Calcium Channel 2 Subunits: Structure, Functions and Target Site for Drugs

Carles Cantí, Anthony Davies and Annette C. Dolphin*

Department of Pharmacology, University College London, Gower St, WC1E6BT, UK

Abstract: In this review we describe the genes encoding 2 subunits, their topology and predicted structure. We then review the electrophysiological effects of 2 subunits. It is clear from most studies that 2 subunits increase channel density at the plasma membrane, but there is less agreement between studies and between channel subtypes concerning the effects of 2 subunits on voltage-dependence of activation and inactivation. Most studies agree that 2 subunits increase the kinetics of inactivation, for a number of different calcium channel subtypes. We also discuss the link between 2 subunits and disease, particularly in terms of Ducky, the spontaneously occurring mutant mouse strain that has mutations in 2 -2, and exhibits cerebellar ataxia and absence epilepsy. Finally, we will examine the evidence that 2 subunits are the site of action of the anti-epileptic, anti-nociceptive drug gabapentin.

INTRODUCTION

Voltage-gated calcium channels are essential for the function of numerous excitable cells, including contraction in muscle and transmitter release from neurons [1]. The subunit composition was defined by purification of the skeletal muscle calcium channel complex, also termed the dihydro-pyridine receptor (DHPR), which is highly enriched in t tubules. It was found to contain five components: 1 (170 kDa), 2 (150 kDa), (52 kDa), (17-25 kDa) and (32 kDa) in an approximately stoichiometric ratio [2;3]. The 1 subunit was identified as the subunit that bound 1,4-DHPs, and was established as the pore-forming subunit (Fig. 1).

TOPOLOGY OF 2 SUBUNITS

The topology of the 2 and subunits, and their relationship, took some time to establish. Whilst in reducing conditions the skeletal muscle 2 subunit migrated at 150 kDa, and the subunit could be resolved into 3 peaks (1, 2 and 3 of about 25, 22 and 17 kDa), in non-reducing conditions the 2 and subunits migrated as a single band of about 175 kDa, indicating that they are disulfide-linked. N terminal sequencing of the 2 and proteins, and the subsequent cloning of a single gene [4] then indicated that 2 and are the products of the same gene, with making up the C terminal end of a pro-protein that is post-translationally cleaved. Comparative studies with the native and expressed 2 proteins confirmed this to be the case. Both N terminal sequencing and the fact that the three peptides are antigenically cross-reactive indicated that they are all proteolytic products of the same 2 gene product, with the same cleavage site [5]. Both 2 and are also highly glycosylated, as shown by treatment with glycosidase enzymes [5;6]. The different sizes of the peptides are thought to represent different glycosylation states [5]. The timing of the disulfide-linking and cleavage of 2 and during assembly and trafficking of the channel complex is unknown.

The exact transmembrane topology was an initial matter of debate. The 2 subunit has an N terminal signal sequence, indicating that it has an extracellular N terminus. It was deemed possible, based on hydrophobicity studies, that there were three transmembrane segments [4;5]. However, in this model several of the potential N- glycosylation sites would be situated intracellularly. Furthermore, 2 can be released from membranes into the supernatant in reducing conditions with alkaline wash, indicating that it is not a transmembrane protein [5]. Under these conditions remains membraneassociated, indicating it is an integral membrane protein [5]. Subsequently, topology mapping using site-directed antibodies, and studies using truncated 2 -1 constructs also found that 2 is entirely extracellular [6-9].

GENES ENCODING 2- SUBUNITS

Four 2 subunit genes have now been cloned, 2 -1 being the original skeletal muscle 2 subunit, whose distribution is fairly ubiquitous, whilst 2 -2 and 2 -3 are more selectively found in neurons and a small number of other tissues [10;11]. The most recently cloned 2 -4 is largely non-neuronal [12]. The gene structure is similar for all 2 subunits, with 2 -2 having 39 exons. All 2 subunits exhibit a number of splice variants [10;12;13].

The topology of the protein was only determined in detail for 2 -1, but appears to generalize for all four 2 subunits. All four have predicted N terminal signal sequences, indicating that the N terminus is extracellular, although in the case of 2 -2, the N terminal signal peptide is unusually long [14]. The 2 -2 subunit is clearly reduced in molecular weight by disulfide bond reduction [15], and when expressed the signal sequence is cleaved and the 2 moiety is extracellular [14]. All of the 2 subunits have a C terminal hydrophobic and potentially transmembrane region. There are up to 14 conserved cysteines throughout the 2 -1, 2 and

1570-159X/03 \$41.00+.00

©2003 Bentham Science Publishers Ltd.

^{*}Address correspondence to this author at Department of Pharmacology, University College London, Gower St, WC1E6BT, UK; Tel +44 20 7679 3276; Fax +44 20 7813 2808; E-mail: a.dolphin@ucl.ac.uk

Fig. (1). Diagram of calcium channel subunits- indicating transmembrane topology.

3 sequences, six of which are within , providing additional evidence that 2 and are disulfide-bonded. However, the exact pairs of cysteines involved in this interaction are unknown.

Following the identification of 2 subunits as stoichiometric components of skeletal muscle calcium channels, they have also been shown to be associated with native cardiac (L type) [16] and neuronal N and P/Q type channels [17;18]. Thus it would appear that high voltage-activated (HVA) calcium channels associate with 2 subunits, although it has not been determined whether HVA 1 subunits in the plasma membrane may also exist functionally in the absence of 2 subunits. The 2 -1 subunit has been shown to bind to extracellular regions including Domain III on the Ca_v1.2 subunit [9;19].

Parallel purification experiments have not been performed on native low voltage-activated (LVA) or T-type calcium channels, hampered by the lack of selective ligands. Since the expression of cloned channels is robust in the absence of 2 subunits, it is assumed that native T-type channels probably exist in their absence in the plasma membrane.

Although there is only limited structural information available for voltage-gated calcium channels, a number of electron microscopic single particle studies of purified skeletal muscle calcium channels have been published recently. One study shows the monomeric calcium channel complex to have a protruding ring-like handle that the authors suggest to be the 2 -1 subunit [20]. In the other study a 3-D reconstruction of purified calcium channel complexes was performed, whose size indicated that they were dimeric, in which a pair of 2 subunits were thought to create a hollow cap over the 1 subunits [21]. Thus both studies suggest that 2 forms a hollow structure, although the function of this is unknown. It is possible that it produces a vestibule in which Ca^{2+} ions accumulate. However, if this were the case, one might expect a different single channel conductance in the absence of 2 co-expression, and this has not generally been observed. However, we did notice an additional small conductance mode of several calcium channel 1 subunits expressed in the absence of accessory subunits, which may relate to a different conformation of the 1 subunit expressed alone [22]. Furthermore, others have shown that purified L type calcium channels require oligomerisation to exhibit native single channel properties in

The approximate molecular correlate of the 2 subunit in voltage-gated Na^+ channels is the transmembrane subunit, and Na_V 1 has been shown to have a conserved immunoglobulin (Ig) domain in its extracellular structure, which results in binding to the cell adhesion molecule tenascin-R [24]. No Ig domains exist in 2 subunits.

planar lipid bilayers [23].

One domain identified by sequence homology in the extracellular sequence of all 2 subunits is the von Willebrand factor type A (VWFA) domain. This domain was first identified in von Willebrand Factor, where it mediates binding to collagen and factor VIII, among other proteins. VWFA-like domains are approximately 200 amino acids long, and found in certain integrin subunits, laminin, and some collagens [25]. The domain is a dinucleotide binding fold with a metal ion adhesion (MIDAS) site, mediating divalent cation-dependent interactions. Other recently identified domains in 2 subunits are two Cache domains, the first of which immediately follows the VWFA domain [26]. Cache was identified by homology with an extracellular

domain in diverse chemotaxis receptors, including methylsensing receptors, where it binds small molecule ligands.

LOCALIZATION OF 2 SUBUNITS

A number of studies have examined the tissue localization of the different 2 subunits at both the message and the protein level. Message and protein for the 2 -1 subunit is highly expressed in skeletal muscle but is also found fairly ubiquitously in other tissues [4;15]. Within the mouse brain 2 -1 message is strongly expressed in cerebellum, hippocampus and cerebral cortex [10].

In contrast, the other 2 subunits are expressed in a more limited range of tissues. Both human and mouse 2 -2 are found in brain, from Northern blots [27;28], in situ hybridization and PCR based localization [11]. Within brain, 2 -2 is found to be particularly concentrated in cerebellum (Fig. 2A), and strongly expressed in Purkinje cells [11;14] (Fig. 2B). It is also present at moderate levels in other brain regions including medulla, hippocampus and striatum [11]. Message for 2 -2 was found to be strongly expressed in human lung tissue, in two studies [15;28], although not in an earlier study [10]. However, the 2 -2 protein was barely detectable [15]. The reason for this discrepancy between high transcription level and low protein expression level is unknown, as is the cell type in which the message is found in human lung. In contrast, in the mouse 2 -2 message was not detected in lung tissue [11].

In the mouse, message and protein for 2 -3 is solely expressed in brain, whereas in man the expression of message is also detected in heart and skeletal muscle [15]. Within the mouse brain, 2 -3 is strongly expressed in cerebral cortex, caudate-putamen and hippocampus. The 2 -4 subunit shows very restricted distribution in certain endocrine tissues, and is absent from brain [12].

ELECTROPHYSIOLOGICAL EFFECTS OF 2 SUBUNITS

The function(s) of the 2 subunits still remain incompletely defined as they have been reported to have a variety of effects on the properties of different calcium channels, some of which are dependent on the additional presence of a subunit [29].

EFFECT OF 2 ON CHANNEL DENSITY AT THE PLASMA MEMBRANE

For HVA calcium channels, subunits are essential for trafficking voltage-gated calcium channels to the plasma membrane [30]. The effect of the 2 subunits in the absence of subunits is difficult to determine as several expression systems, particularly *Xenopus* oocytes, contain endogenous subunits [31]. It must also be taken into consideration that a number of expression systems also contain some endogenous 2 [32;33].

A number of studies have shown that 2 subunits increase the expression of a number of different HVA 1 subunit/ subunit combinations, and all 2 subunits appear to have similar effects. For $Ca_V 1.2$, when 2 -1 was co-

Fig. (2). The distribution of 2 -2 in the cerebellum: (A) Identification of the 2 moiety of 2 -2 in cerebellum, as a band of identical size to that obtained when 2 -2 is expressed in COS-7 cells. Gels were run under reducing conditions, and the 2-2 band identified with an anti-peptide Ab raised against amino acids 102-117. (B) Distribution of 2 -2 in cerebellum using immunohistochemistry with the same Ab as used in A. Data and Methods in both A and B are from Brodbeck *et al.* (2002) [14].

expressed with the 1 subunit, it increased the amount of 1 subunit protein associated with the oocyte plasma membrane [34]. It also increased the number of DHP binding sites, as well as increasing their affinity for the DHP ligand ³H-PN200-110 [19]. This result indicates that as well as increasing the number of expressed channels, it also altered their conformation. The increased affinity suggests that 2 - 1 favours states of the calcium channel which show high affinity DHP binding, or that it increased the amount of the channel on the plasma membrane, where the affinity is higher, rather than internal membranes. In the same study, the peak Ca_V1.2 current amplitude was also increased 3-fold by co-expression of 2 -1 [19].

For $Ca_v 2.1$, the maximum conductance of the 1/4currents was increased about 2.8-fold by 2 -2, and this complement of calcium channels is thought to be physiologically relevant for cerebellar Purkinje cells, in which 2 -2 is strongly expressed [11;14] (Fig. 3A, B). At the single channel level, 2 -2 had no effect on the main single channel conductance of $Ca_{v}2.1/4$ (Fig. 4), or any of the other properties measured, suggesting strongly that the large increase in whole cell current is solely due to an increased number of channels at the plasma membrane [11;14]. However, we have previously shown that 1 subunits expressed in the absence of accessory subunits also show a small single channel conductance mode, which may represent a different conformation of the channel promoted under these conditions [22].

The 2 -2 subunit has also been shown to increase $Ca_V 2.2$ peak currents 9-fold and $Ca_V 1.2$ currents 2-fold [35]. For the $Ca_V 2.2/$ 1b combination, we found both 2 -1 and 2 -2 subunits to increase the maximum current about 2.8-fold and the maximum conductance of the channels expressed in *Xenopus* oocytes (Fig. **5A**, **B**).

The situation for $Ca_V 2.3$ channels is unclear. It has been reported that 2 -1 subunits do not increase $Ca_V 2.3$ current amplitude when co-expressed in *Xenopus* oocytes [36]. However, despite not increasing the ionic current, the authors did find that 2 -1 increased the limiting gating currents (consistent with a larger number of channels in the membrane). In contrast, subunits increased the maximum gating charge, but also increased the charge movement/ conductance ratio, consistent with both an increase in the efficiency with which movement of the voltage-sensor is translated into current activation, and an increase in the number of channels in the membrane [36].

A different result was obtained in HEK293 cells, where 2 -1 produced a 2-fold increase in the maximum conductance for $Ca_v 2.3$ expressed alone, although it gave no additional increase over and above that of subunits [37]. In the latter study there was no change in the ratio of maximum conductance to gating charge movement, indicating that the increase was entirely due to an increase in the number of channels in the membrane [37].

From these results it is possible that $Ca_V 2.3$ may be different from the other HVA channels in being less influenced by 2 subunits, but this will require confirmation.

Fig. (3). Electrophysiological effects of 2 -2 on Ca_v2.1: (A, B) The effect of 2 -2 on the Ca_v2.1/ 4 combination of calcium channel subunits expressed in COS-7 cells. (A) representative traces in the absence (left) and presence (right) of 2 -2. (B) mean current-voltage relationships for the two conditions. (C, D) The effect of loss of 2 -2 on calcium channel currents from Purkinje cells in Ducky mice. (C) representative traces from +/+, +/du and du/du mice. (D) mean current-voltage relationships for the three conditions. Data and Methods for this Figure are from [11] and [14].

The LVA calcium channels express very well in the absence of co-expressed accessory or 2 subunits. Nevertheless, both 2 -1 and 2 -2 were found to increase Ca_v3.1 currents almost 2-fold [33;35], and thus it is possible that T type channels may be able to associate with 2 subunits. However, in other studies 2 -1 and 2 -3 produced only small or no increases in Ca_v3.1 current, but 2 -2 had a larger effect on Ca_v3.1 current density [10;27;38].

EFFECTS OF 2 SUBUNITS ON VOLTAGE-DEPENDENCE OF ACTIVATION AND INACTIVATION

The effects of 2 subunits on the voltage-dependent and kinetic properties of calcium channels may also depend on the presence of a subunit, and indeed on which subunit is expressed. Many studies have been performed in *Xenopus*

Fig. (4). Lack of effect of 2 -2 on Ca_V2.1/ 4 single channel properties: (A) Single channels recorded in cell-attached patch mode for the Ca_V2.1/ 4 combination expressed in COS-7 cells. (B) Single channels recorded as in A, for the Ca_V2.1/ 4/ 2 -2 combination. (C) Single channel conductance for the two conditions Ca_V2.1/ 4 (O), Ca_V2.1/ 4/ 2 -2 (). Data are from Brodbeck *et al.* (2002) [14].

oocytes, in which two electrode voltage clamp does not provide perfect control of the membrane voltage, especially for larger currents.

In the case of Ca_v1.2, initial studies reported that the 2 -1 subunit had little effect on the voltage-dependence of activation [34;39-41]. This is supported by a more recent study on the voltage-dependence of charge movement [42]. In contrast, Felix et al. (1997) found that 2 - 1hyperpolarized the voltage-dependence of activation of Ca_v1.2/ 4 by about 10 mV. It is of interest that this was entirely reproduced by the transmembrane construct, although had no effect on current amplitude [19]. Platano et al (2000) using the cut-open oocyte technique, which gives a more accurate control of voltage than conventional two electrode voltage clamp of oocytes, also found that the activation of the Ca_v1.2/ 3 combination was shifted to more hyperpolarized potentials by 2 -1. However they found that 2 -1 did not affect the voltage-dependence of charge movement, but did increase the total amount of charge moved, indicative of more channels in the membrane [43].

For Ca_v2.1, co-expressed with 4 in Cos-7 cells, 2 -2 also had little effect on the voltage-dependence of activation [14]. This was also true for the effect of 2 -1 and 2 -2 on the Ca_v2.2/ 1b combination (Fig. **5B**).

Contrasting results were found for $Ca_V 2.3$, which shows a greater ability than $Ca_V 1.2$ to express in the absence of accessory subunits [36;44]. Using the cut-open oocyte technique for $Ca_V 2.3$, 2 -1 was found to shift the activation to more depolarized potentials, either in the absence of subunits or in the presence of 1b or 2a, from both currentvoltage relationships and conductance-voltage relationships, determined from tail current measurements [36]. In contrast in HEK293 cells 2 -1 had no effect on the voltagedependence of activation gating [37].

In most cases 2 -1 and 2 -2 were also found to hyperpolarize the steady-state inactivation of $Ca_v1.2$, $Ca_v2.2$ and $Ca_v2.3$ currents to similar extents [19;27] (Fig. 5C).

However for $Ca_V 2.3$ it was found in cut-open oocytes that, whilst 1b hyperpolarized the steady-state inactivation, 2 - 1 had no effect, either in the absence or presence of a subunit [36].

Thus it is clear that there is no complete consensus on the effects of 2 subunits on voltage-dependent properties of calcium channels. The reason for this may be that it is very difficult to dissect these effects from the fact that there are also more mature channels, and their associated subunits at the plasma membrane.

EFFECT ON KINETICS OF ACTIVATION AND INACTIVATION

The 2 -1 subunit increased the rate of inactivation for both the $Ca_V 1.2/4$ and $Ca_V 2.1/4$ combinations [19]. In another study, both 2 -1 and 2 -2 increased the inactivation rate of $Ca_V 1.2$, $Ca_V 2.3$ and $Ca_V 3.1$ currents [27]. The 2 -1 subunit was also found to speed up the process of inactivation of gating currents due to expression of the $Ca_V 1.2/2$ a combination [42]. The effect on inactivation may explain the effect of 2 -1 to increase the affinity for DHP antagonists, since such antagonists also favour the inactivated state of the channel [45]. We also found 2 -1 and to a lesser extent 2 -2 to speed up inactivation for the $Ca_V 2.2/1$ b combination (Fig. **5D**).

EFFECTS ON PREPULSE FACILITATION

Facilitation is the phenomenon whereby current is potentiated by applying a large depolarizing pulse immediately before the test pulse. It is understood that the channels are all converted by the prepulse into a state from which they will open readily with voltage. There is one report that 2 -1 prevents prepulse facilitation for $Ca_V 1.2/3$, and the authors suggest that 2 -1, by hyperpolarizing the conductance-voltage curve, performs the same task as a prepulse, maintaining the channels in this

Fig. (5). Effects of 2 -1 and 2 -2 on Ca_V2.2/ 1b current properties: (A) Examples of I_{Ba} for the Ca_V2.2/ 1b combination, expressed alone (left), in the presence of 2 -1 (centre) and in the presence of 2 -2 (right). **(B)** Representative current-voltage relationships for the three conditions. **(C)** Representative steady-state inactivation curves for the three conditions. **(D)** Representative examples of currents activated by steps of 2.5 s. and normalised to show the relative effects of 2 -1 and 2 -2 on the inactivation kinetics. A-C are recorded in 10 mM Ba²⁺ as charge carrier, and D in 2 mM Ba²⁺. All recordings were made in *Xenopus* oocytes.

state [43]. However, it must be noted that the 2 subunits also increase the inactivation rate, and a depolarizing prepulse will induce both facilitation and inactivation, which will counteract each other.

SPECIFICITY OF INTERACTION BETWEEN 2 **AND Cav** 1 SUBUNITS

With the cloning of three additional 2 subunit genes, the question arises as to whether there is any specific association between particular pore-forming 1 (or Ca_V) and 2 subunits. In heterologous expression systems this does not appear to be the case, but it is possible that *in vivo* there may be more specificity. For example in Purkinje cells 2 - 2 is the main, if not the only 2 expressed, at least in mice

[11], and $Ca_V 2.1$ is the main 1 subunit, so that it is likely that most calcium channels in Purkinje cells consist of these two subunits, together with one of several subunits (mainly 2 and 4) expressed in Purkinje cells.

LINK BETWEEN 2 SUBUNITS AND DISEASE

One link between 2 -2 and disease is that the *CACNA2D2* gene is found in the critical human tumour suppressor gene region in human chromosome 3p21.3, which shows frequent allele loss in lung, breast and other tumours. It is thus one of several candidate tumour suppressor genes in this region, although no causal link has been found [28]. Another link, which relates calcium channels and epilepsy, is

the spontaneously arising mutant mouse strain Ducky (du). These mice show cerebellar ataxia, absence epilepsy and demyelination of the hindbrain and spinal cord. The mutation was found to be in the 2 - 2 subunit gene, which is strongly expressed in cerebellar Purkinje cells. The mutation results in a loss of full length 2 -2, and a second allele (du^{2J}) produces a similar phenotype [11]. We have shown that there is a reduction of calcium currents in Purkinje cells of du/du mice at 6 - 8 days old [11] (Fig. **3C**, **D**). Subsequently we have found that du/du Purkinje cells do not show normal maturation by 21 - 24 days, with a reduction of the Purkinje cell dendritic tree and multiple primary dendrites (Fig. 6) [14]. It is unknown whether this is due to a reduction in calcium currents in these cells, or whether it is more directly due to a reduction in full length 2 -2 expressed at the plasma membrane, and possibly a loss of interaction with the putative extracellular binding partner for 2 -2, thus involving a loss of interaction with neighbouring cells or with the extracellular matrix.

Fig. (6). Golgi-Cox staining of Purkinje cells from +/+ and du/du mice: Data and Methods are from Brodbeck *et al.* (2002) [14].

There is another possible corollary of the observation that 2 -2 selectively enhances $Ca_V 2.1/4$ currents in Purkinje cells, which stems from the finding that a number of other calcium channelopathies in humans and mice are associated with mutations in $Ca_V 2.1$ and 4 [46]. Several of these mutations may reduce the surface expression of the channel, for example in episodic ataxia type 2 (EA-2), where truncated non-functional channels are produced (see [46] for review). This may result in a corresponding loss of surface expression of the associated 2 -2 in Purkinje cells and other neurons. However, so far no mutations in 2 -2 have been associated with disease in man.

A further link between 2 subunits and disease relates to the observation that 2 -1 subunits are upregulated in neuropathic pain [47;48], but this will be covered in more detail elsewhere [49;50].

INTERACTION OF GABAPENTIN WITH 2 SUBUNITS

The anti-epileptic and anti-nociceptive drug gabapentin was found to exhibit high affinity binding to sites in the brain, and when the target binding site was identified it was shown to be the 2 -1 subunit [51]. Furthermore transient transfection of cells with 2 -1 increased the number of gabapentin binding sites [51]. Subsequently gabapentin has been found to bind to two isoforms of 2 subunits (the 2 -1 and 2 -2 isoforms, but not 2 -3 or 2 -4) [15;51-54]. This binding may involve the Cache and other domains [26], but it is unknown how gabapentin exerts its action.

EFFECTS OF GABAPENTIN ON CALCIUM CURRENTS

The effects of gabapentin on native calcium currents are controversial, with some, but not all authors reporting small inhibitions of calcium currents in different cell types, which are of fairly slow onset [55-58]. They are reviewed in more detail elsewhere in this issue [49, 59], but it is notable that there are very few studies reporting effects of gabapentin on cloned calcium channels.

Recently, gabapentin has been reported to have no acute effect on the amplitude of $Ca_v 2.1/2 -1/3$ co-expressed in *Xenopus* oocytes, but slowed the inactivation of the currents (from a time constant of about 200 ms to 250 ms at -10mV). The inactivation kinetics in the presence of gabapentin resembled those in the absence of 2, and gabapentin had no effect on calcium current inactivation in the absence of 2 [60]. We have also found no acute effect of gabapentin on the amplitude of $Ca_v 2.2/1b$ currents co-expressed with either 2 -1 or 2 -2 (Fig. 7). It was hypothesized that gabapentin and related drugs might interfere with 2 binding to the 1 subunit, thus destabilizing the heteromeric complex. However, the integrity of the skeletal muscle calcium channel complex was not affected by gabapentin [60].

Fig. (7). Lack of acute effect of gabapentin on Ca_V2.2 calcium currents: Oocytes were injected intranuclearly with cDNA for Ca_V2.2, 2 -1 and 1b. Currents were recorded in the presence of 2 mM Ba²⁺ as charge carrier. The methods used have been described previously [57]. No effect was observed of acute application of 50 μ M gabapentin on the amplitude of the currents (n =2). A time course and representative maximum current traces are shown. No effect was observed of gabapentin when 2 -2 was used in place of 2 -1 (n =2, data not shown).

CONCLUSION

The 2 subunits have marked effects on calcium channel properties and also very clear links to disease processes. It is still an open question whether the antinociceptive and antiepileptic effects of gabapentin are mediated via its identified interaction with 2 -1 and 2 -2 subunits.

ACKNOWLEDGEMENTS

This work was supported by the Wellcome Trust and MRC.

REFERENCE

- Dolphin, A.C., (1995) Voltage-dependent calcium channels and their modulation by neurotransmitters and G proteins: G.L.Brown prize lecture, *Exp. Physiol.*, 80, 1-36.
- [2] Takahashi, M., Seager, M.J., Jones, J.F., Reber, B.F.X., Catterall, W.A., (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle, *Proc. Natl. Acad. Sci. USA*, 84, 5478-5482.
- [3] Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., Numa, S., (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle, *Nature*, **328**, 313-318.
- [4] Ellis, S.B., Williams, M.E., Ways, N.R., Brenner, R., Sharp, A.H., Leung, A.T., Campbell, K.P., McKenna, E., Koch, W.J., Hui, A., Schwartz, A., Harpold, M.M., (1988) Sequence and expression of mRNAs encoding the 1 and 2 subunits of a DHP-sensitive calcium channel, *Science*, **241**, 1661-1664.
- [5] Jay, S.D., Sharp, A.H., Kahl, S.D., Vedvick, T.S., Harpold, M.M., Campbell, K.P., (1991) Structural characterization of the dihydropyridine-sensitive calcium channel 2-subunit and the associated peptides, *J. Biol. Chem.*, **266**, 3287-3293.
- [6] Gurnett, C.A., De Waard, M., Campbell, K.P., (1996) Dual function of the voltage-dependent Ca^{2+} channel ₂ subunit in current stimulation and subunit interaction, *Neuron*, **16**, 431-440.
- [7] Brickley, K., Campbell, V., Berrow, N., Leach, R., Norman, R.I., Wray, D., Dolphin, A.C., Baldwin, S., (1995) Use of site-directed antibodies to probe the topography of the ² subunit of voltagegated Ca²⁺ channels, *FEBS Lett.*, **364**, 129-133.
- [8] Wiser, O., Trus, M., Tobi, D., Halevi, S., Giladi, E., Atlas, D., (1996) The 2/ subunit of voltage sensitive Ca²⁺ channels is a single transmembrane extracellular protein which is involved in regulated secretion, *FEBS Lett.*, **379**, 15-20.
- [9] Gurnett, C.A., Felix, R., Campbell, K.P., (1997) Extracellular interaction of the voltage-dependent Ca²⁺ channel 2 and 1 subunits, J. Biol. Chem., 272, 18508-18512.
- [10] Klugbauer, N., Lacinová, L., Marais, E., Hobom, M., Hofmann, F., (1999) Molecular diversity of the calcium channel 2 subunit, J. *Neurosci.*, 19, 684-691.
- [11] Barclay, J., Balaguero, N., Mione, M., Ackerman, S.L., Letts, V.A., Brodbeck, J., Canti, C., Meir, A., Page, K.M., Kusumi, K., PerezReyes, E., Lander, E.S., Frankel, W.N., Gardiner, R.M., Dolphin, A.C., Rees, M., (2001) Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the *Cacna2d2* gene and decreased calcium channel current in cerebellar Purkinje cells, *J. Neurosci.*, **21**, 6095-6104.
- [12] Qin, N., Yagel, S., Momplaisir, M.L., Codd, E.E., D'Andrea, M.R., (2002) Molecular cloning and characterization of the human voltage-gated calcium channel 2 -4 subunit, *Mol. Pharmacol.*, 62, 485-496.
- [13] Barclay, J., Rees, M., (2000) Genomic organization of the mouse and human 2 voltage-dependent calcium channel subunit genes, Mamm. *Genome*, **11**, 1142-1144.
- [14] Brodbeck, J., Davies, A., Courtney, J.-M., Meir, A., Balaguero, N., Canti, C., Moss, F.J., Page, K.M., Pratt, W.S., Hunt, S.P., Rees, M., Dolphin, A.C., (2002) The ducky mutation in *Cacna2d2* results in altered Purkinje cell morphology and is associated with the expression of a truncated *a2d-2* protein with abnormal function, *J. Biol. Chem.*, **277**, 7684-7693.

- [15] Gong, H.C., Hang, J., Kohler, W., Li, L., Su, T.Z., (2001) Tissuespecific expression and gabapentin-binding properties of calcium channel ₂ subunit subtypes, *J. Membr. Biol.*, **184**, 35-43.
- [16] Chang, F.C., Hosey, M.M., (1988) Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different, *J. Biol. Chem.*, 263, 18929-18937.
- [17] Witcher, D.R., De Waard, M., Sakamoto, J., Franzini-Armstrong, C., Pragnell, M., Kahl, S.D., Campbell, K.P., (1993) Subunit identification and reconstitution of the N-type Ca²⁺ channel complex purified from brain, *Science*, **261**, 486-489.
- [18] Liu, H., De Waard, M., Scott, V.E.S., Gurnett, C.A., Lennon, V.A., Campbell, K.P., (1996) Identification of three subunits of the high affinity -conotoxin MVIIC-sensitive Ca²⁺ channel, *J. Biol. Chem.*, 271, 13804-13810.
- [19] Felix, R., Gurnett, C.A., De Waard, M., Campbell, K.P., (1997) Dissection of functional domains of the voltage-dependent Ca²⁺ channel alpha2delta subunit, *J. Neurosci.*, **17**, 6884-6891.
- [20] Serysheva, I.I., Ludtke, S.J., Baker, M.R., Chiu, W., Hamilton, S.L., (2002) Structure of the voltage-gated L-type Ca²⁺ channel by electron cryomicroscopy, *Proc. Natl. Acad. Sci. U. S. A*, **99**, 10370-10375.
- [21] Wang, M.-C., Berrow, N.S., Ford, R.C., Dolphin, A.C., Kitmitto, A., (2002) 3D structure of the skeletal muscle dihydropyridine receptor, *Journal of Molecular Biology*, 323, 85-98.
- [22] Meir, A., Dolphin, A.C., (1998) Known calcium channel al subunits can form low threshold, small conductance channels, with similarities to native T type channels, *Neuron*, 20, 341-351.
- [23] Hymel, L., Striessnig, J., Glossmann, H., Schindler, H., (1988) Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers, *Proc. Natl. Acad. Sci. USA*, **85**, 4290-4294.
- [24] Xiao, Z.C., Ragsdale, D.S., Malhotra, J.D., Mattei, L.N., Braun, P.E., Schachner, M., Isom, L.L., (1999) Tenascin-R is a functional modulator of sodium channel beta subunits, *J. Biol. Chem.*, 274, 26511-26517.
- [25] Humphries, M.J., (2000) Integrin structure, *Biochemical Society Transactions*, 28, 311-340.
- [26] Anantharaman, V., Aravind, L., (2000) Cache-a signalling domain common to animal Ca channel subunits and a class of prokaryotic chemotaxis receptors, *Trends Biochem. Sci.*, 25, 535-537.
- [27] Hobom, M., Dai, S., Marais, E., Lacinova, L., Hofmann, F., Klugbauer, N., (2000) Neuronal distribution and functional characterization of the calcium channel a₂d-2 subunit, *Eur. J. Neurosci.*, **12**, 1217-1226.
- [28] Gao, T.Y., Cuadra, A.E., Ma, H., Bünemann, M., Gerhardstein, B.L., Cheng, T., Ten Eick, R., Hosey, M.M., (2001) C-terminal fragments of the a_{1C} (Ca_v1.2) subunit associate with and regulate Ltype calcium channels containing C-terminal-truncated a_{1C} subunits, *J. Biol. Chem.*, **276**, 21089-21097.
- [29] Walker, D., De Waard, M., (1998) Subunit interaction sites in voltage-dependent Ca²⁺ channels, *TiNS*, 21, 148-154.
- [30] Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T.P., Campbell, K.P., (1994) Calcium channel -subunit binds to a conserved motif in the I-II cytoplasmic linker of the ₁-subunit, *Nature*, **368**, 67-70.
- [31] Tareilus, E., Roux, M., Qin, N., Olcese, R., Zhou, J.M., Stefani, E., Birnbaumer, L., (1997) A *Xenopus* oocyte subunit: Evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit, *Proc. Natl. Acad. Sci. USA*, 94, 1703-1708.
- [32] Singer-Lahat, D., Lotan, I., Itagaki, K., Schwartz, A., Dascal, N., (1992) Evidence for the existence of RNA of Ca²⁺-channel 2/ subunit in *Xenopus* oocytes, *Biochim. Biophys. Acta Mol. Cell Res.*, 1137, 39-44.
- [33] Dolphin, A.C., Wyatt, C.N., Richards, J., Beattie, R.E., Craig, P., Lee, J.-H., Cribbs, L.L., Volsen, S.G., Perez-Reyes, E., (1999) The effect of 2- and other accessory subunits on expression and properties of the calcium channel 1G, *J. Physiol.*, **519**, 35-45.
- [34] Shistik, E., Ivanina, T., Puri, T., Hosey, M., Dascal, N., (1995) Ca²⁺ current enhancement by 2/ and subunits in *Xenopus* oocytes: Contribution of changes in channel gating and 1 protein level, *Journal of Physiology (Lond.)*, **489**, 55-62.
- [35] Gao, B.N., Sekido, Y., Maximov, A., Saad, M., Forgacs, E., Latif, F., Wei, M.H., Lerman, M., Lee, J.H., Perez-Reyes, E.,

Bezprozvanny, I., Minna, J.D., (2000) Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2), *J. Biol. Chem.*, **275**, 12237-12242.

- [36] Qin, N., Olcese, R., Stefani, E., Birnbaumer, L., (1998) Modulation of human neuronal _{1E}-type calcium channel by ₂ -subunit., *Am. J. Physiol.*, **274**, C1324-C1331.
- [37] Jones, L.P., Wei, S.K., Yue, D.T., (1998) Mechanism of auxiliary subunit modulation of neuronal a_{1E} calcium channels, *J. Gen. Physiol.*, **112**, 125-143.
- [38] Lacinova, L., Klugbauer, N., Hofmann, F., (1999) Absence of modulation of the expressed calcium channel 1G subunit by 2 subunits, *J. Physiol.*, **516**, 639-645.
- [39] Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F., Dascal, N., (1991) The roles of the subunits in the function of the calcium channel, *Science*, 253, 1553-1557.
- [40] Welling, A., Bosse, E., Cavalie, A., Bottlender, R., Ludwig, A., Nastainczyk, W., Flockerzi, V., Hofmann, F., (1993) Stable coexpression of calcium channel, and ₂/ subunits in a somatic cell line, *J. Physiol.*, **471**, 749-765.
- [41] Bangalore, R., Mehrke, G., Gingrich, K., Hofmann, F., Kass, R.S., (1996) Influence of L-type Ca channel alpha 2/delta-subunit on ionic and gating current in transiently transfected HEK 293 cells, *Am. J. Physiol.*, **270**, H1521-H1528.
- [42] Shirokov, R., Ferreira, G., Yi, J.X., Ríos, E., (1998) Inactivation of gating currents of L-type calcium channels - Specific role of the subunit, J. Gen. Physiol., 111, 807-823.
- [43] Platano, D., Qin, N., Noceti, F., Birnbaumer, L., Stefani, E., Olcese, R., (2000) Expression of the a₂d subunit interferes with prepulse facilitation in cardiac L-type calcium channels, *Biophys. J.*, 78, 2959-2972.
- [44] Stephens, G.J., Page, K.M., Burley, J.R., Berrow, N.S., Dolphin, A.C., (1997) Functional expression of rat brain cloned 1E calcium channels in COS-7 cells, *Pflügers Arch.*, 433, 523-532.
- [45] Mitterdorfer, J., Grabner, M., Kraus, R.L., Hering, S., Prinz, H., Glossmann, H., Striessnig, J., (1998) Molecular basis of drug interaction with L-type Ca²⁺ channels, *J. Bioenerg. Biomembr.*, **30**, 319-334.
- [46] Jen, J., (1999) Calcium channelopathies in the central nervous system, Curr. Opin. Neurobiol., 9, 274-280.
- [47] Newton, R.A., Bingham, S., Case, P.C., Sanger, G.J., Lawson, S.N., (2001) Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury, *Mol. Brain Res.*, 95, 1-8.

- [48] Luo, Z.D., Chaplan, S.R., Higuera, E.S., Sorkin, L.S., Stauderman, K.A., Williams, M.E., Yaksh, T.L., (2001) Upregulation of dorsal root ganglion 2 calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats, *J. Neurosci.*, **21** 1868-1875.
- [49] Scott, R.H., Martin, D.J. McClelland, D. (2003) Cellular actions of gabapentin and related compounds on cultured sensory neurones. *Current Neuropharmacology*, 1(3), 219-235.
- [50] Backonja, M.M. (2003) Symptomatic Treatment of Chronic Neuropathic Pain with Gabapentin: Clinical Practice and Research Prospective. *Current Neuropharmacology*, 1(3), 199-202.
- [51] Gee, N.S., Brown, J.P., Dissanayake, V.U.K., Offord, J., Thurlow, R., Woodruff, G.N., (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the ² subunit of a calcium channel, *J. Biol. Chem.*, **271**, 5768-5776.
- [52] Su, T., Gong, C.H., Hang, J., Kohler, W., Dickerson, M. (2000) Human 2 2 subunit of calcium channel: a novel gabapentin binding protein in brain. *Society for Neuroscience Abstracts* 26, 40.20.
- [53] Wang, M.H., Offord, J., Oxender, D.L., Su, T.Z., (1999) Structural requirement of the calcium-channel subunit 2 for gabapentin binding, *Biochem. J.*, **342**, 313-320.
- [54] Marais, E., Klugbauer, N., Hofmann, F., (2001) Calcium channel alpha(2)delta subunits - Structure and gabapentin binding, *Mol. Pharmacol.*, **59**, 1243-1248.
- [55] Stefani, A., Spadoni, F., Bernardi, G., (1998) Gabapentin inhibits calcium currents in isolated rat brain neurons, *Neuropharmacology*, 37, 83-91.
- [56] Alden, K.J., Garcia, J., (2001) Differential Effect of Gabapentin on Neuronal and Muscle Calcium Currents, J. Pharmacol. Exp. Ther., 297, 727-735.
- [57] Sutton, K.G., Martin, D.J., Pinnock, R.D., Lee, K., Scott, R.H., (2002) Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones, *Br. J. Pharmacol.*, 135, 257-265.
- [58] Kang, M.G., Felix, R., Campbell, K.P., (2002) Long-term regulation of voltage-gated Ca(2+) channels by gabapentin, *FEBS Lett.*, **528**, 177-182.
- [59] Stefani, A. Hainsworth, A.H. (2003) Gabapentin-mediated effects on voltage- and ligand-gated currents. *Current Neuropharma*cology, 1(3), 237-244.
- [60] Canti, C., Davies, A., Berrow, N.S., Butcher, A.J., Page, K.M., Dolphin, A.C., (2001) Evidence for two concentration-dependent processes for subunit effects on 1B calcium channels, *Biophys. J.*, 81, 1439-1451.