Beyond Frege-Strawson Toward a Multi-Dimensional Theory of Presupposition

Yasutada Sudo Institut Jean Nicod yasutada.sudo@gmail.com July 23, 2013 International Congress of Linguists

Punchline

- Observation: Two types of presuppositional predicates:
 - (1) a. Entailed presupposition
 [stopped smoking]]_A ⇒ [stopped smoking]]_P

 b. Non-entailed presupposition
 [criticized herself]]_A ⇒ [criticized herself]]_P
- Claim: Predicates with non-entailed presuppositions in certain quantificational sentences require a multi-dimensional theory of presupposition:
 - (2) Exactly one student (namely Mary) criticized herself

Roadmap

Introduction: Frege-Strawson Thesis

Entailed and Non-entailed Presuppositions

Stopped Smoking (Entailed Presupposition) Criticized Herself (Non-entailed Presupposition)

Beyond Frege-Strawson

Problem of Non-entailed Presuppositions Toward a Multi-Dimensional Theory

Introduction: Frege-Strawson Thesis

Observation

Beyond F-S

Standard View of Presupposition

Frege-Strawson Thesis

Presuppositions are pre-conditions for sentences/statements to be true or false

Standard View of Presupposition

Frege-Strawson Thesis

Presuppositions are pre-conditions for sentences/statements to be true or false

- Two ways to formalize this idea:
 - Partial Function Theory (Heim 1983, Heim & Kratzer 1998, Beaver 2001)
 - Trivalent Theory (Stanley 1979, Beaver & Krahmer 2001, George 2008, Fox 2008)

Partial Function Theory

- Presuppositions make meanings partial
- Sentence S with presupposition p denotes a function that is only defined for worlds/contexts where p is true

(3)
$$\|$$
Jesse stopped smoking $\|^{\partial} = \lambda w$: Jesse was smoking in w . Jesse is a former smoker in w
Presupposition Assertive meaning

 Sentence S for a given world/context is either 1, 0 or is undefined

Trivalent Theory

Claims of the Talk

- Frege-Strawson Trichotomy of Sentence Meaning: Sentence A_p can have three types of denotations
 - p is true and A is true (1; TRUE)
 - p is true and A is false (0; FALSE)
 - ▶ p is false (Undefined/#; PRESUPP FAILURE)

Claims of the Talk

- Frege-Strawson Trichotomy of Sentence Meaning: Sentence A_p can have three types of denotations
 - p is true and A is true (1; TRUE)
 - p is true and A is false (0; FALSE)
 - ▶ p is false (Undefined/#; PRESUPP FAILURE)
- Claim: Need 4 kinds of sentential meaning/truth-values:
 - p is true and A is true (1; TRUE)
 - p is true and A is false (0; FALSE)
 - p is false and A is true (#¹)
 - p is false and A is false $(\#^0)$

Observation

Claims of the Talk

- Frege-Strawson Trichotomy of Sentence Meaning: Sentence A_p can have three types of denotations
 - p is true and A is true (1; TRUE)
 - p is true and A is false (0; FALSE)
 - ▶ p is false (Undefined/#; PRESUPP FAILURE)
- Claim: Need 4 kinds of sentential meaning/truth-values:
 - p is true and A is true (1; TRUE)
 - p is true and A is false (0; FALSE)
 - ▶ p is false and A is true (#¹)
 - p is false and A is false $(\#^0)$
- Evidence: Truth-conditions of certain quantified sentences with predicates with non-entailed presuppositions
 - (5) Exactly one student (namely Mary) criticized herself

Presuppositional Predicates in F-S Theories

- (6) $\|\text{stopped smoking}\|^{\partial}$ (Partial Function Theory) $= \lambda x. \lambda w: x \text{ was smoking in } w. x \text{ is a former smoker in } w$ (7) $\|\text{stopped smoking}\|^3$ (Trivalent Theory) $= \lambda x. \lambda w. \begin{cases} 1 & \text{if } x \text{ used to smoke and stopped in } w \\ 0 & \text{if } x \text{ used to smoke and still does in } w \\ \# & \text{if } x \text{ never smoked in } w \end{cases}$
- Notice: whenever the predicate is true of x, x has to satisfy the presupposition

Presuppositional Predicates in F-S Theories (cont.)

- According to the Frege-Strawson Thesis, presuppositional predicate R_p applied to x will have three meanings too:
 - p(x) is true and R(x) is true (1; TRUE)
 - p(x) is true and R(x) is false (0; FALSE)
 - p(x) is false (#/Undefined; PRESUPP FAILURE)

 $\llbracket \mathbf{Pred} \rrbracket_{\mathcal{A}}(x) \Rightarrow \llbracket \mathbf{Pred} \rrbracket_{\mathcal{P}}(x)$

Main Observation

- Observation: Two types of predicates
 - (8) a. Entailed presupposition $[stopped smoking]_A \Rightarrow [stopped smoking]_P$
 - b. Non-entailed presupposition $[criticized herself]_A \Rightarrow [criticized herself]_P$
 - (9) a. [[criticized herself]]_A = λx . criticized(x, x) b. [[criticized herself]]_P = λx . female(x)
- The difference can be seen with certain quantificational sentences: 'Exactly one student Pred'
- Claim: In order to deal with the truth-conditions of such quantificational sentences, we need 4 truth-values

Entailed and Non-entailed Presuppositions

Entailed and Non-entailed Presuppositions

Observation

 Some predicates have presuppositions that are entailed by their assertive meanings (entailed presuppositions)

(10) $[[stopped smoking]]_A \Rightarrow [[stopped smoking]]_P$

 Other predicates have presuppositions that are not entailed by their assertive meanings (non-entailed presuppositions)

(11) $\llbracket \text{criticized herself} \rrbracket_{\mathcal{A}} \Rightarrow \llbracket \text{criticized herself} \rrbracket_{\mathcal{P}}$

Their difference can be see in: 'Exactly one student Pred'

h	n	tı	rc	5		
Г	T	T	T	T	T	T

Observation

Beyond F-S

- We know the presupposition (from projection tests and felicity judgments)
 - (12) $[[stopped smoking]]_{P}(x) \Leftrightarrow x \text{ used to smoke}$

- We know the presupposition (from projection tests and felicity judgments)
 - (12) $[[stopped smoking]]_{P}(x) \Leftrightarrow x \text{ used to smoke}$
- What's the assertive meaning?

- We know the presupposition (from projection tests and felicity judgments)
 - (12) $[[stopped smoking]]_{P}(x) \Leftrightarrow x \text{ used to smoke}$
- What's the assertive meaning?
- (13) $[[stopped smoking]]_A(x) \Leftrightarrow$ a. x was smoking but not anymore Analysis 1 (x is a former smoker) or b. x isn't smoking now Analysis 2
- According to Analysis 1, but not according to Analysis 2, 'stopped smoking' has an entailed presupposition
- How do we know which analysis is correct?

Test for Entailed vs. Non-entailed Presupp

- Test: the truth-condition of 'Exactly one student Pred'
 - (14) Exactly one student stopped smoking

Test for Entailed vs. Non-entailed Presupp

Test: the truth-condition of 'Exactly one student Pred'

(14) Exactly one student stopped smoking

- It is crucial that the subject here is a non-upward monotonic quantifier that give rise to a non-universal presupposition, e.g. 'exactly one student'
- With other kinds of subjects, the two analyses will predict contextually equivalent truth-conditions whenever the presupposition is true (details omitted)

Presupposition Projection Through Quantifiers

- Some quantifiers give rise to universal presuppositions:
 - (15) a. Each of the students stopped smoking
 b. None of the students stopped smoking
 ∞→ Each of the students was smoking
- Some quantifiers give rise to non-universal presuppositions:

(16) a. A student stopped smokingb. Exactly one student stopped smoking

- It is important for us that (16b) has a non-universal presupposition
- See Chemla (2009) for experimental data

Observation

Test: [stopped smoking] $_{A} \stackrel{?}{\Rightarrow}$ [stopped smoking] $_{P}$

$[stopped smoking]_A(x)$

- $\Leftrightarrow x$ was smoking but not anymore
- \Leftrightarrow x is not smoking now

Analysis 1

Analysis 2

(17) Exactly one student stopped smoking

Observation

Beyond F-S

Test: [stopped smoking]_A $\stackrel{?}{\Rightarrow}$ [stopped smoking]_P

[stopped smoking]]_A(x)

- $\Leftrightarrow x$ was smoking but not anymore
- $\Leftrightarrow x$ is not smoking now

(17) Exactly one student stopped smoking

- $\llbracket (17) \rrbracket_A \Leftrightarrow$
 - Exactly one student x was smoking but not anymore Analysis 1
 - Exactly one student x is not smoking now
- The presupposition is non-universal
- We can construct a context satisfying the presupposition for which the two analyses make different predictions

Analysis 1

Analysis 2

Observation

Beyond F-S

Test: $[stopped smoking]_A \stackrel{?}{\Rightarrow} [stopped smoking]_P$ (cont.)

(18) Exactly one student stopped smoking

- $\llbracket (18) \rrbracket_A \Leftrightarrow$
 - \blacktriangleright Exactly one student was smoking but not anymore $% \left(Analysis 1\right) =0$ Analysis 1
 - Exactly one student is not smoking now

Observation

Beyond F-S

Test: $[stopped smoking]_A \stackrel{?}{\Rightarrow} [stopped smoking]_P$ (cont.)

(18) Exactly one student stopped smoking

- ▶ [[(18)]]_A ⇔
 - \blacktriangleright Exactly one student was smoking but not anymore $% \left(Analysis \ 1 \right)$
 - Exactly one student is not smoking now

- Situation:
 - John used to smoke and stopped
 - Bill never smoked
 - Other students have always been smoking

Observation

Beyond F-S

Test: $[stopped smoking]_A \stackrel{?}{\Rightarrow} [stopped smoking]_P$ (cont.)

(18) Exactly one student stopped smoking

- $\llbracket (18) \rrbracket_A \Leftrightarrow$
 - \blacktriangleright Exactly one student was smoking but not anymore $% \left(Analysis 1\right) =0$ Analysis 1
 - Exactly one student is not smoking now

- Situation:
 - John used to smoke and stopped
- satisfies presupposition!

- Bill never smoked
- Other students have always been smoking

Observation

Beyond F-S

Test: $[stopped smoking]_A \stackrel{?}{\Rightarrow} [stopped smoking]_P$ (cont.)

(18) Exactly one student stopped smoking

- ▶ [[(18)]]_A ⇔
 - \blacktriangleright Exactly one student was smoking but not anymore $% \left(Analysis \ 1 \right)$
 - Exactly one student is not smoking now

Analysis 2

- Situation:
 - John used to smoke and stopped
 - Bill never smoked

satisfies presupposition! makes Analysis 2 FALSE!

Other students have always been smoking

Observation

Beyond F-S

Test: $[stopped smoking]_A \stackrel{?}{\Rightarrow} [stopped smoking]_P$ (cont.)

(18) Exactly one student stopped smoking

- ▶ [[(18)]]_A ⇔
 - ${\scriptstyle \bullet}\,$ Exactly one student was smoking but not anymore $\,$ Analysis 1 $\,$
 - Exactly one student is not smoking now

Analysis 2

- Situation:
 - John used to smoke and stopped
 - Bill never smoked

satisfies presupposition! makes Analysis 2 FALSE!

- Other students have always been smoking
- The sentence is TRUE in this context
- This is predicted by Analysis 1 but not by Analysis 2

Conclusion: [stopped smoking]_A \Rightarrow [stopped smoking]_P

- $[[stopped smoking]]_A(x) \Leftrightarrow x$ used to smoke and stopped
- $[[stopped smoking]]_P(x) \Leftrightarrow x \text{ used to smoke}$
- $\therefore \llbracket \textbf{stopped smoking} \rrbracket_A \Rightarrow \llbracket \textbf{stopped smoking} \rrbracket_P$

Let's do the same thing with 'criticized herself'

- Let's do the same thing with 'criticized herself'
- We know the presupposition
 - (19) $\llbracket criticized herself \rrbracket_P(x) \Leftrightarrow x$ is female

- Let's do the same thing with 'criticized herself'
- We know the presupposition

(19) $\llbracket criticized herself \rrbracket_P(x) \Leftrightarrow x$ is female

What about the assertive meaning?

- Let's do the same thing with 'criticized herself'
- We know the presupposition

(19) $\llbracket criticized herself \rrbracket_P(x) \Leftrightarrow x \text{ is female}$

What about the assertive meaning?

```
(20) \llbracket \text{criticized herself} \rrbracket_A(x) \Leftrightarrow
a. x criticized x Analysis 1
b. x is female and criticized x Analysis 2
```

- Let's do the same thing with 'criticized herself'
- We know the presupposition

(19) $\llbracket criticized herself \rrbracket_P(x) \Leftrightarrow x \text{ is female}$

What about the assertive meaning?

(20) $\llbracket \text{criticized herself} \rrbracket_A(x) \Leftrightarrow$ a. x criticized x Analysis 1 b. x is female and criticized x Analysis 2

- According to Analysis 1, $[criticized herself]_A \Rightarrow [criticized herself]_P$
- According to Analysis 2,

 $\llbracket \textbf{criticized herself} \rrbracket_{A} \Rightarrow \llbracket \textbf{criticized herself} \rrbracket_{P}$

Observation

Test: $[criticized herself]_A \stackrel{?}{\Rightarrow} [criticized herself]_P$

(21) Exactly one student (namely Mary) criticized herself

- Exactly one student x criticized x
 Analysis 1
- Exactly one student x is female and criticized x Analysis 2

Observation

Test: $[criticized herself]_A \stackrel{?}{\Rightarrow} [criticized herself]_P$

(21) Exactly one student (namely Mary) criticized herself

- Exactly one student x criticized x
 Analysis 1
- Exactly one student x is female and criticized x Analysis 2

- The sentence is FALSE in the following situation
 - Mary criticized herself
 - John criticized himself
 - No other students criticized themselves

Test: $[criticized herself]_A \stackrel{?}{\Rightarrow} [criticized herself]_P$

(21) Exactly one student (namely Mary) criticized herself

- Exactly one student x criticized x
 Analysis 1
- Exactly one student x is female and criticized x Analysis 2

- The sentence is FALSE in the following situation
 - Mary criticized herself satisfies the
 - John criticized himself
 - No other students criticized themselves

satisfies the presupposition!

Test: $[criticized herself]_A \stackrel{?}{\Rightarrow} [criticized herself]_P$

(21) Exactly one student (namely Mary) criticized herself

- Exactly one student x criticized x
 Analysis 1
- Exactly one student x is female and criticized x Analysis 2

- The sentence is FALSE in the following situation
 - Mary criticized herself satisfies the presupposition!

makes Analysis 1 FALSE!

- John criticized himself
- No other students criticized themselves
- \blacktriangleright This is predicted by Analysis 1 but not by Analysis 2

Conclusion: $[criticized herself]_A \Rightarrow [criticized herself]_P$

- \llbracket criticized herself $\rrbracket_A(x) \Leftrightarrow x$ criticized x
- $\llbracket criticized herself \rrbracket_P(x) \Leftrightarrow x$ is female
- $\therefore \llbracket \text{criticized herself} \rrbracket_{\mathcal{A}} \Rightarrow \llbracket \text{criticized herself} \rrbracket_{\mathcal{P}}$

Summary

- Entailed Presupposition: $[stopped smoking]_A \Rightarrow [stopped smoking]_P$
 - $[[stopped smoking]]_A(x) \Leftrightarrow x$ used to smoke and stopped
 - $[[stopped smoking]]_P(x) \Leftrightarrow x$ used to smoke
- ▶ Non-entailed Presupposition: $[criticized herself]_A \Rightarrow [criticized herself]_P$
 - $\llbracket criticized herself \rrbracket_A(x) \Leftrightarrow x \text{ criticized } x$
 - **[criticized herself**] $_{P}(x) \Leftrightarrow x$ is female

Beyond Frege-Strawson

Theoretical Consequences

- Predicates with non-entailed presuppositions
 - \llbracket **criticized herself** $\rrbracket_A(x) \Leftrightarrow x$ criticized x
 - $[[criticized herself]]_P(x) \Leftrightarrow x$ is female
- Claim: In order to deal with the truth-conditions of (22), we need to abandon the Frege-Strawson Thesis
 - (22) Exactly one student (namely Mary) criticized herself

F-S Analyses of 'Criticized Herself'

Frege-Strawson Analyses:

(23) $\|$ **criticize herself** $\|^{\partial} = \lambda x$: x is female. x criticized x

(24) $\|$ criticized herself $\|^3$

$$= \lambda x. \begin{cases} 1 & \text{if } x \text{ is female and } x \text{ criticized } x \\ 0 & \text{if } x \text{ is female and } x \text{ didn't criticize } x \\ \# & \text{if } x \text{ is not female} \end{cases}$$

- According to these analyses, $[criticized herself]_A \Rightarrow [criticized herself]_P$
- More generally, $\llbracket \mathbf{Pred} \rrbracket_{\mathcal{A}} \Rightarrow \llbracket \mathbf{Pred} \rrbracket_{\mathcal{P}}$

Problem of Non-entailed Presupposition

- According to these theories,
 - (25) Exactly one student criticized herself
 - This is true iff both of the following are true:
 - There is one student x s.t. $\|$ **criticized herself** $\|^{\partial/3}(x) = 1$
 - All other students y are s.t. $\|\mathbf{criticized herself}\|^{\partial/3}(y) = 0$

Problem of Non-entailed Presupposition

According to these theories,

(25) Exactly one student criticized herself

This is true iff both of the following are true:

- There is one student x s.t. $\|$ **criticized herself** $\|^{\partial/3}(x) = 1$
- All other students y are s.t. $\|\mathbf{criticized herself}\|^{\partial/3}(y) = 0$
- The sentence is intuitively FALSE when:
 - Mary criticized herself
 - John criticized himself
 - No other students criticized themselves

But the analysis doesn't predict this!

Problem of Non-entailed Presupposition

According to these theories,

(25) Exactly one student criticized herself

This is true iff both of the following are true:

- There is one student x s.t. $\|$ **criticized herself** $\|^{\partial/3}(x) = 1$
- All other students y are s.t. $\|\mathbf{criticized herself}\|^{\partial/3}(y) = 0$
- The sentence is intuitively FALSE when:
 - Mary criticized herself
 - John criticized himself
 - No other students criticized themselves

But the analysis doesn't predict this!

- ▶ In order for (25) to be FALSE, there must be two or more *x* s.t. $\|$ criticized herself $\|^{\partial/3}(x) = 1$
- But $\|$ **criticized herself** $\|^{\partial/3}$ (John) won't be 1!

Beyond the Frege-Strawson Thesis

- The problem stems from the decision to not distinguish two cases of presupposition failure
- For sentence A_p:

```
• p is true and A is true (1) • p is false and A is true (\#^1)
```

- p is true and A is false (0) p is false and A is false $(\#^0)$
- With these four truth-values, we can analyze the sentence in question:

(26) $\|$ criticized herself $\|^4$

$$= \lambda x. \begin{cases} 1 & \text{if } x \text{ is female and criticized } x \\ 0 & \text{if } x \text{ is female and didn't criticize } x \\ \#^1 & \text{if } x \text{ is male and criticized } x \\ \#^0 & \text{if } x \text{ is male and didn't criticize } x \end{cases}$$

• NB: $\#^1$ never arises with entailed presuppositions

Beyond the Frege-Strawson Thesis (cont.)

(26) $\|$ criticized herself $\|^4$

 $= \lambda x. \begin{cases} 1 & \text{if } x \text{ is female and criticized } x \\ 0 & \text{if } x \text{ is female and didn't criticize } x \\ \#^1 & \text{if } x \text{ is male and criticized } x \\ \#^0 & \text{if } x \text{ is male and didn't criticize } x \end{cases}$

(27) Exactly one student criticized herself

- a. There is one student x s.t. $\|\mathbf{criticized herself}\|^4(x) = 1$
- b. For all other students $y \parallel criticized herself \parallel^4(y) = 0$ or $\#^0$
- This will be FALSE in the following situation, as desired
 - Mary criticized herself
 - John criticized himself
 - No other students criticized themselves
- $\|$ **criticized herself** $\|^{4}(John) = \#^{1}$, so the sentence is FALSE

Toward a Multi-Dimensional Theory

- Conclusion: In order to analyze predicates with non-entailed presuppositions, we need 4 truth-values
- In other words, need a theory where the assertive meaning and presupposition can be independently true or false

Toward a Multi-Dimensional Theory

- Conclusion: In order to analyze predicates with non-entailed presuppositions, we need 4 truth-values
- In other words, need a theory where the assertive meaning and presupposition can be independently true or false
- Multi-dimensional theory has an appropriate expressive power
- Karttunen & Peters' (1979) multi-dimensional theory of presupposition

(28) Jesse criticized herself a. $[(28)]_A = \lambda w$. Jesse criticized Jesse in wb. $[(28)]_P = \lambda w$. Jesse is female in w Observation

Binding Problem

- But K&P's theory faces the 'Binding Problem' with certain quantificational sentences with non-entailed presuppositions
 - (29) A student criticized herself
 - a. $\llbracket (29) \rrbracket_A$: There's a student x criticized x
 - b. $\llbracket (29) \rrbracket_P$: There's a female student x
- This sentence is predicted to be felicitous and true when:
 - Mary is a student, didn't criticize herself Presupposition TRUE!
 - John is a student, criticized himself Assertive meaning TRUE!
- NB: The Binding Problem doesn't arise with entailed presuppositions
- The Binding Problem has been considered to be fatal, but recent studies offer solutions (Dekker 2008, van Rooij 2005, Sudo 2012, ms.)

Summary

- Entailed vs. non-entailed presuppositions
 - $[stopped smoking]_A \Rightarrow [stopped smoking]_P$
 - $\llbracket criticized herself \rrbracket_A \Rightarrow \llbracket criticized herself \rrbracket_P$
- In order to deal with (30), need to abandon the Frege-Strawson Thesis

(30) Exactly one student (namely Mary) criticized herself

- So presuppositions are *not* pre-conditions for sentences to be true or false
- Need the expressive power of a multi-dimensional theory of presupposition like K&P

Other Predicates with Non-entailed Presuppositions

- 'Didn't stop smoking'
- Honorific predicates in Japanese/Korean
 - (31) 'irassharu' (come.HON)
- Uniqueness presuppositions of singular definites

(32) 'submitted the paper he wrote'

Predicates containing even, also, etc.

(33) 'also visited PARIS'

Implicative verbs

(34) 'forgot to bring a pen'

The 'base' presupposition of come (+ perspective shifting)

(35) 'thinks that John is coming to Tokyo'

Other Quantifiers

- We used 'exactly one NP', but other non-upward monotonic quantifiers with non-universal presuppositions will do too
 - fewer than 5 students
 - only one/some of the students
 - between 3 and 5 people
 - one of the 10 students ('exact'-reading)
 - an even number of people
- (36) kono gakkoo-kara-wa, 3-kara-5-nin-no hito-ga irasshatta this school-from-TOP, 3-from-5-CL-GEN person-NOM came.HON 'From this school, between 3 and 5 people came.HON'

 \checkmark the speaker is socially inferior to everybody in the school \Rightarrow 3, 4 or 5 people from the school came (and the speaker is socially inferior to them)

Selected References

- Beaver (2001) Presupposition and Assertion in Dynamic Semantics. CSLI.
- Beaver & Krahmer (2001) A partial account of presupposition projection. JLLI, 10.
- Chemla (2009) Similarity. Ms.
- Dekker (2008) A multi-dimensional treatment of quantification in extraordinary English. L&P, 31.
- Fox (2008) Two short notes on Schlenker's theory of presupposition projection. Theoretical Ling., 34.
- George (2008) A new predictive theory of presupposition projection. In SALT 18.
- Heim (1983) On the projection problem of presuppositions. In WCCFL 2.
- Karttunen & Perers (1979) Conventional implicature. In Syntax and Semantics 11: Presupposition. Academic Press.
- Schlenker (2008) Be Articulate! A pragmatic theory of presupposition projection. Theoretical Ling., 34.
- Schlenker (2009) Local contexts. Sem. & Prag., 2.
- Sudo (2012) On the Semantics of Phi Features on Pronouns. Ph.D. dissertation, MIT.
- van der Sandt (1992) Presupposition projection and anaphora resolution. JoS, 9.
- van Rooij (2005) A modal analysis of presupposition and modal subordination. JoS, 22.

'Didn't Stop Singing'

- We concluded:
 - \llbracket **stopped singing** $\rrbracket_A(x) \Leftrightarrow x$ was singing and stopped
 - **[stopped singing**] $_{P}(x) \Leftrightarrow x$ was singing
- Given that negation only negates the assertive meaning:
 - $\llbracket \text{didn't stop singing} \rrbracket_A(x) \Leftrightarrow \neg(x \text{ was singing and stopped})$
 - $[[didn't stop singing]]_P(x) \Leftrightarrow x$ was singing

$\llbracket \text{didn't stop singing} \rrbracket_A \Rightarrow \llbracket \text{didn't stop singing} \rrbracket_P$

- (37) Exactly one student didn't stop singing
 - a. One student was singing and still is
 - b. All the other students were singing and stopped
 - \Rightarrow all the students were singing

'Didn't Stop Singing' vs. 'Continued Singing'

- 'Didn't stop singing'
 - $\llbracket \text{didn't stop singing} \rrbracket_{\mathcal{A}}(x) \Leftrightarrow \neg(x \text{ was singing and stopped})$
 - \llbracket **didn't stop singing** $\rrbracket_P(x) \Leftrightarrow x$ was singing
 - (38) Exactly one student didn't stop singing \Rightarrow all the students were singing
- 'Continued singing' has an entailed presupposition
 - **[continued singing**] $_{\mathcal{A}}(x) \Leftrightarrow x$ was singing and still is
 - **[continued singing**] $_{P}(x) \Leftrightarrow x$ was singing
 - (39) Exactly one student continued singing
 a. One student was singing and still is
 b. For all the other students x, ¬(x was singing and still is)
 ⇒ all the students were singing

Problems for DRT: Entailed Presuppositions

In DRT, entailed presuppositions are going to be always trivial
 (40) Each student stopped smoking

$$\left[: \text{ student}(x) \right] \langle \forall x \rangle \left[\begin{array}{c} \text{ smoking.past}(x) \\ : \text{ not.smoking.now}(x) \\ \underline{\text{ smoking.past}}(x) \end{array} \right] \right]$$

 The presupposition is completely trivial. Cf. 'Each student is a former smoker'

Problems for DRT: Non-entailed Presuppositions

- Sentences with non-entailed presuppositions and non-upward monotonic quantifiers will have wrong meanings
 - (41) None of the students criticized herself

$$\begin{bmatrix} : [: student(x)] \langle No x \rangle \begin{bmatrix} : criticize(x, x) \\ : \underline{female}(x) \end{bmatrix} \end{bmatrix}$$

Due to trapping, only the following two are possible:

$$\begin{bmatrix} : [: student(x)] \langle No x \rangle \begin{bmatrix} : criticize(x, x) \\ female(x) \end{bmatrix} \end{bmatrix}$$
$$\begin{bmatrix} : [: student(x) \\ female(x) \end{bmatrix} \langle No x \rangle [: criticize(x, x)] \end{bmatrix}$$

These are too weak

Details: Satisfaction Theory

- Satisfaction Theory uses partial functions (Heim 1983, Beaver 1994,2001)
- Sentences denote Context Change Potentials (CCPs)
 i.e. CCPs = functions from contexts to contexts
- Presuppositions make CCPs partial: $||S_p||^{\partial}(c)$ is defined only if c entails p ($c \subseteq p$)
- Assuming a context c is a set of possible worlds,
 - (42) **||It stopped raining**|| $^{\partial}(c)$ is defined only if for each world $w \in c$, it was raining in w

Details: Quantification in Sat Theory

- The NP and VP arguments of D denote CCPs
- Assume that c is a set of pairs $\langle f, w \rangle$
 - (43) $||x \text{ criticized herself}||^{\partial}(c)$ is only defined if for all $\langle f, w \rangle \in c$, f(x) is female in w
 - Assume $||x \text{ criticized herself}||^{\partial}(c) = c'$
 - Given that $||x \text{ criticized herself}||^{\partial}(c)$ is defined, for all $\langle f, w \rangle \in c$, f(x) is female in w
 - Because CCPs are 'eliminative' (i.e. $c' \subseteq c$), for all $\langle f', w' \rangle \in c'$, f'(x) is female in w'
 - \therefore The presupposition is entailed at the predicate level!!

 $\|x \text{ criticized herself}\|^{\partial}(c) = \|x \text{ is female and criticized herself}\|^{\partial}(c)$ (whenever defined)

Details: Quantification in Sat Theory (cont.)

 $\|x \text{ criticized herself}\|^{\partial}(c) = \|x \text{ is female and criticized herself}\|^{\partial}(c)$ (whenever defined)

- Whatever you do with the meaning of the quantifier, whenever (44b) is TRUE, (44a) is also TRUE (if the presupposition is true)
 - (44) a. Exactly one student criticized herselfb. Exactly one student is female and criticized herself
- But (44a) is FALSE, (44b) is TRUE when:
 - Mary criticized herself
 - John criticized himself
 - No other students criticized themselves

Details: Trivalent Theory

- Third truth-value # for presupposition failure
- Icriticized herself³

$$= \lambda x. \begin{cases} 1 & \text{if } x \text{ is female and criticized } x \\ 0 & \text{if } x \text{ is female and didn't criticize } x \\ \# & \text{otherwise (i.e. } x \text{ is male)} \end{cases}$$

The 'presupposition' is entailed at the predicate level!!

 $\|$ criticized herself $\|^3(x) = 1$

iff ||is female and criticized herself $||^3(x) = 1$

- Again, whenever (45b) is TRUE, (45a) is also TRUE (if the presupposition is true)
 - (45) a. Exactly one student criticized herselfb. Exactly one student is female and criticized herself

Other Theories

- Analogous problems arise with Transparency Theories (Schlenker 2008, 2009, 2010a,b)
- Chemla's (2009) Similarity Theory suffers from the Binding Problem