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1 Monotonicity
Another linguistically important property is monotonicity. This is a property that holds
for many different types of functions but we will for now focus on the versions that apply
to determiner denotations, i.e. type-xet, xet, tyy functions. There are several variants of
monotonicity. We will discuss them in turn.

1.1 Right Upward Monotonicity

Let us start with right upward monotonicity.

(1) A function Q P Dxet,xet,tyy is right upward monotonic iff for any functions f , g , g 1 P

Dxe,ty such that for each x P De , if g(x) = 1 then g 1(x) = 1, whenever Q(f )(g) = 1,
Q(f )(g 1) = 1.

Let us re-state this in terms of sets. Take two functions g , g 1 P Dxe,ty such that for each
x P De such that g(x) = 1, we also have g 1(x) = 1. This means set(g) Ď set(g 1). The above
definition says, Q is right-upward monotonic, Q(f )(g) entails Q(f )(g 1) for any g 1 such that
set(g) Ď set(g 1).

This property is about the argument on the right, i.e. the VP denotation, so it is called right
upward monotonicity. And it is upward, because you can replace the set set(g) with a
superset of it, set(g 1), while preserving the truth. The analogy here is that sets become
bigger as you go upwards.

Here are some concrete examples. veveryw
M is right upward monotonic.

(2) Every linguist is British.

Notice that set(vBritishw
M) Ď set(vEuropeanw

M), or in other words, for each x P De such
that vBritishw

M(x) = 1, vEuropeanw
M(x) = 1. Observe that (2) entails (3).

(3) Every linguist is European.

It is important to keep in mind that in checking monotonicity with concrete examples like
these, you have to keep the NP part (e.g. ‘linguist’ in the above examples) constant across
the two sentences. In the definition of right upwardmonotonicity in (1), the first argument
f , which is the NP denotation, is held constant.

vsomew
M is another right-upward monotonic determiner. This is illustrated by the entail-

ment from (4a) to (4b).

(4) a. Some linguist is British.
b. Some linguist is European.

Keep in mind that in order to check monotonicity, you need to check all such sentences,
and it is not sufficient to show the entailmentwith onepair to prove that a givendeterminer
is right upwardmonotonic. Since there are in principle infinitely many such sentences, it is
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actually not possible to go through all examples. But instead, we can ‘prove’ right upward
monotonicity of these determiners analytically as follows. Recall the set denotations of
these determiners:

(5) a. veveryw
M = [λf P Dxe,ty. [λf P Dxe,ty. 1 iff set(f ) Ď set(g)]]

b. vsomew
M = [λf P Dxe,ty. [λf P Dxe,ty. 1 iff set(f ) X set(g) ‰ H]]

Right upward monotonicity says, whenever Q(f )(g) = 1, we also have Q(f )(g 1) = 1 pro-
vided set(g) Ď set(g 1). Let us apply this forQ = veveryw

M . Suppose that veveryw
M(f )(g) = 1

for some arbitrary f and g . Then, we have set(f ) Ď set(g), because that’s what the sen-
tence states. Then for any g 1 such that set(g) Ď set(g 1), set(f ) Ď set(g 1) is also the case,
because A Ď B means that everymember of A is also amember of B , and if everymember
of B is a member of C , then every member of Amust be amember of C as well (or in other
words, the subset relation is transitive). This is depicted in the following diagram.

(6)

set(f )

set(g)
set(g 1)

So we have set(f ) Ď set(g 1). This means veveryw
M(f )(g 1) = 1. Since we are talking about

arbitrary f and g , this reasoning applies to all NP and VP denotations. Therefore, veveryw
M

is right upward monotonic.

Similarly, if vsomew
M(f )(g) = 1, then we have set(f )Xset(g) ‰ H. Then for any g 1 such that

set(g) Ď set(g 1), we also have set(f ) X set(g 1) ‰ H. This is because if set(f ) X set(g) ‰ H,
there must be at least one member of set(f ) X set(g). Call one such element a. Because
set(g) Ď set(g 1), i.e. every member of the former is a member of the latter, it must be the
case that a P set(g 1). Then, amust be a member of set(f )X set(g 1). This is depicted in (7).

(7)
set(f )set(g)

set(g 1)

a

So set(f ) X set(g 1) ‰ H. This means vsomew
M(f )(g 1) = 1.

But not all determiners are right upward monotonic. For example, vnow
M is not right up-

ward monotonic. This is easy to demonstrate. Consider (8).
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(8) a. No linguist is British.
b. No linguist is European.

Clearly, (8a) does not entail (8b). Concretely, in a situationwhere there are French linguists
but no British linguists, (8a) is true but (8b) is false. Notice that in this case it is sufficient
to raise one example to prove that vnow

M is not right upward monotonic. The definition
requires entailment to hold for every f , g and g 1 such that set(g) Ď set(g 1), so one counter-
example is enough to prove that the property does not hold.

Similarly, vexactly twow
M is not right upward monotonic. (9a) does not entail (9b) (what

contexts make the former true and the latter false?).

(9) a. Exactly two linguists are British.
b. Exactly two linguists are European.

1.2 Right Downward Monotonicity

Right downward monotonicity is very similar to right upward monotonicity except that it
uses subsets instead of supersets in the definition.

(10) A functionQ P Dxet,xet,tyy is right downwardmonotonic iff for any functions f , g , g 1 P

Dxe,ty such that for each x P De , if g 1(x) = 1 then g(x) = 1, whenever Q(f )(g) = 1,
Q(f )(g 1) = 1.

In terms of sets, we are now talking about those functions g 1 such that set(g 1) Ď set(g).
The idea is that if Q is right downward monotonic, we have entailment towards smaller
sets, i.e. downwards. Let’s go through some examples.

vNow
M is right downward monotonic. The following example illustrates the entailment

pattern. Note that set(vviolinistwM) Ď set(vmusicianw
M). Again, keep in mind that you only

change the VP and leave everything else in the sentence intact.

(11) a. No semanticist is a musician.
b. No semanticist is a violinist.

Clearly, if (11a) is true, (11b) needs to be true. But remember that in order to show that
vnow

M is right downwardmonotonic, it is not sufficient to have an entailment between one
pair of examples. Rather we need to show that the entailment goes through between all
such pairs of sentences. As before, we can do this analytically, using the denotation of ‘no’
given in (12).

(12) vnow
M = [λf P Dxe,ty. [λf P Dxe,ty. 1 iff set(f ) X set(g) = H]]

Suppose vnow
M(f )(g) = 1 for some arbitrary f and g . We want to show that for any g 1

such that set(g 1) Ď set(g), it follows that vnow
M(f )(g 1) = 1. From the assumption that

vnow
M(f )(g) = 1 , it follows that set(f ) X set(g) = H, which is to say that set(f ) and set(g)

are disjoint. Then, if you take any subset of set(g), it will be disjoint with set(f ), because if
set(g 1) and set(f ) had a common member, that member would belong to set(g) as well,
which would contradict the assumption that set(f ) X set(g) = H. The following diagram
illustrates this.
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(13)
set(f )set(g 1)

set(g)

Therefore, vnow
M(f )(g 1) = 1 follows from vnow

M(f )(g) = 1 for any g 1 such that set(g 1) Ď

set(g).

Not all determiners are right downward monotonic. Generally, right upward monotonic
determiners are not right downwardmonotonic. The following pairs of sentences demon-
strate that ‘every’ and ‘some’ are not right downward monotonic. There is no entailment
from the (a)-example to the (b)-example (give concrete situations where (a) is true but (b)
is false).

(14) a. Every semanticist is a musician.
b. Every semanticist is a violinist.

(15) a. Some semanticist is a musician.
b. Some semanticist is a violinist.

There are also determiners that are neither right upward monotonic nor right downward
monotonic. For instance, (16a) does not entail and also is not entailed by (16b).

(16) a. Exactly two semanticists are British.
b. Exactly two semanticists are European.

If there are two British semanticists and one French semanticist, (16a) is true but (16b) is
false. Suppose now that there is one British semanticist and one French semanticist, and
no one else is a semanticist. Then (16b) is true but (16a) is false.

1.3 Left Upward Monotonicity

Not surprisingly, there are ‘left’ versions of monotonicity. Left upward monotonicity is de-
fined as (17).

(17) A function Q P Dxet,xet,tyy is left upward monotonic iff for any functions f , f 1, g P

Dxe,ty such that for each x P De , if f (x) = 1 then f 1(x) = 1, whenever Q(f )(g) = 1,
Q(f 1)(g) = 1.

In terms of sets, if Q is left upward monotonic, Q(f )(g) entails Q(f 1)(g) for any f 1 such that
set(f ) Ď set(f 1). Let us go through some examples.

vsomew
M is left upward monotonic, as illustrated by the following example. The two sets

standing in the subset-superset relation here is set(vphonologistwM) and set(vlinguistwM).
This time, we only change the NP, and the VP is kept untouched.

4



(18) a. Some phonologist is happy.
b. Some linguist is happy.

As you can see, (18a) entails (18b).

As before, it is not sufficient show the entailment relation of one pair of sentences. We
can prove the left upward monotonicity of vsomew

M more generally as follows. Suppose
vsomew

M(f )(g) = 1 for some arbitrary f , g P Dxe,ty. Then set(f ) X set(g) ‰ H. This means
that there is at least one member in this intersection. Let’s take one and call it a. Now take
a superset set(f 1) of set(f ). Since every member of set(f ) is a member of set(f 1), it must
be the case that a P set(f 1). We know that a belongs to set(g) (as it’s a shared member of
set(f ) and set(g)), so a P set(f 1)X set(g). Then we have set(f 1)X set(g) ‰ H, which means
vsomew

M(f 1)(g) = 1. This reasoning is visualized in (19).

(19)
set(f )set(g)
set(f 1)

a

On the other hand, veveryw
M is not left upward monotonic. This can be shown easily with

an example: (20a) does not entail (20b), for example.

(20) a. Every phonologist is happy.
b. Every linguist is happy.

More concretely, if every phonologist is happy but there is an unhappy semanticist, (20a)
is true but (20b) is false. So (20a) does not entail (20b), and hence veveryw

M is not left
upward monotonic.

1.4 Left Downward Monotonicity

Finally, left downward monotonicity is defined as (21).

(21) A function Q P Dxet,xet,tyy is left downward monotonic iff for any functions f , f 1, g P

Dxe,ty such that for each x P De , if f 1(x) = 1 then f (x) = 1, whenever Q(f )(g) = 1,
Q(f 1)(g) = 1.

This time, set(f 1) is a subset, rather than a superset, of set(f ).

vNow
M is left downwardmonotonic, as illustrated by (22). Here we have the subset relation

set(vcatwM) Ď set(vanimalwM).

(22) a. No animal is in the room.
b. No cat is in the room.

We have an entailment from (22a) to (22b). But again, to show that vnow
M is left downward
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monotonic, one example is not enough. Rather we have to reason about its meaning.
Specifically, we will show that from the assumption that vnow

M(f )(g) = 1 for some arbitrary
f , g P Dxe,ty, it follows that vnow

M(f 1)(g) = 1 for any f 1 P Dxe,ty such that set(f 1) Ď set(f ).

Suppose vnow
M(f )(g) = 1 for some f , g P Dxe,ty. This means that set(f ) X set(g) = H.

Then take a subset set(f 1) of set(f ). set(f 1) must be disjoint with set(g), because if they
overlapped, the common members of set(f 1) and set(g) would also belong to set(f ), and
so it would contradict set(f ) X set(g) = H. Thus, set(f 1) X set(g) = H, and therefore
vnow

M(f 1)(g) = 1. This is visualized in (23).

(23)

set(f 1)
set(g)

set(f )

Somedeterminer denotations are not left downwardmonotonic, for example, ‘some’. This
is shown by the following examples.

(24) a. Some animal is in the room.
b. Some cat is in the room.

It is intuitively clear that (24a) does not entail (24b). More concretely, in a situation where
there is a dog in the room but no cat is in the room, (24a) is true but (24b) is false. On the
other hand, as we saw above, vsomew

M is left upward monotonic.

There are also determiners that denote functions that are neither left upward monotonic
nor right upward monotonic. Consider (25).

(25) a. Exactly two animals are brown.
b. Exactly two cats are brown.

Here, entailment doesn’t hold in either direction. Concretely, if there are two brown dogs
and all cats are gray, then (25a) is true but (25b) is false. Similarly, if there are two brown
cats and three brown dogs, then (25b) is true but (25a) is false.

Here is a summary of the monotonicity properties of three quantificational determiners,
‘every’, ‘some’, ‘no’, and ‘exactly two’.

(26) Left Upward Left Downward Right Upward Right Downward
Every No Yes Yes No
Some Yes No Yes No
No No Yes No Yes
Exactly two No No No No
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2 Negative Polarity Items

Monotonicity is an important concept for linguistics and used widely in analyzing a wide
range of linguistic phenomena. For example, it is widely considered that the distribution
of so-called Negative Polarity Items (NPIs) is sensitive to monotonicity.

NPIs are those items that require negative licensors. To illustrate, consider the following
examples containing an NPI, ‘ever’.

(27) a. *John has ever seen it.
b. *Everyone has ever seen it.
c. No one has ever seen it.

Roughly speaking, ‘ever’ needs a negative element in the same sentence. In (27a) and
(27b), there is no negative item, so the sentences are ungrammatical. In contrast, in (27c),
the quantifier is ‘negative’, and consequently the sentence is grammatical.

As we will see, our analysis of quantificational DPs allows us to refine the notion of ‘nega-
tivity’ relevant to NPI licensing as downward monotonicity.

2.1 Fauconnier-Ladusaw Hypothesis

What are the licensing conditions for NPIs in English? Many theoretical linguists have
been preoccupied with this question, and many different theoretical ideas have been put
forward, including purely syntactic ones. Today, it is considered that at least part of the
licensing conditions is semantic in nature, and many accept (a version of) the so-called
Fauconnier-Ladusaw Hypothesis.

(28) Fauconnier-Ladusaw Hypothesis:
NPIs are licensed in downward monotonic contexts.

What are downward monotonic contexts? For sentences with quantificational subjects of
the kind that we have been talking about, we can define downward monotonic contexts
as follows (see the next section for a more general definition).

(29) In a sentence of the form S

VP

...

DP

NP

...

D

a. If vDw
M is left downward monotonic, NP is a downward monotonic context.

b. If vDw
M is right downwardmonotonic, VP is a downwardmonotonic context.

Let us go through some examples demonstrating this idea. Recall that veveryw
M is left

downwardmonotonic but right upwardmonotonic. Thus, in the following sentence, NP is
a downward monotonic context, but VP is not (it is in fact an upwardmonotonic context).
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(30) Every [NP linguist who has lived in London]
looooooooooooooooooooooooomooooooooooooooooooooooooon

Downward Monotonic Context
[VP has been to Edinburgh]

loooooooooooooooooomoooooooooooooooooon

Upward Monotonic Context

According to the Fauconnier-Ladusaw Hypothesis, NPIs are licensed in the NP part of this
sentence, but not in the VP part of the sentence. This prediction is borne out.

(31) a. Every linguist who has ever lived in London has been to Edinburgh.
b. *Every linguist who has lived in London has ever been to Edinburgh.

Keep inmind that we are talking here about licensing with ‘every’. Unsurprisingly, if there’s
a separate licensor, e.g. negation, ‘ever’ can appear in VP, as in (32) (see Section 3 for an
explanation how negation creates a downward entailing context).

(32) Every linguist who has lived in London has not ever been in Edinburgh.

Let us look at some more examples. Unlike veveryw
M , vnow

M is both left and right down-
wardmonotonic, so it licenses ‘ever’ inNP andVP, as predictedby the Fauconnier-Ladusaw
Hypothesis.

(33) a. No linguist who has ever lived in London has been to Edinburgh.
b. No linguist who has lived in London has ever been to Edinburgh.

By contrast, vsomew
M is both left and right upward monotonic, so the hypothesis predicts

that it does not license ‘ever’ in any position. This is also correct.

(34) a. *Some linguist who has ever lived in London has been to Edinburgh.
b. *Some linguist who has lived in London has ever been to Edinburgh.

2.2 Other NPIs in English

English has a number of NPIs besides ‘ever’. A particularly well-discussed one is ‘any’, as
in (35).

(35) a. *Morris Halle read any of my papers.
b. *Every phonologist read any of my papers.
c. No phonologist read any of my papers.

The distribution of ‘any’ is considered to be similar to that of ‘ever’, but one caveat is that
‘any’ has a so-called Free Choice reading, under which it does not behave as an NPI. This
is illustrated by the examples below.

(36) a. Chomsky will meet with any of my students, if I ask him.
b. Every syntactician will meet with any of my students, if I ask him.

The Free Choice reading of ‘any’ and similar items in other languages is also a well-studied
topic in formal semantics. This might be a good topic for your essay.

In addition, there is a class ofNPIs calledminimizers, e.g. ‘lift a finger’, ‘sleep awink’, ‘budge
an inch’, ‘(have) a red cent’, etc. (% indicates that only the literal meaning is available):

(37) a. %John lifted a finger for Mary.
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b. %Every man lifted a finger for Mary.
c. No man lifted a finger for Mary.

It is known that there is a slight difference in distribution between ‘ever’ andminimizers. In
particular, minimizers are not licensed in theNP argument of a quantificational determiner
across the board:

(38) a. %Every boy who lifted a finger for Mary likes her.
b. %Every boy who likes Mary lifted a finger for her.

(39) a. %No boy who lifted a finger for Mary hates her.
b. No boy who hates Mary lifted a finger for her.

(40) a. %Some boy who lifted a finger for Mary likes her.
b. %Some boy who likes Mary lifted a finger for her.

For this reason, sometimesminimizers are called strongNPIs andNPIs like ‘ever’ are called
weak NPIs. Generally, strong NPIs are licensed in a subset of environments where weak
NPIs are licensed. There are two major hypotheses about the licensing conditions on
strong NPIs:

• Zwarts (1998, ‘Three types of polarity’) claims that strong NPIs are licensed in a subset
of downward monotonic contexts called anti-additive contexts.

• Gajewski (2011, ‘Licensing strong NPIs’) claims that strong NPIs are sensitive to the
monotonicity of presuppositions.

A comparison of these two types of theories would make a good essay topic. It would
also be a good essay project to investigate different types of negative polarity items in
your native language.

3 Downward Monotonic Contexts and Generalized Entailment

In the above discussion, we did not discuss other licensors of NPIs than quantificational
determiners, but it is obvious that quantificational determiners are not the only NPI licen-
sors. For example, the following two sentences suggest that negation is an NPI licensor.

(41) a. *John has ever been to Paris.
b. John has not ever been to Paris.

In fact, the Fauconnier-LadusawHypothesis is meant to capture the general distribution of
NPIs, including but not limited to sentences with quantificational DPs. In order to capture
(41), we need to define the notion of downward monotonic contextsmore generally.

3.1 Rough Idea

Recall from above how right downward monotonicity is defined.

(10) A functionQ P Dxet,xet,tyy is right downwardmonotonic iff for any functions f , g , g 1 P

Dxe,ty such that for each x P De , if g 1(x) = 1 then g(x) = 1, whenever Q(f )(g) = 1,
Q(f )(g 1) = 1.
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The idea here is if Q(f )(g) = 1, then the sentence obtained from it by replacing g with g 1

will also be true, provided that g 1 and g stand in a specific relation, namely, set(g 1) Ď set(g).

Here, what is replaced is the VP denotation, a function of type xe, ty, and the notion of
downward monotonicity is defined for a function of type xet, xet, tyy. We will speak of the
generalized version of the relation Ď—which is called generalized entailment—and then
define the monotonicity properties of functions of any type.

3.2 Generalized Entailment

The standard notion of entailment is defined for sentences.

(42) S entails S 1 iff whenever S is true, S 1 is also true.

Regarding sentence denotations as truth-values, we can define the relation ñ between
truth-values as follows (cf. the logical connective Ñ in Propositional Logic).

(43) If u, v are truth-values, u ñ v iff u = 0 or v = 1 (i.e. (u Ñ v) is true).

Wewill use (43) as the basic case, and define a similar notion for various types of functions.

Concretely, we will define a version of this relation that applies to functions of type xe, ty
as follows.

(44) If f and g are functions of type xe, ty, f ñ g iff for each x P De , f (x) ñ g(x).

Notice that on the right-hand side of ‘iff’, ñ is flanked by truth-values, while on the left-
hand side it is flanked by functions of type xe, ty.

Here is a concrete example. vBritishw
M

ñ vEuropeanw
M , because for each x P De , when-

ever vBritishw
M(x) = 1, it is also the case that vEuropeanw

M(x) = 1; or equivalently, ei-
ther vBritishw

M(x) = 0 or vEuropeanw
M(x) = 1. Notice that vBritishw

M
ñ vEuropeanw

M iff
set(vBritishw

M) Ď set(vEuropeanw
M). Butñ is a broader notion, as it applies to truth-values

and functions of other types, as we will now defeine.

Using (44), we can define the version of ñ for functions of type xe, xe, tyy as follows.

(45) If f and g are functions of type xe, xe, tyy, f ñ g iff for each x P De , f (x) ñ g(x).

It looks the same as before, but the semantic type of f and g is different. In particular,
on the right-hand side of ‘iff’, f (x) and g(x) are both still functions. Specifically, they are
functions of type xe, ty. Thus in order to evaluate whether f ñ g for functions of type
xe, xe, tyy, one needs to refer to (44).

For example, vpunchw
M

ñ vtouchw
M , because for each x P De and for each y P De , if

vpunchw
M(x)(y) = 1, then vtouchw

M(x)(y) = 1; or equivalently, vpunchw
M(x)(y) = 0 or

vtouchw
M(x)(y) = 1.

Similarly, we can define ñ for type-xet, ty functions as follows.

(46) If f and g are functions of type xet, ty, f ñ g iff for each h P Dxe,ty, f (h) ñ g(h).

The idea is the same as above. And using this, one can define ñ for type-xet, xet, tyy func-
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tions.

(47) If f and g are functions of type xet, xet, tyy, f ñ g iff for each h P Dxe,ty, f (h) ñ g(h).

More generally, we can define ñ for all semantic types that ‘end in t ’, i.e. t and all types
that look like x¨ ¨ ¨ xσ, tyy ¨ ¨ ¨ y, incluidng xe, ty , xe, xe, tyy , xet, ty , xet, xet, tyy , xt, ty, etc. To be
more precise, we define semantic types that end in t as follows.

(48) A semantic type τ ends in t if
a. τ = t or
b. τ = xσ1,σ2y such that σ1 is a semantic type and σ2 a semantic type that ends

in t.

Now, we can define ñ for any semantic type that ends in t as in (49).

(49) Generalized Entailment
For any x , y P Dτ where τ is a semantic type that ends in t,

x ñ y iff
#

x = 0 or x = y if τ = t

for each z P Dσ1 , x(z) ñ y(z) if xσ1,σ2y

As remarked above, Ď can be seen as a special case of this when τ = xe, ty.

3.3 Generalized Monotonicity

Using the notion of generalized entailment, we can define monotonicity for any function
of type that ends in t, as follows.

(50) a. A function f of type τ = xσ1,σ2y that ends in t is upwardmonotonic iff for any
x , y P Dσ1 such that x ñ y , f (x) ñ y .

b. A function f of type τ = xσ1,σ2y that ends in t is downward monotonic iff for
any x , y P Dσ1 such that x ñ y , f (y) ñ x .

Let us zoom in on one particular case when τ = xet, ty. Recall, for any x , y P Dxe,ty, x ñ y
iff set(x) Ď set(y). So f is upward monotonic iff for any x , y such that set(x) Ď set(y),
if f (x) = 1, f (y) = 1. That is, if f (x) = 1, the truth is preserved for any superset y of x .
Downward monotonicity is the converse of this: f (y) = 1 guarantees that for any subset
x , f (x) = 1.

Themonotonicity properties of type-xet, ty functions are closely related to right upward/downward
monotonicity of type-xet, xet, tyy functions. That is, if Q P Dxet,xet,tyy is right upward mono-
tonic, then Q(f ) P Dxet,ty is upward monotonic for any f P Dxe,ty. Likewise, if Q P Dxet,xet,tyy is
right downward monotonic, then Q(f ) P Dxet,ty is downward monotonic for any f P Dxe,ty.

The leftmonotonic properties are simplymonotonicity in the senseof (50) for type xet, xet, tyy

functions. vnow
M is downward monotonic. In order to see this, consider vnow

M(f ) for an
arbitrary f P Dxe,ty. Take any f 1 P Dxe,ty such that f ñ f 1, i.e. set(f ) Ď set(f 1). Now
take vnow

M(f ) and vnow
M(f 1). These are functions of type xet, ty. Take any g P Dxe,ty. If

vnow
M(f 1)(g) = 1, set(f 1) X set(g) = H. Since set(f ) Ď set(f 1), it is also the case that

set(f ) X set(g) = H. Then we also have vnow
M(f )(g). So vnow

M(f 1)(g) ñ vnow
M(f )(g), and

since this is the case for any g , we have vnow
M(f 1) ñ vnow

M(f ). Furthermore, we started
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with arbitrary functions f , f 1 P Dxe,ty such that set(f ) Ď set(f 1), we can conclude vnow
M is

downward monotonic.

Now we can state the Fauconnier-Ladusaw Hypothesis as follows.

(51) Facuconnier-Ladusaw Hypothesis
An NPI α is licensed if α occurs in the following configuration where vLw

M
P Dτ

where τ is a semantic type that ends in t and vLw
M is downward monotonic.

... α ...

L

We call the instance of such L that is closest to the NPI α the licensor of α.

3.4 Negation

We can now show that negation can serve as an NPI licensor, or in other words, that it
denotes a downwardmonotonic function. In sentences like (52), negation occurs between
the subject and VP.

(52) a. John did not smile.
b. Mary does not like Bill.

It is a property of English syntax that whenever negation occurs, something overt must fill
in the auxiliary position, e.g. ‘did’ and ‘does’ in (52). As it is beyond the scope of this course
to discuss the semantics of auxiliaries (especially those that are called modal auxiliaries),
wewill not analyze the semantics of these items. For items like ‘did’ and ‘does’, let’s assume
that they are simply semantically vacuous, i.e. they denote identity functions.

As illustrated by the following tree diagram, we analyze vnotwM to be of type xet, ety.

(53) t

xe, ty

xe, ty

smilexe,tynotxet,ety

didxet,ety

e

Johne

vnotwM takes a VP-denotation, a function of type xe, ty and says that it does not hold for the
subject.

(54) For any modelM ,
vnotwM = [λf P Dxe,ty. [λx P De . 1 iff f (x) = 0]]

This function is downwardmonotonic. First, its semantic type ends in t, i.e. after supplying

12



all arguments, you will get a truth-value. Now take arbitrary functions f , f 1 P Dxe,ty such that
f 1 ñ f , i.e. set(f 1) is a subset of set(f ). Now consider vnotwM(f ). This is a function of type
xe, ty such that for any x P De vnotwM(f )(x) = 1 iff f (x) = 0, or equivalently, x R set(f ).
Notice that whenever x R set(f ), x R set(f 1), because set(f 1) Ď set(f ) and so set(f 1) only
contains entities that set(f ) contains. So, for each x P De , if x R set(f ), then x R set(f 1). This
is equivalent to: for each x P De , if vnotwM(f )(x) = 1, vnotwM(f 1)(x) = 1. So vnotwM(f ) ñ

vnotwM(f 1). Since we are talking arbitrary f , f 1 P Dxe,ty such that set(f 1) Ď set(f ), this proves
that vnotwM is downward monotonic.
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