'Most' in Subject Position

Hadas Kotek, Yasutada Sudo, Edwin Howard, Martin Hackl

Department of Linguistics and Philosophy

ESSLLI Workshop
The Proper Use of Quantification in Ordinary Language

August 9, 2011

Outline

Background

Observations

Analysis

(DP-Internal) Proportional Reading DP-external Superlative Reading DP-Internal Superlative Reading

Section 1

Background

Object position

- ► Two readings of *most* in object position (Hackl 2009)
- Disambiguated by bare most vs. the most in English
 - (1) **Proportional**
 - a. John climbed most of the mountains
 - b. \approx John climbed more than half of the mountains
 - (2) Superlative
 - a. John climbed the most mountains
 - b. \approx John climbed more mountains than Bill or Mary

Subject position

- It is considered that most in subject position does not have a superlative reading (cf. Szabolcsi 1986, Farkas and Kiss 2000)
 - (3) Most of the circles are blue
 - a. Proportional
 More than half of the circles are blue
 - Superlative
 (*)There are more blue circles than red circles or yellow circles
 - (4) (*)The most circles are blue

Overview

- Observe
 - Superlative readings of most in subject position are available for some speakers
 - 2. Amelioration effect by overt movement for all speakers
 - 3. Partitioning effect of superlative readings for some speakers
- Propose an extension of Hackl's (2009) decompositional analysis of most

Section 2

Observations

Observation 1: Bare 'most' in subject position

- Kotek, Sudo, Howard and Hackl (in press) showed experimentally that bare most in subject position has a superlative reading for some speakers
 - (5) Most of the circles are blue

- Three experiments
 - Picture-sentence rating experiment
 - Picture selection experiment ('covered box')
 - Self-Paced Counting experiment

Observation 2: 'The most' in subject position

- We observe that some speakers in fact accept the most in subject position
- Unambiguously superlative
 - (6) (%)The most circles are blue

Observation 3: Amelioration effect by overt movement

- Overt movement makes the most in subject position grammatical for all speakers (cf. Farkas and Kiss 2000)
- Only the superlative is available
 - (7) a. (%)The most circles are touching the triangle
 - b. Which figure are the most circles touching?

Observation 4: Partitioning effect

- Two kinds of superlative reading for both bare most and the most
- Some of the speakers who accept (8) in Fig 1 judge it infelicitous in Fig 2
 - (8) Most of the circles/The most circles are touching the triangle

Observation 4: Partitioning effect (cont'd)

Partitioning effect

For some speakers, the denotation of NP (the circles) needs to be partitioned by the alternatives of VP (touching \triangle , touching \square , etc.)

 No such effect for proportional reading or superlative reading in object position

Summary of Observations

- Superlative reading in subject position exists
 - ▶ Bare most
 - Proportional only
 - Proportional or superlative
 - The most
 - Ungrammatical
 - Superlative only
- The most improves with overt movement (for all speakers)
- Partitioning superlative reading (for some speakers)

Section 3

Analysis

Goals

- Derive the three readings from the same ingredients
 - Proportional reading
 - Superlative reading without partitioning effect
 - Superlative reading with partitioning effect
- Extend Hackl's (2009) decompositional analysis of most as est
 + many
- Explain amelioration by overt movement
- Will not discuss the difference between bare most and the most in this talk

Decomposition of 'most'

• Most = est + many (Hackl 2009)

(9)
$$\| \text{many} \| = \lambda d. \lambda x. |x| \ge d$$

 Covert existential determiner SOME (Szabolcsi 1986, Heim 1999, Hackl 2009)

▶ (the) most circles:

Est undergoes covert movement leaving a trace of type d

Previous analyses of 'est'

▶ Heim's (1999) est for atomic individuals

(10)
$$[\![\operatorname{est}]\!](C)(P_{\langle d, \operatorname{et} \rangle})(x_{\operatorname{e}}) \Leftrightarrow \\ \exists d[P(d)(x) \land \forall y \in C[x \neq y \Rightarrow \neg P(d)(y)]]$$

Hackl's (2009) est for atomic and plural individuals

Cross-categorical 'est'

Generalize est to non-individuals

- What is the appropriate notion of distinctness?
- We define a notion of distinctness that encompasses Hackl's 'non-overlapping' for individuals

Distinctness

Definition (Distinctness)

- Truth values: The two truth values are distinct
- Individuals:
 - Atomic individuals x and y are distinct just in case there is a predicate $P_{\langle e,t\rangle}$ such that P(x) and P(y) are distinct
 - Plural individuals X and Y are distinct just in case for each $x \sqsubseteq_a X$ and for each $y \sqsubseteq_a Y$, x and y are distinct $(\sqsubseteq_a = \text{is an atomic part of'})$
- Functions: Functions f and g of the same type are distinct just in case there is some x such that f(x) and g(x) are distinct
- (Objects of different types are distinct)

Intuitions about distinctness

- Distinctness for plural individuals is everywhere-distinctness
 - The Americans and the semanticists are neither distinct nor identical
 - ⇒ Overlapping matters for plural individuals
- Distinctness for functions is anywhere-distinctness
 - Being American and being a semanticist are distinct even though they have some common extensions
 - ⇒ Overlapping does not matter for predicates/functions

Claim

- This notion of distinctness is intuitive
- ▶ The semantics of est is sensitive to it

Presuppositions of 'est'

- (13) $[\![\operatorname{est}]\!](C)(P_{\langle d,\sigma t \rangle})(x_{\sigma})$
 - is defined when all of the following hold
 - (i) $x \in C$
 - (ii) For any $y \in C$, P(1)(y)
 - (iii) For any $y, z \in C$, y and z are distinct
 - b. whenever defined, denotes TRUE iff $\exists d[P(d)(x) \land \forall y \in C[x \text{ and } y \text{ are distinct} \Rightarrow \neg P(d)(y)]]$
 - (13ai) and (13aii) are standard (Heim 1999, Hackl 2009, Gajewski 2010)
 - ▶ (13aiii) is responsible for the partitioning effect

Focus Senstivity

- Explicit connection to focus
- Alternatives semantics for focus (Rooth 1992)

(14)
$$\begin{bmatrix} P & C \end{bmatrix} \text{ presupposes}$$
a. $C \subseteq [P]^f$
b. $[P] \in C$
c. $|C| > 1$

• Est's argument C needs to be anaphoric to the argument of \sim (Heim 1999)

Recap: ingredients

- ► Most = est + many
- Cross-categorical 'est'
- Presuppositions of 'est'

(15)
$$[\![\operatorname{est}]\!](C)(P_{\langle d,\sigma t \rangle})(x_{\sigma})$$

- a. is defined when all of the following hold
 - (i) $x \in C$
 - (ii) For all $y \in C$, P(1)(y)
 - (iii) For any $y, z \in C$, y and z are distinct
- b. whenever defined, denotes TRUE iff $\exists d[P(d)(x) \land \forall y \in C[x \text{ and } y \text{ are distinct} \Rightarrow \neg P(d)(y)]]$
- Distinctness
- Focus sensitivity

Three readings to account for

- Proportional
 - Est stays in the local DP
 - Focus in DP
- Superlative without partitioning
 - Est moves out of the local DP
 - Focus in matrix clause
- Superlative with partitioning
 - Est stays in the local DP
 - Focus on VP

Subsection 1

(DP-Internal) Proportional Reading

Proportional reading

► DP-internal trace of semantically vacuous PRO (cf. Heim and Kratzer 1998)

Proportional reading (cont'd)

$$= [SOME](\lambda x.\exists d[d-many-circles'(x) \land \forall y \in C[x \text{ and } y \text{ are distinct} \Rightarrow \neg d-many-circles'(y)]])$$

- The presuppositions of est require:
 C ⊆ {y : y is distinct from x} ∪ {x}

Pragmatics of *C*

- Gennerally C needs to contain all the relevant things
 - (16) [There are three hundred red circles and three blue circles]

Most of the circles are blue

- a. True with $C = \{b_1 \oplus b_2 \oplus b_3, r_{35} \oplus r_{105}\}$
- b. False with $C = \{b_1 \oplus b_2 \oplus b_3, r_1 \oplus \cdots \oplus r_{300}\}$
- Each member of C must be as big as possible
- ► [Most of the circles are blue] ⇔ [SOME] (λx . $\exists d[d$ -many-circles'(x) $\land \forall y \in$ $C[x \text{ and } y \text{ are distinct} \Rightarrow \neg d$ -many-circles'(y)]])([blue]) ⇔ $\exists x \exists d[d$ -many-circles'(x) \land blue'(x) $\land \neg d$ -many-circles'(x^c)]

Subsection 2

DP-external Superlative Reading

DP-external superlative reading

- Covert fronting
- ▶ Parasitic scope (Barker 2007)
- C ⊆ {blue', red', yellow', . . . }

DP-external superlative reading (cont'd)

- C ⊆ {blue', red', yellow', . . . }
- ▶ $\exists d[\exists X[d\text{-many-circles'}(X) \land \mathsf{blue'}(X) \land \forall P \in C[P \text{ and blue'} \text{ are distinct} \Rightarrow \\ \neg \exists Y[d\text{-many-circles'}(Y) \land P(Y)]]]$
- Blue is the color such that there are more circles of that color than there are circles of any other color
- ▶ Predicates are distinct unless they are completely identical
 ⇒ No partitioning effect

Subsection 3

DP-Internal Superlative Reading

DP-internal superlative reading

- $ightharpoonup C \subseteq \llbracket \mathsf{VP}
 brace^f$ E.g. $C = \{\mathsf{blue'}, \mathsf{red'}, \mathsf{yellow'}\}$
- Presuppositions of est not met with C
- ▶ Type-shift from $\langle e,t \rangle$ to e by σ (cf. Chierchia 1998)
- $C' = \{x : x = \sigma(P) \text{ for some } P \in C\}$

DP-internal superlative reading (cont'd)

- ▶ But not $C' = \{\sigma(\mathbf{blue'}), \sigma(\mathbf{red'}), \sigma(\mathbf{yellow'})\}$
- ▶ VP internal copy of the subject (Fox 2002, Romoli 2009):

- ▶ Late Merge of *most* in [Spec,TP]
- ► Trace Conversion (Fox 2002) [D circles]₆ \Rightarrow [the [circles identical to pro_6]]
- ► [VP] = λx .blue'(ιy [circles'(y) $\wedge y = x$]) = λx .blue-circles'(x)
- $C' = \{\sigma(blue\text{-circles'}), \sigma(red\text{-circles'}), \sigma(yellow\text{-circles'})\}$

DP-internal superlative reading (cont'd)

= $\exists d\exists X[d$ -many-circles'(X) \land blue'(X) $\land \forall Y \in C'[X \text{ and } Y \text{ are distinct} \Rightarrow \neg d$ -many-circles'(Y)]]

 $\quad \ \, \mathcal{C}' = \{\sigma(\text{blue-circles'}), \sigma(\text{red-circles'}), \sigma(\text{yellow-circles'})\}$

Partitioning effect

- Unlike the DP-external superlative reading, the DP-internal superlative reading exhibits a partitioning effect
 - DP-external:
 C = {blue', red', yellow'}
 DP-internal:
 C' = {σ(blue-circles'), σ(red-circles'), σ(yellow-circles')}
- Est presupposes that all the members of C are distinct
 - Distinctness for functions is anywhere-distinctness
 - ⇒ No partitioning effect for DP-external
 - Distinctness for plural individuals is everywhere-distinctness
 ⇒ Partitioning effect for DP-internal
- Color terms are inherently partitioning, but for
 - (17) Most of the circles/The most circles are touching the triangle

$$C' = \{\sigma(\triangle \text{-touching-circles'}), \sigma(\Box \text{-touching-circles'}), \dots\}$$

Pragmatics of *C* **again**

- Why σ rather than other functions of type $\langle et, e \rangle$?
- lacktriangledown σ returns the biggest plural individual
- ► The members of the comparison set *C* needs to be as big as possible

Recap

- Ingredients
 - 1. Most = est + many
 - 2. Cross-categorical est with the notion of distinctness
 - 3. Presuppositions of *est*
 - 4. Focus sensitivity
- Three readings of most in subject position
 - 1. DP-internal est + Focus on trace of PRO
 - ⇒ Proportional
 - 2. DP-external est + Covert movement
 - ⇒ Superlative without partitioning
 - 3. DP-internal est + Type shifting by σ
 - \Rightarrow Superlative with partitioning

Markedness

- (18) a. Most of the circles are touching the triangle b. %The most circles are touching the triangle
- (19) The triangle is touching the most circles
 - Superlative reading in subject position requires either
 - Covert fronting (DP-external, without partitioning)
 - Type shifting by σ (DP-internal, with partitioning)
 - These extra operations are marked
 - Superlative reading in object position requires neither
 - Proportional reading requires no extra operation either

Amelioration with overt movement

- (20) a. $[John]_F$ wants the most circles to be blue (John wants 5 circles to be blue, Bill wants 2 to be blue, Mary wants 3 to be blue)
 - b. %John wants the most circles to be $[blue]_F$ (John wants 5 circles to be blue, 2 to be red, 3 to be yellow)
- (21) a. [Which shape]_F are the most circles touching? b. %The most circles are touching [the triangle]_F
 - Covert fronting is not required in (a)-examples; Overt movement does the job
 - ▶ DP-external reading is facilitated by overt movement
 ⇒ No partitioning effect

Conclusions

- Observations
 - Superlative reading marked but available in subject position
 - Overt movement makes it grammatical for all speakers
 - Partitioning effect for some speakers
- Proposal
 - ▶ Decompositional analysis: most = est + many
 - Cross-categorical est with distinctness
 - Presuppositions of est
 - Focus sensitivity

Selected References

- Farkas, D. & K. É Kiss (2000) On the comparative and absolute readings of superlatives. Natural Language and Linguistic Theory, 18: 417–455.
- Hackl, M. (2009) On the grammar and processing of proportional quantifiers: most versus more than half. Natural Language Semantics, 17: 63–98.
- ▶ Heim, I. (1999) Notes on superlatives. Ms., MIT.
- Kotek, H., Y. Sudo, E. Howard & M. Hackl (in press) Most meanings are superlative. In press in Syntax and Semantics 43: Experiments at the Interface. NY: Academic Press.
- Szabolcsi, A. (1986) Comparative superlatives. In *Papers in Theoretical Linguistics*. pp. 245–266. Cambridge, MA: MITWPL.