Standard practice in this situation 
is to compute the correlation matrix of 
the independent variables. Any conclu- 
sion regarding the correlation of the in- 
dependent variables would be critically 
dependent upon the package used. 
Leland Wilkinson (1985, test II-D) has 
a test for the accuracy of computing a 
correlation matrix. His six variables (X, 
BIG, LITTLE, HUGE, TINY, and 
ROUND) all are linear transformations 
of each other, and so are perfectly cor- 
related. Therefore the correlation ma- 
trix should be all units. The standard 
deviation of each variable should be 
2.738 raised to some (possibly negative) 
power of ten. In Table 2 the output of 
four popular econometric packages is 
presented.2 While package "Xl" gives 

the correct answer, programs "X2" and 
"X3" do not. Package "X4" even 
manages to report correlation co- 
efficients in excess of unity! We 
also note that programs "X2" and "X4" 
do not correctly calculate all the stan- 
dard deviations for the variables in 
question. 

1.2 Why Has No One Noticed? 

It is understandable that economists 
have paid little attention to whether or 
not econometric software is accurate. 
Until recently, econometrics texts rarely 
discussed computational aspects of solv- 
ing econometric problems (but see 
Russell Davidson and James MacKin- 
non 1993, ?1.5; Greene 1997, ?5.2). 
Many textbooks convey the impression 
that all one has to do is use a computer 
to solve the problem, the implicit and 
unwarranted assumptions being that the 
computer's solution is accurate and that 
one software package is as good as any 
other. Statisticians are more likely to be 
versed in statistical computing and nu- 
merical analysis and to know that accu- 
racy cannot be taken for granted. Yet 
even reviews of statistical software pay 
little attention to accuracy. In some 
quarters, complaints are raised against 
purveyors of inaccurate software, but as 
economists we take a more sanguine 
view. While the purveyance of inaccu- 
rate software is perhaps regrettable, it 
is predictable: the market provides us 
not necessarily with what we need, but 
with what we want; and we want 
speed, user-friendliness, and the latest 
econometric features. 

The- market forces that militate 
against the supply of accurate software 
are twofold. First, how often do ad- 
vertisements for econometric software 

2 We have elected not to identify software pack- 
ages by name for two reasons. First, we regard 
published software reviews as a more suitable ve- 
icle for providing full and fair assessments of in- 

dividual packages. Second, some developers are 
remarkably quick to respond to reports of errors, 

and many of the errors we recount were fixed even 
before this article went to press. 
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TABLE 2 
MATRICES OF CORRELATION COEFFICIENTS 

X BIG LITTLE HUGE TINY ROUND st. dev. 

X 1.0 2.738 
BIG 1.0 1.0 2.738 
LITTLE 1.0 1.0 1.0 2.738E-8 
HUGE 1.0 1.0 1.0 1.0 2.738E+12 
TINY 1.0 1.0 1.0 1.0 1.0 2.738E-12 
ROUND 1.0 1.0 1.0 1.0 1.0 1.0 2.738 

"Package Xl" (correct answer) 

X 1.0 2.738 
BIG 0.867 1.0 4.216 
LITTLE 0.863 0.614 1.0 3.518E-8 
HUGE 1.0 0.866 0.836 1.0 2.738E+12 
TINY 1.0 0.866 0.836 1.0 0.0 2.738E-12 
ROUND 1.0 0.866 0.836 1.0 1.0 1.0 2.738 

"Package X2" 

X 0.999 2.738 
BIG 0.645 1.0 2.738 
LITTLE 0.819 0.577 1.0 2.738E-8 
HUGE 1.0 0.645 0.820 1.0 2.738E+12 
TINY 1.0 0.645 0.820 1.0 1.0 2.738E-12 
ROUND 0.999 0.645 0.820 1.0 1.0 0.999 2.738 

"Package X3" 

X 1.0 2.738 
BIG 1.129 1.127 2.424 
LITTLE 1.007 1.137 1.013 2.87E-8 
HUGE 1.0 1.130 1.007 1.0 2.738E+12 
TINY 1.0 1.130 1.007 1.0 0.0 2.738E-12 
ROUND 1.0 1.130 1.007 1.0 1.0 1.0 2.738 

"Package X4T 

feature "speed of solution"3 as opposed 
to "accuracy of solution"? Frequently 
there is a trade-off between speed and 
accuracy, and often the fastest way to 
compute is not the most accurate way to 
compute. William Kahan (1997) has 
noted the deleterious effects of this 
overarching emphasis on speed at the 
expense of accuracy, and in a field 
where one might hope that consumers 

would know better: computer science. 
If the same affliction bedevils the pro- 
fession of computer science, the eco- 
nomics profession can hardly be 
faulted. Second, not only consumers' 
emphasis on speed, but consumers' em- 
phasis on new features militates against 
more accurate econometric software. 
Much of software development is the 
incorporation of the latest econometric 
procedures. Designing and testing soft- 
ware for accuracy is extremely labor in- 
tensive, and the developer who seeks to 
ensure accuracy may have to delay im- 
plementation of new features. Thus, an 
accuracy-enhanced upgrade would lack 
features possessed by other products. 

3 Some common measures of "speed" as found 
in advertisements and software reviews are mis- 
leading, such as "the number of seconds required 
to invert a lOOxlOO matrix 1000 times." Such loop- 
ing procedures can exaggerate the influence of the 
cache dramatically, especially when the cache hit 
rate reaches 100 percent after the first loop. See 
Weicker (1984). 
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In a market that demands speed and 
new features with little emphasis on 
accuracy, the developer who attempts 
to enhance accuracy could lose out to 
the competition. When numerical accu- 
racy is not a criterion for evaluation 
(e.g., Jeffrey MacKie-Mason 1992), a 
clear signal is sent to software devel- 
opers that allocating resources toward 
numerical accuracy is not a profit- 
maximizing strategy. Developers are 
merely satisfying demand-if we do not 
demand sorne essential feature like 
numerical accuracy, it is no one's fault 
but our own. 

We believe that if the consumers of 
econometric software were aware of the 
extent of numerical inaccuracies in 
econometric software, developers would 
have the incentive to spend more time 
ensuring accuracy, and could do so 
without losing market share. To this 
end, then, a goal of this article is to 
show consumers of econometric soft- 
ware that accuracy cannot be taken for 
granted, and that conversations about 
econometric software should begin with 
accuracy, and only then turn to speed 
and user-friendliness. This, in turn, will 
provide developers the incentive to 
supply that accuracy. 

1.3 Benchmarking 

Thirty years ago James Longley 
(1967) worked out by hand the solution 
to a regression of "total employment" 
on GNP, the GNP deflator, Unemploy- 
ment, Size of the Armed Forces, Popu- 
lation, and Time, for the sixteen years 
1947-62, and he did so to ten signifi- 
cant digits. He compared these results 
with those from a variety of mainframe 
regression packages and discovered that 
most programs produced drastically in- 
correct answers: "With identical inputs, 
all except four programs produced out- 
puts which differed from each other in 

every digit" (Longley 1967, p. 822). 
One program gave one digit of 
accuracy, two gave four-digit accu- 
racy, and another gave either zero 
or one-digit accuracy for each coeffi- 
cient. Longley traced the source of 
many failures to poor choices of algo- 
rithms. While Longley wrote thirty years 
ago, the lesson learned remains: soft- 
ware reliability cannot be taken for 
granted. 

The statistical literature has a long 
history of concern for software reliabil- 
ity (Ivor Francis, Richard Heiberger, 
and Paul Velleman 1975; Albert Beaton, 
Donald Rubin, and John Barone 1976; 
Francis 1981, 1983; Eddy et al. 1981), 
and this concern has produced many 
benchmarks. In addition to the Longley 
Benchmark, Roy Wampler (1980) pro- 
posed an entire suite of linear regres- 
sion benchmarks. Lesage and Simon 
(1985) and Simon and Lesage (1988) 
constructed benchmark tests for uni- 
variate summary statistics and the 
analysis of variance. Finally, Alan El- 
liott, Joan Reisch and Nancy Campbell 
(1989) and P. Lachenbruch (1983) pro- 
vided benchmarks for elementary statis- 
tical software packages. This trend most 
recently culminated in Sawitzki (1994), 
who proposed a testing strategy for as- 
sessing the reliability of statistical soft- 
ware. Recognizing that stringent testing 
is worthwhile only after entry-level tests 
are passed, he proposed L. Wilkinson's 
(1985) tests as a set of minimal stan- 
dards. Sawitzki (1994a), Wilkinson 
(1994), and Bankhofer and Hilbert 
(1997) applied the Wilkinson tests to 
several well-known statistical packages, 
and the results were less than impres- 
sive: all products failed some of these 
entry-level tests. McCullough (1999b) 
applied the Wilkinson Tests to several 
econometric packages, which fared 
about as well as the statistical packages 
did. That is to say, there is definite 
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room for improvement in the numerical 
accuracy of econometric software. 

With respect to accuracy and eco- 
nomics, a common sentiment is that 
economic data are accurate only to a 
few digits, and more accuracy than that 
is not necessary, so worrying about 10 
digits of accuracy in econometric calcu- 
lations is pointless. We partially agree 
with this view, but make an important 
distinction. As expressed above, this 
sentiment conflates how output is calcu- 
lated and to what end the output is 
used. A better expression is: since eco- 
nomic data are accurate only to a few 
digits, reporting 10 digits of a final an- 
swer is pointless; however, all interme- 
diate calculations should be carried out 
to as many digits as possible. The di- 
chotomy between calculation of output 
and use of output is important. It may 
well be the case that there is no practi- 
cal difference between two packages' 
estimates of a correlation coefficient, 
fj=0.95 and A 

2=0.92. However, if the 
exact result is 0.95 and a good imple- 
mentation of a good algorithm will 
achieve that result, then package two's 
correlation routine is atrocious. This is 
because it produces only one accurate 
digit in a setting where even a fair im- 
plementation of a' fair algorithm will 
produce seven digits of accuracy in dou- 
ble precision. Specifically, A2 =0.92 is 
evidence of bad software. 

Some readers might be dismayed at 
becoming aware of the extent of inaccu- 
racies in econometric software, and 
their confidence in the reliability of nu- 
merical computation might be shaken. 
The inaccuracies we recount have long 
existed in all manner of computational 
software, econometric and other. Only 
recently have the tools for diagnosing 
and remedying many of these deficien- 
cies become available, so only recently 
are users and developers becoming 
more aware of these problems. The 

foreword to a recent text on the subject 
(Francoise Chaitin-Chatelin and Valerie 
Fraysse 1996) addresses this precise 
point: "In some sense, that awareness 
[of inaccuracy] is no bad thing, so long 
as the positive aspects of the under- 
standing of finite precision computation 
are appreciated." 

Before finite precision computation 
can be appreciated, some acquaintance 
with how computers handle numbers is 
necessary. Therefore, Section Two dis- 
cusses computer arithmetic and errors 
in computation. It emphasizes: (1) that 
two algebraically equivalent methods 
may have drastically different effects 
when implemented on a computer; and 
(2) that "small" differences in the input 
or the algorithm can produce "large" 
changes in output. Section Three docu- 
ments inaccuracies in existing econo- 
metric software, and suggests useful 
benchmark collections for testing gen- 
eral routines. Section Four argues that 
specialized routines, specific to eco- 
nomics, need benchmarks. Section Five 
discusses random number generators 
and how to test them. Section Six 
discusses statistical distributions (e.g., 
for calculating p-values) and how to 
test them. Section Seven offers the 
conclusions. 

2. Computers and Software 

Computers are exceedingly precise 
and can make mistakes with exquisite 
precision. Certain tasks which are fre- 
quently repeated, such as rounding a 
sum, need to be exceedingly accurate. 
Consider rounding to three decimals 
a number whose magnitude is about 
one thousand. Should 1000.0006 be 
rounded up to 1000.001 or rounded 
down to 1000.000? Perhaps the answer 
is obvious, but what if the number in 
question was 1000.0005? Both rounding 
up and rounding down will inject a bias 



McCullough and Vinod: The Numerical Reliability of Econometric Software 639 

into the final result, so perhaps the 
answer is not so obvious.4 

Improper attention to the method of 
rounding can produce disastrous re- 
sults. The Wall Street Journal (Novem- 
ber 8, 1983, p. 37) reported on the Van- 
couver Stock Exchange, which created 
an index much like the Dow-Jones In- 
dex. It began with a nominal value of 
1,000.000 and was recalculated after 
each recorded transaction by calcula- 
tion to four decimal places, the last 
place being truncated so that three 
decimal places were reported. Truncat- 
ing the fourth decimal of a number 
measured to approximately 103 might 
seem innocuous. Yet, within a few 
months the index had fallen to 520, 
while there was no general downturn in 
economic activity. The problem, of 
course, was insufficient attention given 
to the method of rounding. When 
recalculated properly, the index was 
found to be 1098.892 (Toronto Star, 
November 29, 1983). 

2.1 Computer Arithmetic 

To a certain degree, all computers 
produce "incorrect" answers due to the 
computer's lack of an infinite word 
length to store numbers. A computer's 
arithmetic is different from the one 
people apply with paper and pencil. 
While people calculate using decimal 
(base-10) representations for numbers, 
computers calculate using base-2. As an 
example, the decimal number 23 has 
the base-2 representation 10111 since 
1(24) + 0(23) + 1(22) + 1(21) + 1(20) = 23, 
which is denoted 42(23) = 10111. Simi- 
larly, 42(10) = 1010 and the decimal 0.5 
has an exact base-2 representation 
02(0.5) = 0.1 since 0.5 = 1(2-1). The deci- 
mal 0.1 has an infinite (but periodic) 

binary representation with period four, 
42(0O1) = 0.000110011 where an overbar 
indicates infinite repetition. However, 
a computer has finite storage. If it has 
23 bits of storage to the right of the 
decimal, it will hold the decimal 0.1 
in memory as the binary number 
42(0.1) = 0.0001100110011001100110011O 
where A2(*) is the stored version of 02(0). 
Since (P2(0.1) is an infinitely repeating 
number, the stored version 2(0.1) is not 
exactly equal to the decimal 0.1 it rep- 
resents. If the stored binary number 
42(0.1) is reconverted to decimal, it be- 
comes 0.09999999403953. Thus, the 
computer "sees" 0.1 as something 
slightly less than 0.1. This has some in- 
teresting implications. First, it implies 
that rescaling a number by 10 can cause 
a loss of precision, since the exponent is 
stored base-2 rather than base-10. Sec- 
ond, reading data and performing a 
units conversion is different from read- 
ing already-converted data, a most dis- 
comfiting situation for those who en- 
counter it. These problems arise not 
due to the use of base-2 per se, but due 
to the combination of base-2 and finite 
precision. 

A floating point binary number has a 
fixed number of places, say 24, with a 
decimal point which can be placed 
anywhere. For example, $2(10) = 

00000000000000000001010.0, $2(0. 1) = 

0.00011001100110011001100 and the 
base-2 representation of their sum is 
42(10.1) = 1010.0001100110011001100. 
When this sum is reconverted to deci- 
mal, it becomes 10.0999985. A real 
number is represented in the floating 
point format: s x M x BE; where s is the 
sign (zero for positive or unity for nega- 
tive), B is the base of the representation 
(usually 2), E is the exponent, and M is 
a positive integer mantissa. A useful 
way to view this is as M being a string of 
zeroes and ones, with BE placing a deci- 
mal point somewhere in the string (or 

4A common solution is to round to the nearest 
even digit, e.g., 1.005 becomes 1.00 while 1.015 
becomes 1.02. This scheme is called "round-to- 
even. 
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to the left or right of the string, implic- 
itly padding with zeroes). If the leading 
digit is non-zero, the number is said to 
be normalized. The representations of 
$2(10) and $2(0.1) above are not normal- 
ized, whereas that of $2(10.1) is. While 
under certain circumstances interme- 
diate calculations might involve non- 
normalized numbers, results are stored 
in normalized format. Since the first digit 
in normalized format is always unity, we 
get an extra bit for the mantissa, 
referred to as the "hidden bit." 5 

For single-precision, a 32-bit word 
might be partitioned as follows: one bit 
for the sign, eight bits for the exponent 
(which can take integer values from 
-126 to 127) and 23 bits for the man- 
tissa which, with the hidden bit, yields 
a 24-bit mantissa, sometimes referred 
to as "23 + 1" to indicate that the 24th 
bit comes from the hidden bit. The 
magnitudes of such single-precision 
floating point numbers are constrained 
to lie between 2-126~ 1.2x 10-38 and 
(2 - 2-23) x 2127 3.4x 1038, the range of 
representable numbers, with the under- 
flow threshold and overflow threshold 
as lower and upper limits, respectively. 

Let DR be the familiar real number 
line, and let F be the representable 
numbers. Letfl(x) be the floating point 
representation of x. That is, fl(x) is the 
number in F that corresponds to some 
number in x E DR. For example, if x = 
0.1 then fl(x) = 0.09999999403953. Thus 
it is not always true that x =fl(x), i.e., 
that x EF- xx F F. Even when x,y F F 
it does not follow that (x + y) E F. This is 
a first suggestion that computer arith- 
metic is different from pencil-and-pa- 
per arithmetic. Let us define floating 
point addition by fl(x + y). Ideally, 
fl(x + y) is the number in F that is 
closest to x + y E DR. The difference, 

fl(x + y) - (x + y), is rounding error, and 
this difference depends in part on the 
values of x and y since the repre- 
sentable numbers are not uniformly dis- 
tributed in base-10. In single precision, 
there are 8,388,607 floating point num- 
bers between 1 and 2, while between 
1023.0 and 1024.0 there are 8,191 float- 
ing point numbers. Thus, it can be ex- 
pected that numbers with larger magni- 
tudes are more susceptible to rounding 
error than numbers with smaller magni- 
tudes; this supports the recentering and 
scaling of numbers to mitigate the ad- 
verse effects of floating point arithme- 
tic, as is frequently suggested in discus- 
sions of collinear data. While frequently 
it is true that fl(x + y)e F, much less fre- 
quently is it true that fl(x y)e F for 
floating point multiplication, since the 
product involves 2s or 2s - 1 significant 
digits, which extend beyond the s-digit 
mantissa. Therefore, floating point mul- 
tiplication is much more likely to be 
contaminated by rounding error than 
floating point addition. All this implies 
that computer arithmetic, contrary to 
the familiar pencil-and-paper arithme- 
tic, is neither associative nor distrib- 
utive, though it is commutative. One 
consequence of this, shown in sub- 
section 2.3, is that absent special pre- 
cautions, it is possible for the logical 
statement (x = y) to evaluate "false" 
while (x - y = 0) evaluates "true." In 
such a case, logical tests of equality 
cannot be trusted. 

Let (D denote any of the four arithme- 
tic operations: + - x + and let fl(x ? y) 
be the floating point representation of 
x 3 y. Then machine precision, c, is the 
smallest value satisfying 

Is(x y)-(X3y)l 'I? xeyl (1) 

i.e., it is the smallest value for which (1) 
holds for all ? and for all x and y such 
that the magnitude of x d y is neither 
greater than the overflow threshold nor 

5 Not all computers use the hidden bit, but it is 
part of IEEE-754. 
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less than the underflow threshold. For 
standard single precision, machine epsi- 
lon is es = 2-24= 5.96* 10-8 and for double 
precision, which uses a 64-bit word- 
length, it is ED = 2-53 = 1.11 10-16. Accu- 
racy refers to the error of an approxima- 
tion, whereas precision refers to the 
accuracy with which basic arithmetic op- 
erations are performed. They are the 
same for scalar computation, e.g., 
c = a b, but precision can be better than 
accuracy for nonscalar operations such as 
matrix inversion; since precision refers 
to the result of a single calculation, while, 
accuracy can refer to the result of several 
calculations. 

2.2 Errors in Computation 

When two floating point numbers are 
added, the smaller (in magnitude) num- 
ber is right-shifted until the exponents 
of the two numbers are equal, and then 
added (this procedure is referred to as 
normalization). While this method does 
not waste any bits of the mantissa and 
hence preserves accuracy, the least sig- 
nificant bits of the smaller number are 
lost when it is right-shifted. This is an 
example of roundoff error or rounding 
error. Roundoff error is a function 
of hardware and exists because a com- 
puter has a finite number of significant 
digits with which to represent real num- 
bers. For given numbers x, y, and z, 
when the computer is asked to calculate 
xy + z what it actually returns is 
w=(xy(1+cc)+z)(1l-+f) where cc and I8 
are rounding errors. Usually there are 
bounds for the rounding errors, such as 
I xo1 <2-53 and 1f1 <2-53, and these can 
be used to bound the total error be- 
tween the computed w and the actual 
value of xy + z. Such bounds are neces- 
sary because clearly w ? xy + z due to 
rounding error, and in fact E[w] ? xy + z. 
Unknown distributional forms and 
correlations hamper statistical analysis 

of rounding errors.6 It makes sense 
that there are only bounds: if a and , 
were actually known, they could be 
subtracted off to yield an exact result. 

Even when two numbers are precise 
to several digits, a single arithmetic op- 
eration can introduce sufficient error to 
ensure that the result is precise to no 
significant digits. One such occasion is 
the special case of rounding error called 
cancellation error, which occurs when 
two nearly equal numbers are sub- 
tracted. Nicholas Higham (1996, p. 10) 
provides an illustrative example. For 
f(x) = (1 - cosx)/x2 let x = 1.2 x 10-5. To ten 
significant digits, cos x = 0.9999999999, 
so 1 - cos x = 0.0000000001 andf(x) = 
0.6944 . . ., though by the definition 
of cos x the following inequality is true: 
0 < If(x) I < 0.5 for all x. The subtraction 
is exact, but the error in the sole non- 
zero digit in 0.0000000001 is of the 
same order as the true answer, and thus 
the truth is not visible in the final an- 
swer. Determining when such adverse 
results can and cannot happen is the 
field of error analysis: what proportion 
of the final answer is truth and what 
proportion is error. Underlying the 
notion of error analysis is the idea 
of how accurately each calculation is 
performed, and how the error from 
each calculation propogates through 
subsequent calculations. 

Even if computers had an infinite 
number of significant digits and so had 
no roundoff error, another type of error 

6 Make the simplifying assumption that round- 
ing errors are independent of x, y and z (they are 
not, because the floating point numbers are not 
uniformly distributed; the rounding error is 
smaller when the magnitude of the number is 
smaller, as seen in Section 2.1). Trivially, if 
E[oc]=E[f] =O then E[w] =xy+z+xyE[c43], and 
E[of] ? O because rounding errors are neither 
inde pendent nor uncorrelated. Asymptotic theory 
for dependent and correlated sequences is of little 
help, 1ecause rounding errors routinely violate the 
Lindberg condition: often a few rounding errors 
dominate the final error. 
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would exist as a function of software: 
truncation error. It exists because a 
program uses finite term approxima- 
tions. The analysis of truncation error 
can be said to constitute much of the 
field of numerical analysis. Consider a 
power series in x whose infinite sum is 
sin(x). A computer will truncate the in- 
finite sum by including only a finite 
number of terms, and in doing so will 
commit a truncation error. We note in 
passing that some power series for 
sin(x) converge quickly while others do 
not, thus the choice of algorithm can be 
crucial. Also, the rate of convergence 
can depend upon x, converging faster 
for some values than for others. Indeed, 
even the order in which summation is 
undertaken can affect the quality of the 
result. Germund Dahlquist and Ake 
Bjorck (1974) showed that in calculat- 
ing 210i000n-2, reversing the order leads 
to an error 650 times smaller than sum- 
ming over increasing n (see also 
Higham 1996, ?4.2-4.5). This is because 
rounding error accumulates more slowly 
when small terms are added first. Sum- 
ming a very large number of very small 
quantities is not just an exercise for 
testing software; numerical integration 
plays an important role in econometrics. 
Numerical integration becomes particu- 
larly difficult when higher moments are 
involved, because the numerical error 
becomes more severe. See Vinod and 
Shenton (1996) for a discussion. 

Whether via truncation or roundoff, 
error is introduced into most any result 
of an arithmetic operation. As a general 
rule, successive errors do not offset 
each other; they accumulate, and this 
cumulative error is an increasing func- 
tion of the number of operations. Gen- 
erally, the total error is of order Ne 
where N is the number of operations. In 
the special case that errors tend to be of 
opposite sign, the cumulative effect of 
such errors does not disappear, but pro- 

duces a total error of order WNFe. We 
note that there are multiple precision 
arithmetic routines available, which can 
carry out calculations to 500 digits, thus 
effectively eliminating roundoff error 
for many types of problems. However, 
they are quite specialized and not 
generally used by economists. 

Two methods of solving t-he same 
problem can differ dramatically in the 
number of operations. Consider solving 
n equations in n unknowns. We all know 
how to solve such a problem using 
Cramer's Rule. It can be shown that the 
number of multiplications and divisions 
necessary to solve the system is 
(n2 - 1)n! + n. The method of Gaussian 
elimination requires only n (2n2 + 9n - 5) 
such operations. For n = 5 Cramer's 
Rule requires 2885 multiplications 
whereas Gaussian elimination requires 
only 75. With noncancelling errors and 
machine precision 2-22, the orders of 
the approximations are 0.0006874 and 
0.00001788, respectively. However, if 
n = 10, Gaussian elimination requires 
475 operations with error order 
0.0001132 while Cramer's rule requires 
approximately 360 million operations 
with error order 85.831. Clearly, sys- 
tems of equations should be solved by 
Gaussian elimination rather than Cra- 
mer's rule (though for econometric 
work, other methods are preferred to 
Gaussian elimination). Prima facie it is 
intuitively desirable to employ methods 
with fewer operations, not only for the 
sake of speed but also for the sake of 
accuracy. This is not always so-some- 
times more operations are desired not 
for sake of speed but for sake of accu- 
racy, e.g., in the calculation of the sam- 
ple variance (see subsection 2.5). More- 
over, not only are some algorithms 
preferable to others, at an even more 
fundamental level, some methods of 
performing calculations are preferable 
to others. 
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When a calculation produces a num- 
ber that is too large, the result is over- 
flow, and a number that is too small 
produces underflow. To see overflow, 
on a handheld calculator with eight 
digits and without scientific notation, 
square 99,999,999. Dividing unity by 
99,999,999 yields underflow. Overflow. 
is a very stark process, usually resulting 
in noticeable program failure. Under- 
flow can be pernicious, because when 
handled improperly it can result in sen- 
sible-looking answers that are com- 
pletely inaccurate. One method of han- 
dling underflow is known as abrupt 
underflow (a.u.), in which numbers that 
are sufficiently small but nonzero often 
are automatically set to zero. One un- 
fortunate consequence of abrupt under- 
flow is that x - y = 0 does not imply 
x = y (David Goldberg 1991), and logi- 
cal tests for equality cannot be trusted. 
To see how this can happen, it is easiest 
to use decimal arithmetic rather than 
base-2. 

Suppose, then, that the base is 10, 
the mantissa has three digits, and the 
exponent ranges from -16 to +15, so 
that the smallest representable floating 
point number, say fp,t,in, is 1.00x 10-16. 
Consider two numbers, x = 5.28x 1015 
and y = 5.23x 1J15, both greater than 

fp71iin by a factor of 10. A test of x = y 
will return false. Paradoxically, a test of 
x - y = 0 will return true. The reason 
for this is that x - y = 0.06x10'5= 
6.0x 1017 when normalized, which is 
smaller thanfpmin and hence is set flush 
to zero, i.e., subjected to abrupt under- 
flow (a.u.). In the presence of a.u., no 
theorems requiring x - y = 0 <=== x = 
y can be used to prove anything, since 
this relation is then only sometimes 
true, not always true. 

As a means of handling the inaccu- 
racy of a.u., I. Goldberg (1967) pro- 
posed the method of gradual underflow 
(g.u.). Continuing the above example, 

when the exponent is at its minimum, 
-16, fpmin no longer is the smallest rep- 
resentable number, because 0.99x 10-16 

is smaller than fpnin. Note, however, 
that 0.99x 10-16 is not normalized, so 
such floating point numbers are re- 
ferred to as subnormals. Subnormal 
numbers are part of IEEE-754 (IEEE 
1985), the rules for computer arithme- 
tic on which hardware has stan- 
dardized.7 Virtually all PC and worksta- 
tion hardware supports the use of 
subnormal numbers, though some soft- 
ware does not take advantage of this 
feature. Prior to Demmel (1981), it was 
commonly thought that a.u. is "harm- 
less" and that the choice of either a.u. 
or g.u. was innocuous. One of the ad- 
vantages of IEEE-754 is that it sup- 
ports g.u., which is a necessary condi- 
tion for x - y = 0<n x = y. Perhaps more 
importantly, 'g.u. achieves greater nu- 
merical reliability for solving linear 
systems of equations than a.u. does. 

To see this, consider the LU decom- 
position of a matrix (another way to 
solve for the least squares coefficients), 
which produces a lower triangular (L) 
and upper triangular (U) factorization 
of a matrix A. Recall from matrix theory 
that if A is non-singular then the main 
diagonals of both L and U are non-zero. 
Demmel (1981) gives the following 
example. Let 

A t [2 3] 2 A=X[ 2] (2) 

which is clearly well-conditioned for 
matrix inversion. Using g.u. produces 

7 As of this writing, some conforming computers 
are: PCs based on Intel 386, 387, 486, Pentium, 
and P6 processors and associated clones by Cyrix, 
IBM, AMD, and TI; Macintosh based on Motorola 
68020 + 68881/2 or 68040; IBM RS/6000; Power- 
PC based PCs and Macintoshes; Suns based on M 
68020 + 68881/2 or SPARC chips; DEC Alpha 
based on DEC 21064 and 21164 chips; Cray T3D 
based on DEC 21064; and HP based on PA-RISC 
chips. Exceptions are: Cray X-MP, Y-MP, C90, 
J90; IBM /370 and 3090; and DEC VAX. 
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-2 vuUgu 
I L 2 *3k*L o 

whereas a.u. yields 

Lau Uau =[2 .x.[ - ]?A (4) [1/2 1] [ ] 

Thus, g.u. produces the correct factoriza- 
tion while a.u. incorrectly attributes sin- 
gularity to the decidedly non-singular 
matrix A. It is known that a computer 
that does not support g.u. cannot satisfy 
some of the LAPACK (Linear Algebra 
PACKage) benchmarks. To the extent 
that nonlinear solvers are based on linear 
approximations, it can be expected that, 
ceteris paribus, g.u. is also better than 
a.u. for solving nonlinear equations. 

Though many chips fully support 
IEEE-754 and many compilers and lan- 
guages support some aspects of IEEE- 
754, no compiler (as of this writing) 
fully supports IEEE-754, nor does any 
language (though FORTRAN 90 is 
more 754-compliant than FORTRAN 
77, and similarly for FORTRAN 95 with 
respect to FORTRAN 90).8 Nonethe- 
less, there are many languages and com- 
pilers that support g.u., while there are 
many that do not. Further results on 
underflow and numerical reliability, in 
addition to more examples, can be 
found in Demmel (1984). 

2.3 Misconceptions of Floating-Point 
Arithmetic 

Having discussed some of the intrica- 
cies of computer arithmetic and floating 
point calculations, it is instructive to 
dispel what Higham (1996) calls "Mis- 
conceptions of Floating Point Arithme- 
tic," of which we mention only three. 
We mention these not only to illumi- 

nate the discussion of floating-point 
arithmetic, but to drive home the fun- 
damental point that computer math is 
not at all like pencil-and-paper math.9 

Misconception Number One: A short compu- 
tation that is free of cancellation error, over- 
flow, and underflow must necessarily be 
accurate. 

Consider the following six lines of 
code: 

for i = 1:60 
x = x**0 .5 

end 
for i = 1:60 

x = x**2 

end 

where x**0.5=d_X and x**2=x2. Note 
that this algorithm is free from cancella- 
tion error, underflow, and overflow. 
Calculated without error, this algorithm 
will return x for any non-negative x 
that is entered, i.e., this algorithm rep- 
resents the function f(x) = x, x ? 0. How- 
ever, as seen in the previous subsection, 
computers necessarily calculate with er- 
ror, and so there is reason not to be sur- 
prised if the computed function, (x), dif- 
fers from the theoretical function f(x). 
On Brand X programming software, this 
algorithm actually computes notf(x) but 

OX= ,<x<1, 
l(= 1~ X> 1 (5) 

On Brand Y programming software a dif- 
ferent answer is obtained: 

0,x =0, 

f2(x = {1, x >0. (6) 
Observe thatfi andf2 are completely dif- 
ferent functions. Inputting the numbers 

8 IEEE-754 was developed by hardware special- 
ists; programming language and compiler special- 
ists were not involved. Some aspects of IEEE-754 
therefore are particularly difficult for compilers 
and languages to support, but much progress is 
being made. 

9 See, for example, George Forsythe's (1970) 
aptly titled article, "Pitfalls in Computation, or 
Why a Math Book Isn't Enough," for an elemen- 
tary discussion of why ideas which work in mathe- 
matical theory often fail in computational practice. 
A related article is L. Fox's (1971) "How To Get 
Meaningless Answers in Scientific Computation 
(and What To Do About It)." 
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0.0, 0.1, 0.2, . . . , 1.0, fl returns 10 
zeroes followed by unity, whilef2 returns 
a zero followed by 10 units. One might 
be tempted to think that, surely, one or 
both answers indicate "bad" software; in 
fact such a conclusion would be unwar- 
ranted. There is nothing wrong with the 
software. The problem is simply that the 
algorithm exhausts the computer's preci- 
sion and range. A user should always 
have some idea of the software's preci- 
sion and range, and whether his combi- 
nation of algorithm and data will exhaust 
these limits. 

As a trivial example, a user should not 
attempt to manipulate ten-digit num- 
bers on a program that uses single pre- 
cision storage.'0 At the other extreme, a 
researcher with a hundred thousand 
observations might choose not to run a 
regression on a PC. With so many 
observations, the potential for disas- 
trous cumulated rounding error is an 
evident concern. Least squares algo- 
rithms that are generally robust tend to 
be memory-intensive, and a PC might 
not have enough memory to solve a 
large system with such an algorithm. A 
less-robust least squares algorithm with 
less-demanding memory requirements 
might be able to produce a solution, 
but the solution might well be so con- 
taminated with rounding error as to be 
completely unreliable.11 

Misconception Number Two: Increasing the 
precision at which a computation is per- 
formed increases the accuracy of the answer. 

Equation (1) shows that the bound on 
the error is proportional to machine ep- 
silon. When the error bound is attained, 

if the same problem is solved in single 
precision and then again in double pre- 
cision, the double precision error bound 
will be smaller than the single preci- 
sion error bound by a factor of 
ED/ES = 2-53/2-24= 10-9, i.e., the double 
precision answer will have approxi- 
mately nine more decimal digits correct 
than the single precision answer. How- 
ever, actually attaining the error bound 
is a low probability event, so there is no 
guarantee that a result computed in t 
digits of precision will be more accurate 
than a result computed in s digits of 
precision for t > s (Higham 1996, 
?1.13).12 The "convenient fiction" that 
increasing the precision necessarily in- 
creases the accuracy is just that; nor is 
it a pathological case that would never 
happen in practice. 

As an example that this is more than a 
theoretical curiosum, Longley's results 
with an IBM 360 were more accurate in 
single precision than in double preci- 
sion (see Table 10 of Longley 1967, p. 
837). Had Longley not worked out the 
correct answer by hand, many persons 
naturally would assume that the double 
precision estimates were more accurate 
than the single precision estimates. 
When a user says that he encountered 
roundoff error in single precision and 
then switched to double precision to get 
a better answer, a better interpretation 
of what he really means is provided by 
William Press et al. (1992, p. 882), "For 
this particular algorithm, and my par- 
ticular data, double precision seemed 
able to restore my erroneous belief in 
the 'convenient fiction'." All this is not 

10 Some packages have "single precision storage" 
with "double precision calculation." The use of 
"single precision storage" can have adverse effects 
on accuracy. See McCullough (1999a). 

11 This illustrates one of the many dilemmas 
confronting developers: how to balance the choice 
of algorithm against the need to handle large 
datasets. Further discussion of the developer's 
viewpoint can be found in Charles Renfro (1997). 

12J. H. Wilkinson (1963, pp. 25-26) describes 
the circumstances under which the bound is at- 
tained for floating-point multiplication. Not only 
must each individual error attain its maximum, but 
the distribution of the multiplicands must follow a 
special law. Taken together, these imply that at- 
taining the bound is a low probability event. See 
also William Kennedy and James Gentle (1980, 
pp. 32-33). 
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to suggest that double precision should 
be abandoned in favor of single preci- 
sion; far from it. The point is simply 
that, contrary to what intuition based on 
pencil-and-paper experience might tell 
us, double precision is not always more 
accurate than single precision. 

Misconception Number Three: The final com- 
puted answer from an algorithm cannot be 
more accurate than any of the intermediate 
quantities; that is, errors cannot cancel. 

Earlier we suggested that rounding 
errors do not cancel. However, that is a 
general principle, and a clever program- 
mer can force exception to the rule. 
We now demonstrate this notion. 
Consider f(x)=(ex - 1)/x. The seemingly 
natural way to program this function is 
Algorithm 1: 

if x = 0 
f =1 

else 
f = (e**x - 1)/x 

end 
but an alternative is Algorithm 2: 

y = e**x 
if y = 1 

f =1 
else 

f = (y-1) / ln(y) 
end 

If x = 9 X 10-8 and final precision 
u 6 x 10-8, then a precisely calculated 
solution is f(x) = 1.00000005. Algorithm 
1, the natural way to program the func- 
tion, yields 1.32454766 while Algorithm 
2 yields 1.00000006. The reason the 
natural method fails miserably is because 
the intermediate step of the calculation 
is imprecise: for x = 0 the numerator is 
swamped by rounding and cancellation 
error. Again let a circumflex (A) denote a 
computed quantity. In Algorithm 2 it is 
true that the intermediate quantities 

- 1 and InA do not approximate y - 1 
and In y for y = 1. Nonetheless, 

y - 1)/ln Ais an extremely good approxi- 
mation to (y - 1)/in y in that range, be- 
cause the latter varies slowly and in fact 
has a removable singularity at the point 
y = 1. This demonstrates that the "natu- 
ral" way to program an equation may not 
be the computationally accurate way. 
Users and developers need to be cogni- 
zant of this important point. As an exam- 
ple of this phenomenon, not infrequently 
a nonlinear solver will fail for one para- 
meterization of an equation, but will pro- 
duce a solution for another equivalent 
parameterization. 

Again it is seen that computer arith- 
metic, when performed properly, may 
not be at all like paper-and-pencil arith- 
metic. Neither are mistakes computers 
make like the ones humans make. With 
paper and pencil, the order in which 
several numbers are added makes no 
difference to the final sum; not so with 
computers. In our arithmetic, if x - y = 0 
then x = y, but not in computer algebra 
unless the computer supports grad- 
ual underflow. Two formulae that are 
equivalent in our algebra are not neces- 
sarily equivalent when programmed 
into a computer. Such differences as 
these mean that our everyday notions of 
arithmetic errors do not coincide with 
the arithmetic errors made by comput- 
ers. Even when the arithmetic is good 
and the bounds on the truncations 
and rounding errors are tiny, caution 
still must be observed, for "small" 
differences can matter appreciably. 

2.4 "Small" Differences Matter 

Recall the dictum from the days of 
pencil-and-paper computation: if you 
want one decimal of accuracy, carry 
your calculations out to two decimals, 
i.e., if you want n digits of accuracy 
carry out the calculations to n + 1 
digits. An example that illustrates the 
falsity of this dictum is due to J. Van- 
dergraft (1983), in which carrying 
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calculations out to four digits produces 
zero digits -of accuracy. Consider the 
regression Y = cc + O3X + E where 
X: 10.00, 10.10, 10.20, 10.30,10.40, 10.50. 
Y: 1.000, 1.200,1.250, 1.267,1.268,1.276. 

The normal equations are 

6&c+61.5 = 7.261 
61.5& + 630.5 = 74.5053 

which yields a regression line of 
= = -3.478 + 0.457X. Suppose that the 

normal equations13 had been computed 
only to four significant digits as 

60& + 61. = 7.261 
61.5&c + 630.A = 74.50. 

The resulting regression line would have 
been Y= -2.651+ 0.377X. Changing the 
fourth significant digit of the normal 
equations changed the first significant 
digit of a coefficient, resulting in no dig- 
its of accuracy for either the intercept or 
the slope. The two regression lines fit 
quite differently when cast against a 
scatterplot of X and Y. This example fur- 
ther dispels the errant notion that "arith- 
metic more precise than the data it oper- 
ates on is needless." To the contrary, as 
Longley made clear, carrying calcula- 
tions out to single or double precision is 
no guarantee of even a single digit of ac- 
curacy, and the choice of the proper 
algorithm matters, too. 

To understand how results can be ad- 
versely affected, realize that roundoff 
error and truncation error, if combined 
in an unstable method (e.g., repeated 
division of a large number by a small 
number) can interact until the com- 
bined error overwhelms the result. Con- 
sider the system of equations Xb = y 
where the matrix X and vector y are 
known and the vector b is to be calcu- 
lated. From basic econometrics we 

know that b = (X'X)-'X'y. If X is changed 
a little and b changes a little then the 
data are well-conditioned; if b changes a 
lot then the data are ill-conditioned. In 
traditional least-squares, if the data ma- 
trix X consists of collinear data, then 
X might be an ill-conditioned matrix 
and solution could be problematic. A 
method of obtaining b that works for 
well-conditioned data might not work at 
all for ill-conditioned data. The notion 
of condition is not limited just to data; 
entire classes of problems can be said to 
be ill-conditioned, such as Fredholm 
equations of the first kind. 

As another demonstration that small 
differences matter, Beaton, Rubin, and 
Barone (1976) perturbed the indepen- 
dent variables of Longley's data by 
adding a random number uniformly dis- 
tributed on [-0.5, 0.499] to the last pub- 
lished digit. For example, 1947 GNP 
deflator is reported as 83, but it might 
well have been anywhere between 82.5 
and 83.499. Then a regression was run. 
This procedure was repeated 1000 
times. Since the perturbation of the in- 
dependent variables is within rounding 
tolerance of the data, one might expect 
little change in the estimated coeffi- 
cients. However, the Longley data are 
ill-conditioned and so a small change in 
X can produce a large change in b. In 
the 1000 regressions, the coefficient on 
the GNP deflator assumed values from 
-232.3 to 237.0. The ill-conditioned na- 
ture of the Longley data is apparent in 
Table 3, which presents Longley's coef- 
ficients and statistics for the coeffi- 
cients from 1000 perturbed regressions. 
One might think that the means of the 
coefficients from these 1000 perturbed 
regressions would be near Longley's un- 
perturbed solution, but such is not the 
case. See Vinod (1982) for a discussion 
of the numerical and statistical issues 
involved. As much as it highlights the 
need for accurate data, this experiment 

13 Of course, no one should use the normal 
equations to solve for regression coefficients. 
While the normal equations work algebraically, 
computationally they are a disaster. 
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TABLE 3 
LONGLEY RESULTS AND SUMMARY STATISTICS ON 1000 PERTURBED REGRESSIONS 

coefficient Pio I 2 3 4 5 6 

Longley -3482258.63 +15.06 -0.04 -2.02 -1.03 -0.05 +1829.2 
Beaton, et al. 

mean -1152648.37 -26.44 +0.03 -0.96 -0.72 -0.28 +637.1 
minimum -3483280.69 -232.3 -0.09 -2.42 -1.33 -0.94 -1706.9 
maximum +3452563.48 +237.0 +0.20 +1.77 +0.36 +0.48 +1800.9 

Source: Beaton, Rubin, and Barone (1976). 

also underscores the idea that small dif- 
ferences can matter appreciably and the 
need for accurate algorithms. 

2.5 Algorithms Matter 

When solving y = Xb we know that 
b=(X'X)-lX'y. This is what the least 
squares result looks like, but is not how 
it should be computed. The person un- 
familiar with numerical methods should 
be forgiven for concluding that the way 
to calculate the least-squares coefficient 
vector b is to calculate (X'X)-l and then 
post-multiply it by X'y (multiplying 
(X'X)-1 by an estimate of the error vari- 
ance yields cov(b)). However, direct so- 
lution of the normal equations is very 
susceptible to roundoff error and hence 
extremely undesirable. Vinod (1997, p. 
218) criticizes the "estimating function" 
literature for ignoring the numerical in- 
stability associated with direct solution 
of the normal equations. Numerically, a 
better way is first to calculate b without 
inverting X'X, and then use b to calcu- 
late (X'X)-l and cov(b). Wampler (1980) 
discusses various methods.' 

One such method of finding b with- 
out 'inverting X'X is the LU decomposi- 
tion (Press et al. 1994, ?2.10), which 
will work on a well-conditioned matrix, 
but is prone to failure if the data are 
collinear. For a near-singular matrix, 
the singular value decomposition (SVD, 
Press et al. 1994, ?2.6) will work, 
though it is slower (requires more op- 

erations) than the LU decomposition. 
In regression analysis, the SVD is the 
method of choice (Sven Hammarling 
1985; Press et al. 1992). Vinod and Ul- 
lah (1981, p. 5) is one of the few econo- 
metrics books that recommends the 
SVD estimate of the regression prob- 
lem. The SVD should be used until one 
has proved that a faster algorithm will 
be adequate or necessary.14 If it cannot 
be shown that the data will always be 
well-conditioned, they must be pre- 
sumed to be ill-conditioned. To assume 
otherwise lulls the user into a false 
sense of trust and then, at some random 
time, he is unknowingly betrayed. Sur- 
prisingly, few packages mention what 
algorithm is used to calculate b and 
cov(b), and clearly a poor choice of ma- 
trix inversion method can lead to disas- 
ter, as was made clear by Longley. As a 
general rule in computing, the method 
of solution greatly affects the accuracy 
of the solution, and properly imple- 
menting a well-chosen algorithm is im- 
portant. While describing how different 
methods of calculating b and cov(b)- can 
lead to different answers is beyond the 
scope of this paper, the basic ideas can 
be illuminated by demonstrating how 

14We have the luxury of concerning ourselves 
solely with accuracy. As a practical matter, it 
should be noted that the SVD is both memory- 
and time-intensive. A developer cannot be faulted 
for implementing the QR decomposition in its 
stead. We admit to preferring the QR to the SVD 
when bootstrapping. 
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different methods of calculating the 
variance of a series can lead to different 
answers. 

Robert Ling (1974) considered five 
methods for calculating the variance, of 
which we present three. The least pre- 
cise he showed to be the "calculator" 
formula (since it requires fewer key- 
strokes, it often is suggested as an 
alternative formula for calculation): 

VI - (=/n)(Xx)2 

n - 1 (7) 
whilethestandard:formula 

V2 - X(x -)2 

n- 1 (8) 
is more precise because Vi squares the 
observations themselves rather than 
their deviations from the mean, and in 
doing so loses more of the smaller bits 
than V2. Specifically, Vi is much more 
prone to cancellation error than V2. Yet 
a third, less familiar, formula is the 
"corrected two-pass method": 

V3 n- =(Xi -)2 

n {X (xl~(Xi X] (9) 

which is designed to account for round- 
ing error. Algebraically, the right-most 
term equals zero, but computationally it 
will not. Again, pencil-and-paper arith- 
metic is not like computer arithmetic. If 
calculation of the mean is exact (with no 
rounding error) then the second term on 
the right-hand side equals zero and V3 

collapses to V2. In the presence of 
rounding error, V3 is likely to be more 
accurate than V2. 

Sometimes a developer claims to use 
one formula when he actually uses an- 
other, or does not specify a formula at 
all. How might the quality of the vari- 
ance-calculating algorithm be assessed? 
Calculate the sample variance of three 

observations: 90000001, 90000002, and 
90000003 (obviously the correct answer 
is 1.0). L. Wilkinson and Gerard Dallal 
(1977) used this test on a variety of 
mainframe packages and found that all 
but one failed to produce the correct 
answer. Many econometric packages fail 
this test. A disingenuous counter-argu- 
ment is that the data can always be re- 
scaled to take better advantage of the 
floating point representation. The ap- 
propriate rejoinder is: "How do you 
know that you need to rescale in the 
first place?" Our practical advice is: 
Test the software. 

This, though, is the usual state of af- 
fairs in using econometric software: 
performing usual operations on an 
econometric package usually will give 
no indication that anything is wrong un- 
less the package produces a glaring er- 
ror such as a negative variance or R2 > 1. 
For example, when computing correla- 
tion matrices, users of package "X2" or 
"X3," absent prior benchmarking, would 
have no inkling that their program was 
faulty; a user of package "X4," since the 
correlations were greater than unity, 
might suspect something. Interestingly, 
each of the four packages passes the 
Longley Benchmark-that a program 
does one thing correctly is no assurance 
that it does another thing correctly. 

The above discussion may convey the 
impression that computer arithmetic is 
hopelessly imprecise, but nothing could 
be farther from the truth. Indeed, rules 
for computer arithmetic, if rigorously 
implemented, can lead to theorems and 
proofs of accuracy. The problem is not 
that the computer is inaccurate; it is 
how the inaccuracy is handled. If the in- 
accuracy is handled properly, then theo- 
rems can be proved which define an 
arithmetic for floating point computa- 
tions and so assure the final accuracy of 
an answer. See David Goldberg (1991) 
for an extended layman's discussion and 
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examples of such theorems. Additional 
useful references for computer arith- 
metic are Kennedy and Gentle (1980, 
ch. 3) and Ronald Thisted (1988, ch. 2). 
More generally, for the economist 
interested in matters computational, 
we highly recommend Kenneth Judd's 
(1998) recent textbook Numerical 
Methods in Economics. 

3. General Benchmarks 

Given the history of benchmarking 
statistical software, simply trusting the 
software represents the triumph of 
hope over experience and is an invita- 
tion to disaster. This, then, is the entire 
purpose of benchmarking: with given 
inputs and correct outputs in hand, the 
program is supplied with the input and 
its output is checked against the correct 
answer. Exact accuracy is not de- 
manded, but the program's answer 
should be close enough to the correct 
answer. This develops a knowledge of 
where the program errs and whether 
the error is likely to affect results. First 
examine the program's general proce- 
dures. After determining that they are 
reliable, then examine specific econo- 
metric procedures based on the general 
procedures. For example, first deter- 
mine that the linear least squares rou- 
tine "works." Then check that a special- 
ized procedure based on linear least 
squares, e.g., calculation of autocor- 
relation coefficients, is implemented 
properly. 

Following Sawitzki (1994), we recom- 
mend the use of the Wilkinson Tests for 
entry-level purposes. Beyond that, in 
Section One we mentioned several 
benchmarks for least squares proce- 
dures, such as univariate summary sta- 
tistics, analysis of variance, and linear 
regression. An obvious gap in the litera- 
ture has been benchmarks for nonlinear 
least squares procedures. This defi- 

ciency was remedied by the Information 
Technology Laboratory of the Statistical 
and Engineering Division at the Na- 
tional Institute for Standards and Tech- 
nology (NIST), which recently released 
its "Statistical Reference Datasets" 
(StRD), a collection of benchmarks for 
statistical software. 15 While NIST has 
plans to expand the number of bench- 
marks, at this writing it contains 58 
benchmarks in four suites: univariate 
summary statistics (9 benchmarks), 
analysis of variance (11), linear re- 
gression (11), and nonlinear regression 
(27). 

To circumvent rounding error prob- 
lems, NIST used multiple precision cal- 
culations, carrying 500 digits for linear 
procedures and using quadruple preci- 
sion for nonlinear procedures. Com- 
plete computational detaits and a dis- 
cussion of test problem selection are in 
Janet Rogers et al. (1998). The results, 
rounded to fifteen digits for linear pro- 
cedures and eleven digits for nonlinear 
procedures, are referred to as "certified 
values." Certified values are provided 
for a number of statistics for each suite. 
For example, for univariate summary 
statistics the mean, standard deviation, 
and first-order autocorrelation coeffi- 
cient are given to fifteen places. While 
the output from so many tests is volumi- 
nous, McCullough (1998) described 
how to condense the output, and ap- 
plied the benchmarks to three popular 
statistical packages (McCullough 1999). 
While the Longley lesson has been 
learned-all packages did well on linear 
regression benchmarks-gross errors 
were uncovered in analyses of variance 
routines (including negative sums of 
squares), and some programs produced 
solutions to nonlinear problems that 
had zero digits of accuracy. One of the 

15 On the web at http://www.nist.gov/itl/div898/ 
strd 
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statistical packages solved all 27 of the 
StRD nonlinear benchmarks, and an- 
other solved 26 of 27, returning one in- 
correct answer. Of course, there are 
two ways a nonlinear procedure can fail, 
as described by W. Murray (1972, p. 
107): "The first is miserable failure 
which is discovered when an exasper- 
ated computer finally prints out a mes- 
sage of defeat. The second is disastrous 
failure when the computer and trusting 
user mistakenly think they have found 
the answer." 

McCullough (1999a) also applied the 
StRD to econometric software. Again, 
the Longley lesson has been learned, 
but the problems with nonlinear estima- 
tion appear to be more severe with 
econometric software than with statisti- 
cal software. At one extreme, one 
econometric package correctly solved 
26 of the 27 nonlinear estimation prob- 
lems, once producing a miserable solu- 
tion (of course, no solution is better 
than an incorrect solution). At the other 
extreme, a popular econometric pack- 
age correctly solved nine, failed miser- 
ably four times, and for the remaining 
fourteen produced disastrous solutions. 
Absent a benchmark, a user would have 
no idea that this package produced 
completely inaccurate "solutions" for 
over 50 percent of the test problems. A 
third package produced eight disastrous 
solutions. Thus, the results of any study 
involving nonlinear estimation that used 
the latter two packages must be called 
into question. It is not too far off the 
mark to suggest, at least for econo- 
metric packages, that nonlinear estima- 
tion is today where linear estimation 
was thirty years ago. As an aside, we 
strongly caution any economist who 
uses a spreadsheet package for econo- 
metric estimation to benchmark the 
package first (McCullough and Wilson 
1999). 

Also related to nonlinear estimation, 

we note that some packages report no 
details of their nonlinear estimation 
(not even the method), and others are 
vague about important details such as 
whether numerical or analytic deriva- 
tives are used.16 Still others make no 
mention of how the standard errors are 
computed, (e.g., via the gradient or in- 
verse of the Hessian) despite the fact 
that this can affect inference. Some 
packages conflate the minimization and 
nonlinear least squares routines, offer- 
ing only a single procedure. The basis 
for this is that any minimization prob- 
lem can be written as a maximization 
problem merely by appending a minus 
sign to the objective function. Typically, 
though, separate routines are used for 
minimization of a sum of squares and 
maximization of likelihood functions. 
The primary reason is that the objective 
function of a least squares problem has 
a special form, and more efficient, spe- 
cialized algorithms have been devised 
for the special form. Some packages 
offer only one solver, though neither 
modified Gauss-Newton nor Levenberg- 
Marquardt is sufficiently dependable 
to serve as the sole general nonlinear 
least squares method in supporting 
software systems (Kennedy and Gentle 
1980, p. 484). 

All these problems are compounded 
by the fact that virtually all journals do 
not require authors to reveal computa- 
tional details, not even the software 
used. Thus, even if we know that some 
software package is defective, we have 
no idea which published results are 
based on defective software and might 

16 Generally speaking, analytic derivatives are 
more accurate than numerical derivatives. Nu- 
merical derivatives crafted for a particular prob- 
lem can be as accurate as analytic derivatives, but 
in a general purpose nonlinear solver, analytic 
derivatives are preferred (Jonathan Bard 1974, 
p. 117; J. E. Dennis and Robert Schnabel 1996, 
p. 106). See Janet Donaldson and Schnabel (1987) 
for Monte Carlo evidence. 
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well be wrong. More to the point, nor 
do we have any idea which results might 
be right. Even in rare instances when a 
software package is identified in an arti- 
cle, and the package is later discovered 
to be defective in a way which affects 
the article's results, updating the results 
with a reliable software package is prob- 
lematic. The reason is that virtually no 
journals require authors to archive 
either their data or their code, and this 
constitutes an almost insurmountable 
barrier to replication in the economic 
science. Scientific content is not depen- 
dent merely on writing up a summary of 
results. Just as important is showing the 
precise method by which the results 
were obtained and making this method 
available for public scrutiny. To our 
knowledge, only the journal Macro- 
economic Dynamics (MD) requires both 
data and code, while the Journal of Ap- 
plied Econometrics (JAE) requires data 
and encourages code, and the Journal 
of Business and Economic Statistics 
(JBES) and The Economic Journal re- 
quire data; all four journals have ar- 
chives which can be accessed via the 
worldwide web. In the context.of repli- 
cability and the advancement of sci- 
ence, the advantage of requiring code 
in addition to data is obvious. While it 
may be trivial to use the archived code 
to replicate the results in a published 
article, only if the code is available for 
inspection will other researchers have 
the opportunity to find errors in the 
code. Just as commercial software needs 
to be checked, so does the code which 
underlies published results. 

The StRD, while the foremost collec- 
tion of benchmarks for econometric 
purposes, is not the only one. We note 
also the existence of suites of bench- 
marks for matrices (including inversion, 
multiplication, eigenvalue decomposi- 
tion, etc.). Given the prevalence of spe- 
cialized covariance matrices whose cal- 

culation is not automated, and also the 
increasing use of eigenvalue analysis for 
dynamical systems, these could profit- 
ably be applied to testing the matrix- 
handling facilities of econometric pack- 
ages. They also would be suitable for 
testing matrix-based languages such as 
GAUSS and Ox. The "Matrix Market" of 
R. Boisvert et al. (1997) has over 500 
matrices, each with its own web page, 
though many of them are quite special- 
ized and rarely encountered in econom- 
ics. A more managable number, about 
70, with more relevance to economics is 
Higham's (1991, 1995) "TESTMAT" col- 
lection. We are unaware of any econo- 
metric software review that assesses 
the accuracy of matrix calculations. We 
have applied some of Higham's test 
matrices to some econometric pack- 
ages and found errors in inversion and 
eigenvalue routines, which suggests the 
need for such assessments. 

Checking the basic estimation ma- 
chinery is only the beginning. That the 
linear or nonlinear solver "works" is no 
assurance that it has been properly im- 
plemented in specialized procedures 
such as FIML and GARCH. Such spe- 
cialized procedures need benchmarks, 
of which there is a marked dearth. 

4. The Needfor Specific Benchmarks 

Discrepancies abound between dif- 
ferent software packages, and many of 
us are familiar with getting two answers 
to the same problem using two different 
packages. Here we do not refer to mi- 
nor differences due to rounding error, 
hardware configuration, or operating 
system, but major differences due to 
some unknown reason, such as the dis- 
crepancy between FIML results pre- 
sented in our Table 1. All three sets of 
answers cannot be right; and in fact 
they are not: the correct answer is by 
Calzolari and Panattoni (1988), who 
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provided a benchmark for FIML, in- 
cluding the asymptotic covariance 
matrix thereof computed by various 
methods. See Julian Silk (1996) for a 
discussion. 

An unfortunate consequence of two 
different packages providing two differ- 
ent answers to the same problem is 
a lack of replicability in economic 
research. In their important article, 
William Dewald, Jerry Thursby and 
Richard Anderson (1986) showed that 
replicating economic research is a nearly 
impossible task. Part of the replicability 
problem is that, in addition to the data 
and the code used to run a commer- 
cial package, an aspiring replicator also 
needs the same commercial package as 
the original author. Yet, a researcher 
should be able to expect that FIML es- 
timates of Klein's Model I are not de- 
pendent on the package used. Clearly, 
benchmarks, replication, and software 
reliability are fundamentally related. 

The advantage of writing software to 
meet existing benchmarks is obvious. 
Yet even when benchmarks exist, few 
econometric software developers pro- 
vide users with benchmarks results, or 
even provide sufficient information on 
the algorithm that a user can ascertain 
whether or not the procedure is likely 
to produce correct results. For example, 
many packages have "autocorrelation" and 
"partial autocorrelation" procedures which, 
given an input series, produce the 
lagged autocorrelations and lagged partial 
autocorrelations. These are critical for 
choosing the number of AR and MA 
lags for Box-Jenkins modelling. Yet rarely 
is the user told how these results are 
calculated, and this is important infor- 
mation, since some poor algorithms are 
in widespread use. An example follows. 

Let xO be a series and let xl and x2 
be its first and second lags. Let pi be 
the first-order autocorrelation coeffi- 
cient (the simple correlation between 

xO and xl) and let 2t2 be the second- 
order partial autocorrelation coefficient 
(the correlation between xO and x2 after 
the effect of xl on xO is removed). By 
definition the first-order partial auto- 
correlation coefficient is equal to the 
first-order autocorrelation coefficient, 
i.e., lti -pi. There are many ways to cal- 
culate the autocorrelation and partial 
autocorrelation coefficients, and some 
are better than others. With respect to 
calculation of partial autocorrelation co- 
efficients, George Box and Gwilym 
Jenkins (1976, p. 65) note that the re- 
gression method is more accurate-than 
methods based on the Yule-Walker 
equations (YWE). M. Priestley (1981, 
pp. 350-52) lists four methods in de- 
creasing order of accuracy: exact maxi- 
mum likelihood, conditional maximum 
likelihood (CML), approximate least 
squares, and the YWE. In general, the 
YWE are to be eschewed for economic 
data (Dag Tjostheim and Jostein Paul- 
sen 1983), yet they are frequently em- 
ployed in econometric software and 
often the only method mentioned in 
time series and econometrics texts. It is 
interesting to compare the YWE to 
CML. 

Define a series xO = {1, 2, . . . 101. 
It is linear without errors, so pi= 1. 
Once the effect of xl is removed from 
x0, there is nothing left to explain, so 
t2 =0. These intuitive results can be 
verified by calculation from first princi- 
ples, e.g., elementary formulae for cor- 
relation and partial correlation (Alan 
Stuart and J. Ord, 1991, p. 1012). A 
standard implementation of the YWE 
yields M1=0.70 and iE2=-0.151 while 
CML yields ,j = 1.0 and f2 =0. The ef- 
fect of inaccurate estimation of partial 
autocorrelation coefficients on ARMA 
model identification needs no elabora- 
tion. Accurate computation of partial 
autocorrelation coefficients is discussed 
in McCullough (1998a). 
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As another example of the need for 
benchmarking specialized procedures, 
consider the staggering number of pub- 
lished papers using GARCH. It is well- 
known that different packages produce 
different answers to the same problem. 
While until recently there was no 
benchmark for GARCH, this problem 
was all but solved by Gabrielle 
Fiorentini, Calzolari and Panattoni 
(1996, hereafter FCP). They provided 
complete and usable closed-form ex- 
pressions for the gradient and Hessian 
of a univariate GARCH model (recall 
that analytic derivatives are more accu- 
rate than the numerical derivatives 
commonly used in GARCH proce- 
dures). They also provided FORTRAN 
code for estimating such a model. Using 
this code on a well-known GARCH 
dataset constitutes a benchmark. 

The JBES archive has the T = 1974 
observations on the daily percentage 
nominal returns for the Deutsche- 
mark/British pound exchange rate from 
Tim Bollerslev and Eric Ghysels (1996, 
hereafter BG). The JAE archive has the 
FCP FORTRAN program. McCullough 
and Renfro (1999) used these data and 
code to produce the FCP GARCH 
benchmark and applied it to seven pack- 
ages, "Y1" through "Y7." The model is 
yt=ii+EX, where EtVPt-I- N(O,ht) and 
ht= ao + oei 2 1 + ,lht-1. (BG estimated a 
different parameterization of this model; 
their results are consistent with bench- 
mark.) Since this model must be esti- 
mated by nonlinear methods, starting 
values for the coefficients and a method 
for initializing the series ht and e 2 at 
time t = 0 must be specified. FCP, BG 
and many others have used the initiali- 
zation ho=e =SSR/T (SSR is the sum 
of squared residuals). 

Surprisingly, not all packages could 
even begin to estimate this simple 
GARCH model which has been much- 
used in applied work. Package Y2 allows 

the user to control neither the starting 
values nor the initialization of ho and 
EO. Packages Y1, Y4, and Y6 allow the 
user to specify the starting values, but 
offer no control over the initialization. 
Packages Y3 and Y5, which use ana- 
lytic rather numerical first derivatives, 
achieved two or three digits of accuracy 
for the coefficients (the accuracy of the 
standard error estimates is another mat- 
ter altogether). Whether this degree of 
accuracy is suitable as input for an op- 
tion pricing model is unknown. Only 
one package, Y7, hit the benchmark to 
several digits of accuracy, and did so for 
both coefficients and standard errors. 
This package uses analytic first and 
second derivatives. 

In all but two cases, it was necessary 
to contact the developer to determine 
at least one and sometimes all of the 
following: the precise method of initial- 
izing ho and ; 2. the type of derivatives 
used; and the method of calculating 
standard errors (there are at least five 
ways). That these matters are not ex- 
plicitly addressed in the documentation 
is a serious omission. That four of seven 
GARCH procedures cannot accommo- 
date a simple and popular GARCH 
model suggests that some vendors take 
an idiosyncratic approach to program- 
ming. For these four packages, the user 
has very little choice as to the condi- 
tional likelihood to be maximized. Such 
approaches to documentation and pro- 
gramming are an impediment to good 
research. 

Some procedures are easy to bench- 
mark, as (partial) autocorrelation coeffi- 
cients and two-stage least squares. 
These, however, are the exception. 
Generally, devising a benchmark is an 
arduous process, as the work of Calzo- 
lari et al. and Fiorentini et al. attests. 
J. Dongarra and G. Stewart (1984) 
noted, while describing their pioneering 
efforts to test only linear algebra 
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routines, "In some cases, the test pro- 
grams were harder to design than the 
programs they tested." The general 
state of affairs is that there are no 
benchmarks for most specialized econo- 
metric procedures. Perusing the list of 
commands for any econometric soft- 
ware package yields many procedures 
for which we were unable to find a 
benchmark and for which we found dis- 
crepancies between packages: linear es- 
timation with AR(1) errors, estimation 
of an ARMA model, Kalman filtering, 
limited dependent variables models, SUR 
estimation, three-stage least squares, and 
so on. Absent benchmarks, we cannot be 
sure that an econometric package gives 
us reliable answers. Estimation, how- 
ever, is not the only part of a package 
whose reliability needs to be verified. 

5. Testing the Random Number 
Generator 

Only a few years ago, the use of ran- 
dom numbers in economics was the ar- 
cane province of a few specialists. With 
the recent explosion in computing 
power and concomitant theoretical ad- 
vances, this is no longer the case. Simu- 
lation (Christian Gourierioux and Alain 
Montfort 1996), bootstrapping (Vinod 
1993), and Bayesian econometrics are 
but three econometric methods which 
make extensive use of the random num- 
ber generator (RNG). The recent text 
by Gentle (1998a) is a useful reference. 
Good introductions to RNGs are 
Stephen Park and Keith Miller (1988) 
and Press et al. (1992, ch. 7), both of 
which stress that an RNG should not be 
treated by the user as a "black box"- 
the user who chooses to remain unin- 
formed of the properties of his RNG 
does so at his own peril. Yet, we exam- 
ined several econometric packages and 
found that most gave no information 
whatsoever about the RNG employed, 

not even a citation to the article in 
which the RNG was published. Econo- 
metric software developers typically do 
present the RNG as a black box. 

As is well known, the random num- 
bers produced by a computer are not 
random, but pseudo-random, i.e.,- they 
are produced deterministically, but (if 
the RNG works well) appear to be ran- 
dom. One popular RNG is the linear 
congruential generator (LCG), which 
for a large integer m produces a se- 
quence of numbers II, I2, 13,. .. between 
0 and m - 1 via a recursion 

Ij+1=aIj+c (modm) (10) 

based on an initial "seed" Io, which often 
is supplied by the user. Eventually, the 
sequence repeats itself with a period no 
greater than m, and exactly equal to m if 
the parameters a, c, and m are carefully 
chosen. Typically, output is restricted to 
the interval (0,1) by returning Ij+i/m. 
This sequence should be uniformly dis- 
tributed. For the LCG, though not for 
all RNGs, the same sequence will be 
produced with the same seed. This re- 
producibility is a desirable feature for 
debugging purposes. When debugging a 
program, it is necessary to examine the 
input which caused the bug, and if the 
RNG is not reproducible, the input no 
longer is available. 

Ripley (1990) lists the desirable char- 
acteristics of an RNG. In short, an RNG 
should: 

1. be reproducible from a simply 
specified starting point; 

2. have a very long period; 
3. produce numbers that are a very 

good approximation to a uniform 
distribution; 

4. produce numbers that are very 
close to independent in a moderate 
number of dimensions. 

We already addressed the first point; we 
address the remaining three in turn. 
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Poor choices for the parameters of 
any RNG can drastically impair its qual- 
ity, causing the period to be unneces- 
sarily short or even producing non- 
uniform random numbers. For example, 
the infamous RANDU (IBM 1968, p. 
77) generator distributed with the IBM 
360 mainframe computer had such poor 
choices for the parameters that Donald 
Knuth (1997, p. 188) called it "really 
horrible." RANDU failed even simple 
tests of randomness. Complicating mat- 
ters for users, RANDU was widely 
imitated, and even recommended in 
textbooks long after its faults were well- 
known (Park and Miller 1988, p. 1198). 
As another example, Sawitzki (1985) de- 
scribes the RNG for IBM PC BASIC as 
being not only decidedly non-uniform, 
but having a period of only 216. "Short" 
is a relative term, and periods which 
were of acceptable length only a few 
years ago might now be unacceptable, 
given the recent surge in the demand 
for random numbers. Knuth (1997, p. 
195) suggests that the period should be 
at least one thousand times larger than 
the number of values used, i.e., if p is 
the period and n is the number of calls 
to the RNG, then p > 1000n. The rea- 
son is that the discrepancy between an 
RNG's output over its entire period and 
true randomness can be large, espe- 
cially for linear-type generators, so at 
most a fraction of the RNG's output 
should be used. Therefore, a p = 231 
generator should be used for no more 
than 2.1 million calls. Yet a modest 
double bootstrap (see McCullough and 
Vinod 1998) with 1999 first stage and 
250 second stage resamples requires 
that the residual vector be resampled 
half a million times, so that such an 
RNG can support a sample size of no 
more than four observations. 

The situation is even more stark for 
more computationally intensive applica- 
tions such as Bayesian inference with 

numerical integration, Monte Carlo 
studies, and calculation of non-standard 
test statistics. John Geweke and Mi- 
chael Keane (1997) used one billion 
random numbers to conduct Bayesian 
inference via Gibbs sampling. The 
Monte Carlo of the double bootstrap by 
David Letson and McCullough (1998) 
required 45 billion calls to the RNG. 
MacKinnon (1996) used more than 100 
billion to tabulate the distribution func- 
tions of unit root and cointegration sta- 
tistics. With such considerations in 
mind, Geweke (1996) showed how to 
set up an RNG with p = 2100. One expert 
on random numbers has written (Pierre 
L'Ecuyer 1992, p. 306) "No generator 
should be used for any serious purpose 
if its period (or, at least, a lower bound 
on it) is unknown." A researcher needs 
to know about the RNG in his econo- 
metric package. Simply having a cita- 
tion for the RNG is insufficient, be- 
cause faulty RNGs are still proposed in 
journal articles (L'Ecuyer 1994), and 
some RNGs with bad properties are in 
widespread use. 

Not only should an RNG have a long 
period, it should also pass statistical 
tests for randomness, because corre- 
lated output can wreak havoc. For ex- 
ample, first-order autocorrelation of the 
random numbers might not be a prob- 
lem if Monte Carlo methods are used to 
evaluate a one-dimensional integral, but 
almost certainly would be disastrous for 
evaluating a two-dimensional integral. 
The idea behind testing is to see 
whether the RNG's output is signifi- 
cantly different from the behavior of a 
truly independently and identically dis- 
tributed sequence of uniform random 
variables. Strictly speaking, the null hy- 
pothesis that the output from an RNG 
is uniform, i.i.d. is false, and no single 
best test exists. Yet, since what is 
wanted from an RNG is the appearance 
of randomness, ceteris paribus, we 
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recommend an RNG that passes a given 
test for uniformity to one that fails it. 
Moreover, one test is insufficient. Since 
there are many possible departures 
from randomness, many tests should be 
applied. 

The following simple example de- 
scribes testing a sequence of numbers 
for randomness, which often involves 
two-level testing. Divide the unit inter- 
val into 30 equal bins. Make three hun- 
dred calls to the RNG and place each in 
its appropriate bin. If the RNG does 
provide truly uniform numbers, there 
should be 10 numbers in each bin, plus 
or minus random deviations. This can 
easily be tested by using the x2 compari- 
son of the actual and expected number 
in each bin. Repeat this test 10 times, 
yielding 10 x2 statistics which can then 
be compared to a theoretical x2 distrib- 
ution with 29 degrees of freedom us- 
ing the Kolmogorov-Smirnoff (K-S) 
test. This will test whether the RNG 
produces numbers that are approxi- 
mately uniformly distributed. Of 
course, the number of bins can be in- 
creased, as well as the number of calls 
to the RNG, to provide finer discrimi- 
nation. The reason for running 10 x2 
tests and then using the K-S test (two 
levels) instead of conducting one large 
X2 on 3000 random numbers (one level) 
is that this increases the power of the 
test (L'Ecuyer 1994, sec. 4.5.1), which 
is desirable since the null hypothesis is 
false. 

The above procedure tests how well 
the RNG can fill the real line, but can it 
fill a square? To test this, make a 
square with 30 equal intervals on each 
side, for a total of 900 bins. Draw 9000 
pairs of random numbers, which should 
put 10 in each bin. Uniformity can be 
tested by comparing actual and ex- 
pected numbers for each bin with a 
X2(899) distribution. Then, the test can 
be repeated 10 times and those 10 x2 

statistics subjected to a K-S test. Many 
simple RNGs will pass the extension to 
three dimensions; RANDU will not. 
While RANDU's output appeared ran- 
dom in one and two dimensions, its 
correlation showed up strongly in three 
dimensions, i.e., RANDU's output was 
not uncorrelated in a moderate number 
of dimensions. Extensions to still higher 
dimensions are easily generalized. R. 
Coveyou and R. MacPherson (1967) 
first observed and George Marsaglia 
(1968) explicitly discussed that LCGs 
have a lattice structure. That is, in 3- 
space, for example, the points (ZI, Z2, Z3), 

(Z2, Z3, Z4) and (Z3, Z4, Z5) all fall on a finite 
number of planes. Therefore, the num- 
ber of planes should be large and they 
should be close together. Hence, it is 
important to test for correlation in 
higher dimensions, though for practical 
reasons the number of dimensions is 
limited to about eight. 

Batteries of such tests are offered by 
Michael Stephens (1986) and She 
Tezuka (1995), though the first stan- 
dard battery of tests of which we are 
aware was given in the 1981 edition of 
Knuth (1997), with FORTRAN and C 
implementations by E. Dudewicz and 
T. Ralley (1981) and Jerry Dwyer and 
K. Williams (1996), respectively. Mar- 
saglia (1985) noted that Knuth's tests 
were not very stringent. This is espe- 
cially true today, as the scale of 
computer simulations has increased 
concomitantly with computing power. 
In particular, some RNGs that pass the 
Knuth tests frequently produce signifi- 
cant biases when used in large-scale 
simulations. To remedy this deficiency, 
Marsaglia (1996) produced "Diehard: A 
Battery of Tests of Randomness," also 
known as "Marsaglia's Diehard Tests," 
for which automated executable files 
for DOS and LINUX are available, as 
well as source files in C. The executable 
operates on a file of about three million 
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random numbers created by an RNG. 
While three million random numbers will 
accommodate only the smallest and sim- 
plest of Monte Carlo studies, as a first 
assessment of an RNG, DIEHARD has 
ease of use to recommend it.17 For test- 
ing more than three million, the source 
files must be modified and recompiled. 
Names and descriptions of the tests are 
produced as part of the output. Mar- 
saglia is planning a revision of DIE- 
HARD. L'Ecuyer's TE STU01 program 
is in the testing stage, and is scheduled 
to be released in the next year or so. 

The developer of an RNG often will 
subject the RNG to several tests and 
note this in the article in which the 
RNG is published. However, implemen- 
tation of an RNG can be difficult, so it 
is imperative that the developer's im- 
plementation be tested. Our own infor- 
mal application of DIEHARD to a few 
econometric packages found that while 
some passed, some did not. Still, even 
those that passed would be unsuitable 
for large-scale applications. Impor- 
tantly, not one package mentioned the 
period of its RNG. 

6. Statistical Distributions 

Some persons might think that com- 
puter programs are more accurate than 
statistical tables, since the statistical 
tables only report a few decimals and 
computer programs report several, but 
such is not necessarily the case. Imag- 
ine an economist conducting a Chow 
test with 3 restrictions on 126 observa- 
tions. Suppose he calculated a test 
statistic of 4.0. He might well have an 
interest in the F(3,120) distribution. If 
he uses Package "X4" to calculate the 1 
percent critical value, he obtains 4.12. 

inus, ne aoes nor reject Tne null-untli 
a referee points out that a standard sta- 
tistical table gives a critical value of 
3.95, and so the null is rejected along 
with the article. As another example, 
the documentation for Package "X5" 
says that its Student's-t function returns 
"the probability that a t-statistic with d 
degrees of freedom exceeds X. Letting 
X = 1.345 and choosing d = 14, a sta- 
tistical table shows that the upper tail is 
0.10. Yet Package "X5" returns 0.2000- 
the value for a two-tail test. Erroneous 
inference awaits the user who trusts such 
documentation. Leo Kntisel (1995) has 
documented the inaccuracy of statistical 
distributions in GAUSS v3.2.6, and also 
that these same inaccuracies were not 
corrected in release v3.2.13 (Kniisel 
1996). Even more serious inaccuracies were 
revealed in the statistical distributions 
of Excel97 (Kntisel 1998). McCullough 
(1999b) used Kntisel's (1989) ELV pro- 
gram to document similar inaccuracies 
in econometric packages. 

Statistical distributions have two fun- 
damental applications: calculating p-val- 
ues and calculating critical values for 
some level of significance. Let F(x) be 
the cumulative distribution function 
(cdf) of the random variable X whose 
probability density function is f(x). The 
first step in calculating a (one-sided) 
p-value for a calculated statistic, x, is to 
determine p = P(X < x) = F(x). Usually, 
there is no closed-form expression avail- 
able, and so the problem becomes one 
of approximating an integral 

F(x-) f(t)dt (1 

The problem of finding a critical value 
amounts to approximating the inverse of 
the above integral, i.e., finding xc such 
that 

xc = F-i(e - P) (12) 

for some specified value of p. 

17 The documentation for DIEHARD is sketchy. 
Persons wishing to use DIEHARD should consult 
McCullough (1998, 1999) for implementation 
details. 
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It is well-known that the cdf of the 
standard normal distribution must be 
evaluated numerically. Numerical evalua- 
tion, or integral approximation, is rife 
with technical difficulties. Improper in- 
tegrals (with limits of -oo or + oo ) must 
be dealt with, and integrals with vertical 
asymptotes and other such stumbling 
blocks must be overcome. General ex- 
positions on these details are available 
in Kennedy and Gentle (1980, ch. 5) 
and Thisted (1988, ch. 5), with discus- 
sions of specific distributions in Nor- 
man Johnson, Samuel Kotz, and N. 
Balakrishnan (1994, 1995). Algorithmic 
error is especially critical here. Barry 
Brown and Lawrence Levy (1994) ex- 
amined several algorithms for the in- 
complete beta distribution (which is the 
basis of the F-distribution, among oth- 
ers) and found only one of them to be 
reliable. B. Bablok (1988) uncovered 
several errors in commonly used formu- 
lae for non-central statistics. As an ex- 
ample, a procedure for the non-central 
F based on Eq. 26.6.18 of Milton Abra- 
mowitz and -Irene Stegun (1972) will 
return incorrect results. 

It is sometimes suggested that statis- 
tical distributions need be accurate only 
to two or three digits. There are two ob- 
jections to this. First, a package that at 
best gets two or three digits is more 
likely to provide zero digits than a pack- 
age that at best gets several digits. Sec- 
ond, there are many applications for 
which two or three digits are insuffi- 
cient. Among these are Edgeworth ex- 
pansions, Monte Carlo Markov chains, 
size and power calculations, quantile- 
quantile plots, censored and truncated 
regressions, and many more. These 
methods sometimes require accurate 
evaluation of probabilities as small as 
1.E-12 and smaller. Kniisel (1995) sug- 
gested that the minimum requirement 
for statistical distributions is that they 
should be accurate to all displayed 

digits, and observed that this has three 
implications: 

* If a probability is smaller than 0.5E- 
4 and the program prints out 
0.0000, then the program is correct. 

* If a probability is zero and the pro- 
gram prints 0.76543E-11, then the 
program is incorrect. 

* If a probability is 3.456E-10 and the 
program prints 3.401E-10, this is 
incorrect, for the result is not 
correct as printed. 

This last point is easiest to see when it 
is remembered that relative error, and 
not absolute error, is the relevant crite- 
rion. While 3.401E-10 - 3.456E-10 = 
-0.55E-10 is a small number, the rela- 
tive error is (13.401E-10 - 3.456E-101)/ 
3.456E-10 = 19%, which is not small. 

In order to assess accuracy, accurate 
results must be obtainable. Here, 
Kntisel's (1989) ELV, available as a 
DOS executable, and Brown's (1997) 
DCDFLIB, available in FORTRAN77 
and C tar files, can be of use. A basic 
sequence of percentiles (BSP) (0.0001, 
0.001, 0.01, 0.1, 0.2, . . . , 0.9, 0.99, 
0.999, 0.9999 can be profitably em- 
ployed. Probabilities outside this range 
are referred to as the "extreme tails." 
Use ELV or DCDFLIB to generate 
critical values for the BSP. Feed these 
critical values into the econometric 
package to see whether the correct tail 
values are returned. If they are, then 
the distribution seems accurate and the 
extent of its accuracy can be assessed by 
using ELV or DCDFLIB to answer the 
following questions: 

I How far can the degrees of freedom 
be extended before the program 
breaks? 

* Are the results still sensible for ex- 
treme parameters or is nonsense out- 
put, such as negative probabilities, 
produced? 
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a Does the program correctly calcu- 
late very small probabilities? (This 
amounts to checking the "extreme 
tails" to determine the point at which 
the package no longer produces 
accurate answers.) 

a Does the program give very small 
results such as 0.76345E-37 that 
are completely wrong? 

To test inverse functions, feed the 
BSP into the inverse function and see 
whether the exact critical values are re- 
turned. A common problem which can 
be observed is that one tail is more ac- 
curate than the other. This is because 
many packages do not compute upper 
and lower tails separately, but compute 
only one tail and find the other by 
complementation. When a probability 
is near zero or unity, this can lead to 
cancellation error if upper and lower 
tails are not computed separately. Con- 
sider determining p = P(X> 265) where 
X is chi-square with 100 degrees of 
freedom. Many packages, "Package X3" 
included, will compute only P(X < 265), 
so p must be determined by comple- 
mentation, p=1-P(X<265 which pro- 
duces p = 0.11102E-15 rather than the 
correct p = 7.2119E-17. The reason is 
that P(X < 265) is very close to unity, 
and so the subtraction necessary to 
obtain p is contaminated by cancella- 
tion error to the point that the re- 
sult has no accurate digits. Packages 
should compute upper and lower tails 
separately. 

7. Conclusions and Recommendations 

We have presented several cases of 
serious numerical discrepancies be- 
tween econometric packages, including 
FIML, GARCH, (partial) autocorrela- 
tion, and Cochrane-Orcutt corrections. 
We have suggested that inadequate 
nonlinear solvers are not uncommon. 

There can be no doubt that many 
more such discrepancies exist, and 
they can be attributed in part to a lack 
of benchmarks. We have also shown 
that random number generators and 
statistical distributions can suffer from 
numerical problems. These problems 
can be solved only by a concerted ef- 
fort on the part of users, developers, 
and the economics profession as a 
whole. 

Users should recognize that accuracy 
is at least as important as either speed 
or user-friendliness. This does not mean 
each user must immediately visit the 
StRD website and commence bench- 
marking his package. At the very least it 
does imply that users should be cogni- 
zant of the fact that writing accurate 
software is more demanding than writ- 
ing either fast or friendly software. De- 
velopers need to benchmark their soft- 
ware. This does not mean developers 
should suspend implementation of new 
procedures and devote all their re- 
sources to developing needed bench- 
marks. At the very least, it means that 
developers should make use of existing 
benchmarks, such as StRD, TESTMAT, 
and others which will be developed in 
the future. When a benchmark exists 
for a procedure, as in the case of FIML, 
the developer should note in the man- 
ual that the procedure achieves the 
benchmark, or else explain why it does 
not. Moreover, developers need to 
document their procedures better. As 
Lovell and Selover (1994) discovered in 
their consideration of AR(1) proce- 
dures, there are many admissible imple- 
mentations of AR(1) procedures, and 
developers often do not describe pre- 
cisely which implementation they use. 
Documentation for econometric soft- 
ware can only be improved by paying 
proper attention to numerical and algo- 
rithmic matters. RNGs need to be docu- 
mented, including the type of RNG, its 
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period, and tests the developer's imple- 
mentation of the RNG has passed. 
Statistical distributions also need to be 
better documented, and to have their 
accuracy verified. 

Accurate econometric software is not 
just the responsibility of the developers, 
it requires active participation by the 
profession. Obviously, creating bench- 
marks is beyond the capability of any 
one developer, or even the small collec- 
tion of developers. So, too, is the matter 
of deciding which procedures are most 
in need of being benchmarked. A strong 
suggestion that a method needs to be 
benchmarked is that two packages give 
two different answers to the same prob- 
lem.18 At present, two different pack- 
ages are not often used to solve the 
same problem, but the widespread use 
of archives by journals would change 
this. Therefore, journal editors should 
require that authors identify their soft- 
ware (including version number) and 
make their code and thei'r data widely 
available via archives. In addition to un- 
covering discrepancies between pack- 
ages, this will provide developers and 
users more of an incentive to rely upon 
benchmarked procedures, and thus at- 
tenuate the problem of two packages 
providing two different answers to the 
same problem. 

Why journal readers do not demand 
archives is the same issue as why soft- 
ware users do not demand evidence of 
accuracy. Yet, just as results from a soft- 
ware package that passes benchmark 
tests are preferable to results from a 
software package that fails benchmark 
tests, so, too, studies from a journal 
whose results are capable of being veri- 
fied are preferable to studies from a 
journal whose results are not verifiable. 

Regrettably, neither benchmarking by 
vendors nor archiving by journals is yet 
a common practice. 

Two related events are worth noting. 
First, following the publication of De- 
wald, Thursby, and Anderson (1986), 
the Journal of Money, Credit and Bank- 
ing began requesting data from its 
authors, and the NSF established an 
archive for the storage and distribution 
of authors' data at the University of 
Michigan's Interuniversity Consortium 
for Political and Social Research. The 
NSF economics program invited journal 
editors to request that authors place 
their data in this archive; 22 editors 
declined this invitation (Anderson and 
Dewald 1994). Second, in 1993, the 
JMCB discontinued its practice of re- 
questing data from authors. However, 
both events occurred before the advent 
of the worldwide web. 

While some journals have "policies" 
that authors should make available their 
data and code, there is no penalty at- 
tached to an author's refusal to comply, 
and these policies are honored more 
often in the breach. The results of 
Dewald, Thursby, and Anderson (1986), 
recently revisited by Anderson and De- 
wald (1994), showed that most authors 
could not or would not honor a request 
for data and code. The disincentives for 
authors to comply with such requests 
are discussed in Susan Feigenbaum and 
David Levy (1993, 1994). An archive 
completely eliminates the problem of 
obtaining data and code from authors. 
The MD archive, in fact, requires that 
the code supplied be able to reproduce 
the reported results. This latter require- 
ment is necessary to ensure the replica- 
bility of research, but it is also neces- 
sary for the problem of determining 
whether two packages really do produce 
different answers to the same problem. 
A reported discrepancy between two 
packages might be due to a coding 

18This does necessarily mean that either pack- 
age is incorrect. It may mean only that the docu- 
mentation is poor and the two packages are really 
doing two different things. 
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error, but this cannot be determined if 
the code is not available. 

That the methods by which results 
are obtained be open to the scrutiny of 
other researchers is a higher standard 
of quality than is usually found in 
economics, but it is a common standard 
in other sciences. Economic research 
would generally benefit if this standard 
was more widely adopted, and so would 
software.'9 We observe that some 
authors maintain this higher standard 
by making use of personal archives 
when they publish in journals that 
have no archive. To give but three 
examples, the articles by Bronwyn Hall 
(1993), James Hamilton (1997), and 
Mark Watson (1993) all have data 
and code archived at the authors' 
homepages. 

Until journal archives are common- 
place, many things can be done. Re- 
searchers should ensure that their soft- 
ware is up to the task of producing 
replicable research. Referees can ask 
authors to provide computational details, 
with reference to making sure that re- 
sults are reproducible. Software review 
editors can do at least two things. When 
a developer provides no evidence that 
his software meets existing benchmarks, 
the editor can suggest that the reviewer 
apply known benchmarks. Second, soft- 
ware review editors can encourage 
reviewers to propose new benchmarks. 
The more quantitative journals can 
devote space to publication of more so- 
phisticated benchmarks or to discussion 
of software; for example, the Journal of 
Economic and Social Measurement has 
a special issue on econometric software 
forthcoming. 

Reliable econometric software is the 

joint responsibility of the users, devel- 
opers, and the profession. We hope the 
day is not too far off when the adver- 
tisements for econometric software 
read, "Obtains the correct solution in x 
seconds," rather than the current, "Ob- 
tains a solution in y seconds," and that 
users will appreciate this distinction, 
even though x may be greater than y. 

19The journals themselves might also benefit. 
Tauchen (1993) has argued that readers of jour- 
nals should be interested in data and code, and 
that when they are made available a journal's 
prestige and circulation should increase. 
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