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The mechanism of action of gabapentin is still not well 
understood. It binds to the α2δ‑1 and α2δ‑2 subunits of volt‑
age‑gated calcium channels but has little acute effect on calcium 
currents in several systems. However, our recent results conclusively 
demonstrated that gabapentin inhibited calcium currents when 
applied chronically but not acutely, both in heterologous expression 
systems and in dorsal root ganglion neurons.1 In that study we only 
examined a 40-hour time point of incubation with gabapentin, and 
here we have extended these results to include the effect of up to 
6 and 20 hours incubation with gabapentin on calcium channel 
currents formed from CaV2.1/β4/α2δ‑2 subunits. Gabapentin was 
significantly effective to inhibit the currents if included for 17–20 
hours prior to recording, but it did not produce a significant inhi‑
bition if included for 3–6 hours. We previously concluded that 
gabapentin acts primarily at an intracellular location, requiring 
uptake into cells. However, this effect is mediated by α2δ subunits, 
being prevented by mutations in either α2δ‑1 or α2δ‑2 that abolish 
gabapentin binding.1 Furthermore, we also showed that the traf‑
ficking of α2δ‑2 and CaV2 channels was disrupted by gabapentin. 
Here we have also extended that study, to show that the cell‑surface 
expression of CaV2.1 is not reduced by chronic gabapentin if it is 
co‑expressed with α2δ‑2 containing a point mutation (R282A) that 
prevents gabapentin binding.

Introduction

Voltage‑gated calcium channels (VGCCs) are essential for the 
function of all excitable cells, and are implicated in many cellular 
processes.2,3 They have been divided on the basis of their biophysical 

properties and pharmacology into L‑, N‑, P/Q‑, R‑ and T‑types.4 
Each calcium channel is composed of a pore‑forming α1 subunit, 
associated with β and α2δ accessory subunits (except for T‑type 
channels),5,6 and for skeletal muscle channels there is also a γ 
subunit. The α1 subunit determines the main biophysical properties 
of the channel, and is modulated by the other subunits.3,7‑10 
Mammalian genes encoding ten α1, four β and four α2δ subunits 
have been identified (reviewed in ref. 11).

The function(s) of the α2δ subunit remain poorly investigated; 
it has a role in trafficking and also influences voltage‑dependent 
and kinetic properties, as investigated by a number of groups.12‑14 
The entire α2 polypeptide is extracellular, whereas δ is predicted to 
have a transmembrane domain.12,15,16 We have recently shown that 
one of the main effects of α2δ subunits is to traffic calcium channel 
heteromers to the plasma membrane, utilising the Von Willebrand 
factor‑A domain which is within α2.17

Of the four cloned α2δ subunit genes, α2δ‑1 is the original skeletal 
muscle subunit, whose distribution is fairly ubiquitous.5,13,18,19 The 
α2δ‑2 and α2δ‑3 subunits were subsequently cloned from brain.13,20 
The most recently identified α2δ‑4 is largely non‑neuronal.19 For 
the CaV1 and CaV2 class of channels, there does not appear to be 
a structural specificity concerning which subunits are able to form 
functional channels together. However, specificity is imposed at the 
cellular level by selective expression, as certain cell types may contain 
particular complements of calcium channel subunits, for example 
cerebellar Purkinje cells primarily express certain splice variants of 
α1A, both β2a and β4, and only α2δ‑2.13

Experimental nerve crush injury is known to result in an increase 
in the level of α2δ‑1 mRNA in the damaged sensory neurons (DRGs), 
particularly the nociceptors, as shown by in situ hybridisation21 and 
microarray analysis.22 There is a corresponding increase in α2δ‑1 
protein in DRGs and spinal cord, as determined by Western blot,23 
and by light and electron microscope immunohistochemistry (Bauer 
et al., in preparation). The mechanism for the elevated expression of 
α2δ‑1 is unknown, but it may result from enhanced firing of the cells 
following nerve damage.

Gabapentin and its analogue pregabalin are of therapeutic benefit 
in the alleviation of neuropathic hyperalgesia and allodynia that occurs 
following nerve damage (reviewed in ref. 24). They also reduce hyper‑
algesia and allodynia in experimental models of neuropathic pain, but 
have no effect on control responses.25,26 Although gabapentin was 
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originally developed as a rigid analogue of GABA, it has no activity 
at GABA‑A or GABA‑B receptors or GABA transporters (reviewed 
in ref. 27). Gabapentin was then identified to bind to the calcium 
channel α2δ‑1 and ‑2 subunits,28,29 although it produces little or no 
acute block of calcium currents (reviewed in ref. 10).

Conclusive evidence has recently been obtained that the efficacy 
of gabapentin and pregabalin in the alleviation of neuropathic 
pain occurs via binding to α2δ‑1.30 The authors made a knock‑in 
mouse strain with a mutation in α2δ‑1 (R217A) that renders the 
mice insensitive to gabapentin. With the knowledge that the main 
effect of α2δ subunits is on calcium channel trafficking,17 we have 
recently shown that chronically applied, but not acute, gabapentin 
impedes calcium channel trafficking to the cell surface.1 Our results 
indicated that gabapentin acts primarily at an intracellular site to 
impede trafficking. This requires both uptake into the cell and 
binding to α2δ subunits.

In the present study we have extended these results to provide a 
time course for the effect of gabapentin, and to show that the effect 
of gabapentin on trafficking α2δ‑2 subunits and the associated α1 
subunits to the plasma membrane is lost when a mutation is made in 
the α2δ subunit, such that it does not bind gabapentin.

Results

Time course of the effect of chronic gabapentin to inhibit 
calcium currents. The tsA 201 cells were transfected with the cDNA 
combination CaV2.1/α2δ‑2/β4, and recordings were made 40–48 
hours after transfection. In previous experiments,1 gabapentin was 
included in the medium for the entire period between transfection 
and re‑plating for electrophysiological recording, whereas here it was 
included for the periods stated in the legends to Figures 1 and 2. We 

previously showed that gabapentin inhibited calcium currents when 
applied chronically for ~40 hours, but not when applied acutely for 
10 min.1 We now show that there was no effect of 1 mM gabapentin 
when it was applied for 3–6 hours prior to recording (Fig. 1A and 
B), but there was a significant inhibition by gabapentin when it was 
applied for 17–20 hours prior to recording (Fig. 2A and B). The time 
course of the effect of gabapentin (Fig. 2C) includes the mean data 
for 10 minutes and 40 hours, obtained previously, under conditions 
described in ref. 1, for completeness .

Lack of effect of gabapentin on R282A‑α2δ‑2. We previously 
showed that chronically applied gabapentin reduced the cell surface 
expression of CaV2.1 and α2δ‑2 in transfected cells, when applied 
chronically for the entire period between transfection and fixation 
of the cells (72 hours). This correlated with our electrophysiological 
findings.1 In that study, we also showed that the effect of chronic 
gabapentin on calcium channel currents was lost when the α2δ‑2 
subunit was mutated R282A α2δ‑2 such that it did not bind 
gabapentin.1 We now show corresponding evidence for the effect 
on cell surface expression, providing confirmation that the effect 
of gabapentin on trafficking is via the α2δ subunit. In Figure 3A 
(left) the effect is shown of chronic gabapentin application to reduce 
cell surface expression of CaV2.1‑2HA (green) and α2δ‑2 (red), 
as described previously.1 In contrast no effect of gabapentin was 
observed when the R282A mutant form of α2δ‑2 was used (Fig. 3B, 
left). In permeabilized cells gabapentin increased the intracellular 
retention of wild type α2δ‑2 and CaV2.1‑2HA (Fig. 3A, right), 
as previously described.1 In contrast there was more intracellular 
retention of both R282A α2δ‑2 and CaV2.1‑2HA when they were 
co‑expressed in the absence of gabapentin (Fig. 3B, right) and the 
addition of gabapentin had no additional effect (Fig. 3B, right).

Figure 1. Gabapentin does not inhibit IBa following heterologous expression, when applied for 3–6 hours. (A) Current density‑voltage (IV) relationships for 
CaV2.1/β4/α2δ‑2 currents in the absence or presence of gabapentin (GBP, 1 mM, ○, n = 8) for 3–6 hours (or H2O as control, ■, n = 10), immediately 
prior to recording. Gabapentin was also present in the medium following re‑plating of the cells, and in the medium during recording. There was no reduction 
in IBa at any potential. (B) Examples of currents resulting from step potentials from ‑90 mV to between ‑15 and +35 mV in 5-mV increments, under control 
conditions and in the presence of 1 mM gabapentin. Calibration bars refer to both sets of traces.
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Discussion

The mechanism of action of gabapentin has been under debate 
for many years. It was identified in 1996 that the gabapentin binding 
site was the calcium channel auxiliary α2δ‑1 subunit,28 and it  
was therefore assumed that gabapentin would have its action via 
inhibition of calcium currents. Although it was initially reported 
that there was an acute inhibition of calcium currents by about 
20% in cultured DRGs, depending on culture conditions,36 several 
studies have reported that there is little or no acute inhibition of 
calcium currents either in neurons or in heterologous expression 
systems.1,10,26 However, in DRGs from α2δ‑1 overexpressing mice, 
an inhibition of calcium currents by acute gabapentin was reported, 
over a period of 5–10 minutes.26

The literature is similarly mixed regarding inhibition of transmitter 
release. Gabapentin and pregabalin were reported to produce a small 
(~10%) inhibition of release from both glutamate and GABA 
synapses in hippocampal cultures, and also to reduce osmotically 
induced release, although this is known to be a calcium‑independent 
process.37 Furthermore, gabapentin inhibited the facilitation of 
K+‑stimulated release by a PKC activator, but not basal K+‑stimulated 
release of glutamate from trigeminal slices.38

In experiments on synaptic transmission, gabapentin and 
pregabalin were reported to reduce the frequency of miniature 
and evoked synaptic currents.39 Also, it was found that gabapentin 
inhibited both glutamatergic and glycinergic synaptic transmission 
in the mouse spinal cord dorsal horn through a preferential block of 
P/Q‑type Ca2+ channels,40 but it was also reported that gabapentin 

Figure 2. Gabapentin inhibits IBa following heterologous expression, when applied for 17–20 hours. (A) Current density‑voltage (IV) relationships for 
CaV2.1/β4/α2δ‑2 currents in the absence or presence of gabapentin (GBP, 1 mM, ○, n = 12) for 17–20 hours (or H2O as control, ■, n = 13), immedi‑
ately prior to recording. Gabapentin was also present in the medium following re‑plating of the cells, and in the medium during recording. (B) Examples 
of currents resulting from step potentials from ‑90 mV to between ‑20 and +55 mV in 5 mV increments, under control conditions and in the presence of 
1 mM gabapentin. Calibration bars refer to both sets of traces. (C) The bar chart shows time course of the inhibition by 1 mM gabapentin for exposures 
from 10 min. (n = 5) and ~40 hours (n = 11.) There was a significant reduction in peak IBa at +10 mV at both 17–20 hours (*p = 0.012) and ~40 hours 
(**p = 0.0013).1 The 10 min. and 40 hours data were obtained previously,1 using conditions described therein.
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did not alter P/Q‑type Ca2+ channel‑mediated synaptic transmission 
in the hippocampus in vitro.41 A selective effect on the inhibition of 
P/Q rather than N‑type channels would be difficult to explain, as we 
have not found any selectivity in the association of α2δ subunits with 
CaV2.1, rather than CaV2.2 channels.

Our previous results showed conclusively that gabapentin inhibits 
calcium currents when applied chronically, by an intracellular effect 
on calcium channel trafficking.1 In that paper, the only time point 
measured was after 40 hours of incubation with gabapentin, there‑
fore it was present from immediately after transfection. Here we 
show that gabapentin also significantly inhibited calcium channel 
currents by 45% after 17–20 hours of incubation, but there was no 
significant inhibition after 3–6 hours.

Gabapentin was used in this study at a concentration of 1 mM, 
because it was added to the culture medium, which contains high 
concentrations of large neutral amino‑acids.42,43 For example, both 
isoleucine and leucine are present at 800 μM, and valine at 400 μM 
in the culture medium used. These amino acids compete with gaba‑
pentin for uptake into cells via system L transporters,42 and also 
compete with gabapentin for binding to α2δ‑1.43

We also show that the gabapentin‑mediated reduction of 
cell‑surface expression of α2δ‑2 and CaV2.1 was prevented by 

substitution of the gabapentin‑insensitive α2δ‑2 mutant (R282A 
α2δ‑2). This indicates that gabapentin is acting indirectly on CaV2.1, 
via binding to α2δ‑2, either to reduce its trafficking to the plasma 
membrane, or to affect its endocytosis.

It is still unclear what the normal function of the gabapentin 
binding site on α2δ subunits might be, and whether it is occupied 
by an unknown endogenous ligand. In relation to this, we have 
identified that α2δ subunits are concentrated in cholesterol‑rich 
microdomain (lipid raft) fractions both in neuronal tissue and in 
transfected cells.44 The apparent affinity of α2δ‑2 for gabapentin is 
increased markedly in the cholesterol‑rich microdomain fractions.44 
The likely explanation for this is that there is an endogenous 
molecule that binds to α2δ, and dissociates during the purification 
process.44 This molecule would interact either with the same site as 
gabapentin, or would allosterically modulate that site. It is possible 
that this unknown endogenous molecule is a neutral ligand or might 
be a positive modulator of α2δ subunit function. In regard to this we 
have shown that R217A α2δ‑1 and the equivalent mutation in α2δ‑2 
(R282A) have reduced functionality, again suggesting the possibility 
that the gabapentin binding site might normally be occupied by an 
endogenous ligand, whose presence might be required for the full 
functionality of α2δ.30,44

Figure 3. Effect of chronic GBP on the plasma membrane localization of CaV2.1 and α2δ‑2 or R282A α2δ‑2 in COS‑7 cells. (A) CaV2.1‑2HA was co‑transfect‑
ed with β4 and α2δ‑2 and cultured for 72 hours either in the absence or in the presence of GBP (1 mM). Cells were then fixed and either not permeabilized 
(left) or permeabilized (right) before immunocytochemical localization of CaV2.1 (HA Ab, left) and α2δ‑2 [α2δ‑2 (102–117) Ab, center]. Immunostaining 
was visualized using a magnification x 63 objective. Merged images are shown (right) (CaV2.1 is shown in green and α2δ‑2 in red, with regions of 
co‑localization in orange‑yellow). Nuclear staining (blue, DAPI) is shown in the merged images. Images show 1 μm optical sections of data representative 
of three independent experiments. (Scale bar: 30 μm). No signal was observed in non‑transfected cells or in the absence of primary Abs. (B) Images are 
obtained as in (A), but the cells were co‑transfected with CaV2.1‑2HA, β4 and α2δ‑2 R282A. (Scale bar: 30 μm).
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Methods

Construction and heterologous expression of cDNAs. Mammalian 
cell lines were transfected with cDNAs for CaV2.1 or CaV2.1-2HA1 
in conjunction with rat β4 and mouse α2δ‑2 (AF247139).31 The 
cDNAs were subcloned into the pMT2 vector for expression in 
tsA‑201 or Cos‑7 cells. The cDNA for green fluorescent protein 
(mut3 GFP)32 was included in the transfection to identify trans‑
fected cells from which electrophysiological recordings were made. 
Transfection was performed as described previously.33 Cells were 
re‑plated at least 2 hours prior to electrophysiological recording.

Electrophysiology. Calcium channel expression in tsA‑201 cells 
was investigated by whole cell patch clamp recording, essentially as 
described previously.34 The internal (pipette) and external solutions 
and recording techniques were similar to those previously described.35 
The patch pipette solution contained in mM: Cs‑aspartate, 140; 
EGTA, 5; MgCl2, 2; CaCl2, 0.1; K2ATP, 2; Hepes, 10; pH 7.2, 
310 mOsm with sucrose. The external solution contained in mM: 
tetraethylammonium (TEA) Br, 160; KCl, 3; NaHCO3, 1.0; MgCl2, 
1.0; Hepes, 10; glucose, 4; BaCl2, 5, pH 7.4, adjusted to 320 mosM 
with sucrose.

Immunocytochemistry and imaging. Cos‑7 cells were transfected 
with cDNAs for human CaV2.1‑2HA in the pRK5 vector, rat β4 
and either WT or R282A mouse α2δ‑2, both in the vector pMT2, 
in a 3:2:2 ratio. The HA‑tagged CaV2.1 construct (CaV2.1‑2HA) 
was made from human CaV2.1 (AF 004883) with a double‑HA 
tag in an extracellular loop in Domain IV. Immunolabeling was 
performed 72 hours after transfection; the cells were washed twice 
in Tris‑buffered saline (TBS) and fixed with 4% paraformaldehyde 
in TBS for 5 minutes, then primary Abs were applied overnight at 
4°C. For labelling all epitopes, cells were permeabilized by incu‑
bating twice for 7 minutes in a 0.02% solution of Triton X‑100 in 
TBS, whereas, for labelling only the extracellular epitopes of the 
channels inserted in the plasma membrane, cells were not permea‑
bilised. Cells were washed twice with TBS for the same time period. 
The primary anti‑α2δ‑2 Ab (102–117) was used at 1–2 μg.ml‑1, 
followed by the secondary FITC‑conjugated goat anti‑rabbit Ab 
(Sigma, Poole, UK; 1:500). A rat monoclonal anti‑HA Ab (Roche) 
was used at 0.2 μg.ml‑1, with a biotinylated anti‑rat IgG (Sigma, 
0.6 μg.ml‑1), followed by streptavidin‑Texas Red (Molecular Probes, 
Eugene, Oregon, 2 μg.ml‑1). In some experiments, the nuclear dye 
4',6‑diamidino‑2‑phenylindole (DAPI, 500 nM, Molecular Probes) 
was also used to visualize the nucleus. Cells were mounted in 
Vectashield (Vector laboratories, Burlingame, CA) to reduce photo‑
bleaching, and examined on a confocal laser scanning microscope 
(Zeiss LSM), using a x 63 (1.4 NA) oil‑immersion objective. Optical 
sections were 1 μm. Photomultiplier settings were kept constant 
in each experiment and all images were scanned sequentially. Data 
illustrated are representative of more than ten cells from at least three 
independent experiments.
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