The Plurality Inference as a Quantity Implicature

Yasu Sudo (UCL)
y.sudo@ucl.ac.uk
University of Vienna
20 May 2019

1 Introduction

1.1 Plurality Inferences and Unmarked Plurals

Plural noun phrases typically give rise to plurality inferences (alt.: multiplicity inferences).

(1) Andrew wrote papers last year.
 = Andrew wrote more than one paper.

(2) Andrew’s papers have been published.
 = Andrew has more than one paper, and they have been published.

Plurality inferences disappear in ‘negative contexts’ (Sauerland 2003, Sauerland, Anderssen & Yatsushiro 2005, among others):

(3) a. Andrew didn’t write papers last year.
 \[\neq \] Andrew didn’t write more than one paper

b. If Andrew wrote papers last year, they have already been published.
 \[\neq \] If Andrew wrote more than one paper last year, they have already been published.

c. Andrew arrived before semanticists arrived.
 \[\neq \] Andrew arrived before more than one semanticist arrived.

Current theories of the plurality inference postulate number-neutral meaning for plural noun phrases and derive the plurality inference by some other means.

 The plurality inference is a scalar implicature.

- Ambiguity theories (Farkas & de Swart 2010, Grimm 2013, Martí 2018)
 The plural is ambiguous between plural and number-neutral meaning.

- Anti-presupposition theories (Sauerland 2003, Sauerland et al. 2005)
 The plurality inference is an anti-presupposition.

I will propose a new scalar implicature theory.

1.2 Scalar Implicature Theories

The core idea of the scalar implicature approach is that the plural is semantically number-neutral, and the plurality inference arises as a scalar implicature in competition with the singular.

But the literal meanings of (4a) and (4b) will be truth-conditionally equivalent on the assumption that the plural is semantically unmarked.

(4) a. Andrew wrote papers last year. b. Andrew wrote a paper last year.

In order to generate a scalar implicature, there needs to be some semantic asymmetry between these two sentences.

Two proposals for truth-conditional asymmetry from the current literature:
• Local scalar implicatures (Zweig 2009, Ivlieva 2013, Mayr 2015):
 The two sentences differ in truth-conditions at some non-global level.

• Higher-order scalar implicatures (Spector 2007):
 The plural competes with the singular that has its own scalar implicature.

I propose a new scalar implicature account that dispenses with these additional mechanisms (though I do not necessarily deny these ideas).

1.3 The Proposal in a Nutshell

• Scalar implicatures can arise from non-propositional aspects of meaning.

• (4a) and (4b) have the same truth-conditions but different anaphoric potentials.

(4) a. Andrew wrote papers \(x \) last year. b. Andrew wrote a \(x \) paper last year.

These sentences say something about what the actual world is like, but also introduce a discourse referent.

– (4a) introduces a discourse referent \(x \) ranging over both singular and plural entities.
– (4b) introduces a discourse referent \(x \) ranging only over singular entities.

(4b) yields fewer possibilities, so it's stronger than (4a).

(5) a. \(\left\{ \begin{array}{c} p_1 \\ p_2 \\ p_1 \otimes p_2 \end{array} \right\} \) b. \(\left\{ \begin{array}{c} p_1 \\ p_2 \end{array} \right\} \)

cf. (6b) is a stronger proposition than (6a).

(6) a. \{ \(w_1, w_2, w_3 \) \} b. \{ \(w_1, w_2 \) \}

• I claim that this semantic asymmetry gives rise to a (secondary) scalar implicature that what (6b) would have meant is not what the speaker intended to mean. Consequently, the discourse referent should range only over plural entities.\(^1\)

The Gricean Maxim of Quantity is about informativity in general, and should apply to non-propositional aspects of meaning as well.

(7) a. Make your contribution as informative as is required (for the current purposes of the exchange).

 b. Do not make your contribution more informative than is required.

1.4 Embedding

This analysis accounts for the behaviour under negation:

(8) a. Andrew didn’t write papers. b. Andrew didn’t write a paper.

\(^1\)Van Rooij (2017) pursues related ideas in a similar framework, but he crucially only derives scalar implicature based on truth-relevant concepts, i.e. possible worlds/truth-makers, and his analysis suffers from problems with simple cases of scalar implicatures like some.
Neither of these sentences introduce a discourse referent, so their meanings are completely identical. As a consequence, there’s no semantic asymmetry, and no scalar implicature.

One empirical advantage of the scalar implicature theories is that it accounts for quantified sentences, especially those with non-monotonic quantifiers (Spector 2007, Ivlieva 2013).

\[(9)\]

\begin{itemize}
 \item (9a) introduces two discourse referents, one ranging over singular linguists, and one ranging over singular or plural papers.
 \item (9b) introduces two discourse referents, one ranging over singular linguists, and one ranging over singular papers.
\end{itemize}

The (secondary) implicature amounts to that the second discourse referent does not range over singular papers.

2 **Update Semantics**

Contexts are modeled as sets of world-assignment pairs \(\langle w, g \rangle\), and sentences denote functions over them (a.k.a. Context Change Potentials), (Heim 1982, 1983).

2.1 Basic Update Semantics

Definition 1. (Assignments and contexts)

- An *assignment* is a total function from variables to the domain \(D\) of the model \(\mathcal{M}\).
- A *context* is a set of pairs consisting of a possible world \(w\) and an assignment \(a\).

- The possible worlds of context \(c\), \(W_c := \{ w \mid \text{for some } \langle w, a \rangle \in c \}\).
- The assignments of context \(c\), \(A_c := \{ a \mid \text{for some } \langle w, a \rangle \in c \}\).

Definition 2. (Update Rules) For any model \(\mathcal{M} = \langle D, W, I \rangle\):

\[
[t]_\mathcal{M} = \begin{cases}
I(t) & \text{if } t \text{ is a constant} \\
\lambda(t) & \text{if } t \text{ is a variable}
\end{cases}
\]

\[
c[P(t_1, \ldots, t_n)]_{\mathcal{M}} := \{ \langle w, a \rangle \in c \mid \langle [t_1]^a, \ldots, [t_n]^a \rangle \in I(w, P) \}
\]

\[
c[\neg \varphi]_{\mathcal{M}} := \{ \langle w, a \rangle \in c \mid \{ \langle w, a \rangle \} [\varphi] = \emptyset \}
\]

\[
c[(\varphi \land \psi)]_{\mathcal{M}} := c[\varphi][\psi]
\]

\[
c[\langle t_1 = t_2 \rangle]_{\mathcal{M}} := \{ \langle w, a \rangle \in c \mid [t_1]^a = [t_2]^a \}
\]

The model parameter will be omitted from now on.

(10) Andrew sat down. \(\Rightarrow\) SatDown\((\text{andrew})\)

(11) Suppose there are three worlds:

* \(w_1\): Only Andrew sat down.
* \(w_2\): Only Ben sat down.
* \(w_3\): Andrew and Chris sat down. No one else sat down.

\[
\{ \langle w_1, a \rangle, \langle w_1, b \rangle, \langle w_2, a \rangle, \langle w_2, c \rangle, \langle w_2, d \rangle, \langle w_3, b \rangle \} \}
\[
\text{[SatDown(\text{andrew})]} = \left\{ \begin{array}{l}
\langle w_1, a \rangle, \langle w_1, b \rangle, \\
\langle w_3, b \rangle
\end{array} \right\}
\]

\footnote{Nothing crucial hinges on this. We could use partial functions instead of total functions.}
2.2 Indefinites and Random Assignment

Indefinites trigger random assignment ($\exists x$ is taken to be a formula):

Definition 3. (Random Assignment) We'll write $\langle a[x \mapsto e] \rangle$ to mean that assignment that differs from a at most in that it maps variable x to entity e.

$$c[\exists x] := \{ \langle w, a[x \mapsto e] \rangle \mid e \in D \text{ and } \langle w, a \rangle \in c \}$$

We adopt the ‘Barwise notation’ in which new variables are represented as superscripts and old variables are represented by subscripts.

(12) A^2 farmer walked in. $\smile \exists x \land Farmer(x) \land WalkedIn(x)$

(13) Let’s consider a model with three entities e, f, g and the following three possible worlds:

w_1: e and f are farmers, f walked in.

w_2: e, f and g are farmers, e and f walked in.

w_3: no one is a farmer.

$$[\exists x \land Farmer(x) \land WalkedIn(x)] = [\exists x \land Farmer(x) \land WalkedIn(x)]$$

$$[Farmer(x) \land WalkedIn(x)]$$

$$[WalkedIn(x)]$$
This semantics accounts for cross-sentential anaphora with an indefinite antecedent:

(14) A farmer walked in. He sat down.

\[\sim (\exists x \land Farmer(x) \land WalkedIn(x)) \land SatDown(x) \]

\(\exists x \) randomly introduces new values for \(x \), and \(Farmer(x) \land WalkedIn(x) \) discards those world-assignment pairs that do not assign \(x \) a farmer who walked in in the respective possible worlds, as in (13). Then, \(SatDown(x) \) will operate on the resulting set of world-assignment pairs, and eliminate those pairs that assign \(x \) an entity that did not sit down in the respective possible worlds.

2.3 Plural Entities

We will allow variables to range over plural entities in addition to singular entities.\(^3\)

We assume that from any two entities \(e \) and \(f \) in the domain of the model, a new entity \(e \oplus f \) can be formed that has \(e \) and \(f \) (and nothing else) as parts, and all of these entities (and only they) are members of the domain of the model (Link 1983).\(^4\)

Predicates are also specified for plurality in the standard way. Crucially, we assume that plurals are semantically unmarked and number neutral. A predicate like \(Farmers \) is inherently distributive:

(15) a. \(e \in l(w, Farmer) \iff e \) is a singular entity and \(e \) is a farmer in \(w \)

\[c[\exists x \land Wrote(\text{andrew}, x) \land Paper(x)] = \begin{cases} \langle w, b \rangle & \text{for some } \langle w, a \rangle \in c, a \equiv_x b \text{ and} \\
& \text{Andrew wrote } b(x) \text{ in } w \text{ and}
& b(x) \text{ is singular and } b(x) \text{ is a paper in } w \\
& \text{for some } \langle w, a \rangle \in c, a \equiv_x b \text{ and}
& \text{Andrew wrote each singular part of } b(x) \text{ in } w \text{ and}
& \text{each singular part of } b(x) \text{ is a paper in } w
\end{cases} \]

In (17b), \(b(x) \) can be a plural entity, but not in (17a). We will make use of this semantic asymmetry to derive the plurality inference.

\(^3\)See Van den Berg (1996:Ch.3) for a similar idea. He eventually proposes a different way to deal with pluralities where they are encoded in a set of assignments. We'll come back to this in §4.

(18) Assume the following worlds:

• \(w_1 \): Andrew wrote \(p_1 \) and no other papers.
• \(w_2 \): Andrew wrote \(p_1 \) and \(p_2 \) and no other papers.
• \(w_3 \): Andrew wrote no papers.

and \(c = \{ \langle w_1, a \rangle, \langle w_1, b \rangle, \langle w_2, a \rangle, \langle w_2, d \rangle, \langle w_3, d \rangle \} \).

\[
c[\exists x \wedge \text{Wrote}(\text{andrew}, x) \wedge \text{Paper}(x)] = \begin{cases} \langle w_1, a[x \mapsto p_1] \rangle, \langle w_1, b[x \mapsto p_1] \rangle, \\ \langle w_2, a[x \mapsto p_1] \rangle, \langle w_2, d[x \mapsto p_1] \rangle, \\ \langle w_2, a[x \mapsto p_2] \rangle, \langle w_2, d[x \mapsto p_2] \rangle \end{cases}
\]

\[
c[\exists x \wedge \text{Wrote}(\text{andrew}, x) \wedge \text{Papers}(x)] = \begin{cases} \langle w_1, a[x \mapsto p_1] \rangle, \langle w_1, b[x \mapsto p_1] \rangle, \\ \langle w_2, a[x \mapsto p_1] \rangle, \langle w_2, d[x \mapsto p_1] \rangle, \\ \langle w_2, a[x \mapsto p_2] \rangle, \langle w_2, d[x \mapsto p_2] \rangle, \\ \langle w_2, a[x \mapsto p_1 \oplus p_2] \rangle, \langle w_2, d[x \mapsto p_1 \oplus p_2] \rangle \end{cases}
\]

Note that according this semantics, Andrew wrote a paper is compatible with him having written more than one paper (as in \(w_2 \) above). This is fine as \(a \)-indefinites are generally non-maximal. Its maximal reading, if it’s available, needs to be derived by some other means, possibly as an implicature of some kind (see Spector 2007). We will not deal with this here.

3 Scalar Implicature in Update Semantics

3.1 How to Derive the Plurality Inference

Let \(c_{sg} = c[\exists x \wedge \text{Wrote}(\text{andrew}, x) \wedge \text{Paper}(x)] \) and \(c_{pl} = c[\exists x \wedge \text{Wrote}(\text{andrew}, x) \wedge \text{Papers}(x)] \).

Whenever \(c_{sg} \) and \(c_{pl} \) are non-empty and non-equivalent (that is, there are worlds in \(W_c \) in which Andrew wrote more than one paper), there is an asymmetric semantic relation, namely:

\[c_{sg} \subset c_{pl} \]

Importantly, \(W_{c_{sg}} = W_{c_{pl}} \), because the two sentences are truth-conditionally equivalent. The crucial difference is coming from the assignment functions, i.e. \(A_{c_{sg}} \subset A_{c_{pl}} \).

I propose that the plurality inference is derived by subtracting \(c_{sg} \) from \(c_{pl} \). For example, in the case of (17), we get as a result:

\[
\{ \langle w_2, a[x \mapsto p_1 \oplus p_2] \rangle, \langle w_2, d[x \mapsto p_1 \oplus p_2] \rangle \}
\]

In \(w_2 \), Andrew wrote two papers and all the values for \(x \) are pluralities consisting of multiple papers.

More generally, let \(c' \) be the resulting context after the above subtraction operation. Then, whenever \(c' \neq \emptyset \), Andrew wrote multiple papers in \(W_{c'} \) and for each \(a \in A_{c'} \), \(a(x) \) is a plural entity. This is the plurality inference.

Consequently, we account for the fact that the plural papers can be referred back to later in the discourse by a plural pronoun.

(19) Andrew wrote papersx. They\textsubscript{x} are about Slovenian duals.

3.2 Scalar Implicature and Informativity in Dynamic Semantics

The Gricean Maxim of Quantity says:

\[\text{The Gricean Maxim of Quantity says:} \]
(20) a. Make your contribution as informative as is required (for the current purposes of the exchange).
 b. Do not make your contribution more informative than is required.

The notation of ‘informativity’ is often understood in terms of truth-conditional entailment:

(21) ϕ is truth-conditionally more informative than ψ iff ϕ entails ψ but ψ does not entail ϕ (alt.: ϕ asymmetrically entails ψ).

In our update semantics, this can be paraphrased as follows:

Definition 4. (Truth-Conditional Informativity) ϕ is *truth-conditionally more informative* than ψ iff for each context c, $W_{c[\phi]} \subseteq W_{c[\psi]}$ but in some context c', $W_{c'[\psi]} \nsubseteq W_{c'[\phi]}$.

In update semantics we can have a different notation of informativity:

Definition 5. (Dynamic Informativity) ϕ is *dynamically more informative* than ψ iff for each context c, $c[\phi] \subseteq c[\psi]$ but in some context c', $c'[\psi] \nsubseteq c'[\phi]$.

This is distinct from truth-conditional informativity, because the asymmetry may come from the anaphoric potentials encoded in the assignments. And this is exactly what we use to derive the plurality inference.

I formulate the scalar implicature computation as follows.\(^5\)

(22) If ϕ has an alternative ψ that is dynamically more informative, then an assertion of ϕ in c by a cooperative speaker is interpreted as $c[\phi] - c[\psi]$.

As we have already seen, (22) gives rise to the plurality inference, e.g. (18).

3.2.1 Negation (and other connectives)

Recall that in negative sentences plurality inferences are not observed. This is explained as follows: under negation, the singular and plural sentences have the exact same dynamic meaning. So neither of them is more informative than the other (under either notion of informativity):

(23) a. $c[\neg(\exists x \land Wrote(\text{andrew}, x) \land Paper(x))] = \{ (w, a) \in c \mid \text{Andrew wrote no paper in } w \}$
 b. $c[\neg(\exists x \land Wrote(\text{andrew}, x) \land Papers(x))] = \{ (w, a) \in c \mid \text{Andrew wrote no paper in } w \}$

Other connectives are perhaps more complicated, and I leave them for future research for now. Some considerations:

- It’s not realistic to analyze conditional as material implication (as Heim 1983 said from the beginning). Perhaps a plural in a conditional does give rise to an inference, because a conditional feeds into modalized crosssentential anaphora (alt.: modal subordination).

(24) If Andrew wrote papers, they are about morphology. I won’t read them.

- Disjunction gives rise to its own scalar implicature. Here we might need embedded scalar implicature.

(25) Daniel was reading papers or making an exam.

\(^5\)I’m only dealing with *secondary implicatures* in the sense of Sauerland (2004) here. See §5
3.2.2 Most

The above mechanism of scalar implicature computation works for other types of scalar implicatures more generally, e.g. *most*, which by assumption competes with *all*.

In order to account for these generalized quantifiers, we need to introduce the maximality operator (Van den Berg 1996).

Definition 6. (Maximality Operator)

\[
c^{[\mathcal{M}(\varphi)]} = \{ \langle w, a \rangle \in c[\exists x \land \varphi] \mid \text{for no } \langle w, a' \rangle \in c[\exists x \land \varphi], a(x) \sqsubset a'(x) \}\]

In words, for each \(\langle w, a \rangle \in c[\mathcal{M}(\varphi)]\), \(a\) assigns a maximal value to \(x\) that satisfies \(\varphi\) in \(w\).

This operator is useful in defining (selective) generalized quantifiers, because they can be seen as expressing relations between two maximal entities (which stand for sets in the classical setting). \#(\(e\)) is the number of atomic entities in \(e\).\(^6\)

\[
(26) \begin{align*}
\text{a. } c^{[\text{Most}^x(\varphi)(\psi)]} & = \left\{ \langle w, a \rangle \in c[\mathcal{M}(\varphi \land \psi)] \mid \text{for some } \langle w, a' \rangle \in c[\mathcal{M}(\varphi)] \right. \\
& \quad \quad \quad \text{\#(a(x))} = 1 \text{ and } \frac{\#(a'(x))}{2} \right\}
\end{align*}
\]

\[
\begin{align*}
\text{b. } c^{[\text{All}^x(\varphi)(\psi)]} & = \left\{ \langle w, a \rangle \in c[\mathcal{M}(\varphi \land \psi)] \mid \text{for some } \langle w, a' \rangle \in c[\mathcal{M}(\varphi)] \right. \\
& \quad \quad \quad \text{\#(a(x))} = \#(a'(x)) \right\}
\end{align*}
\]

(27) Let us assume that in \(w_1, w_2, w_3\) and \(w_4\), there are exactly 10 linguists, \(\ell_1, \ldots, \ell_{10}\).

\[
\begin{align*}
\bullet w_1: \text{All linguists smoke.} & \quad \bullet w_3: \text{Only } \ell_1, \ldots, \ell_3 \text{ smoke.} \\
\bullet w_2: \text{Only } \ell_1, \ldots, \ell_8 \text{ smoke.} & \quad \bullet w_4: \text{No linguists smoke.}
\end{align*}
\]

a. \(\{ \langle w_1, a_1 \rangle, \langle w_2, a_2 \rangle, \langle w_3, a_3 \rangle, \langle w_4, a_4 \rangle \} [\text{Most}^x(\text{Linguists}(x))(\text{Smoke}(x))] \)

\(= \{ \langle w_1, a_1 [x \mapsto \ell_1 \oplus \cdots \oplus \ell_{10}] \rangle, \langle w_2, a_2 [x \mapsto \ell_1 \oplus \cdots \oplus \ell_8] \rangle \}\)

b. \(\{ \langle w_1, a_1 \rangle, \langle w_2, a_2 \rangle, \langle w_3, a_3 \rangle, \langle w_4, a_4 \rangle \} [\text{All}^x(\text{Linguists}(x))(\text{Smoke}(x))] \)

\(= \{ \langle w_1, a_1 [x \mapsto \ell_1 \oplus \cdots \oplus \ell_{10}] \rangle \}\)

The *all*-alternative is dynamically more informative. Consequently, we derive the scalar implicature, and end up with the following singleton set, as desired.

\[
\{ \langle w_2, a_2 [x \mapsto \ell_1 \oplus \cdots \oplus \ell_8] \rangle \}
\]

Notice also that this accounts for so-called refset anaphora (Van den Berg 1996, Nouwen 2003). Refset anaphora is anaphora with respect to the entities that satisfy both the restrictor and nuclear scope as in (28).

(28) *Most*\(^x\) linguists smoke. They\(_z\) (= the linguists who smoke) also drink.

4 Plurality Inferences in Quantificational Contexts

One of the advantages of scalar implicature theories of plurality inferences is that they account for plurality inferences in non-monotonic contexts:

(29) a. Exactly one\(^x\) linguist wrote papers\(^y\) last year.

\[
b. \text{Exactly one}\(^x\) linguist wrote a\(^y\) paper last year.\]

\(^6\)In order to deal with mass nouns, which *most* and *all* are compatible with, we need a more general definition of \#.}

8
Our analysis derives this inference without resorting to local computation of scalar implicatures or higher-order scalar implicatures (unlike other scalar implicature theories, e.g. Spector 2007, Ivlieva 2013).

- (29a) introduces two discourse referents, one ranging over singular linguists, and one ranging over singular or plural papers.
- (29b) introduces two discourse referents, one ranging over singular linguists, and one ranging over singular papers.

The latter is dynamically stronger.

4.1 Plural Information States

In order to deal with (29), we need to be able to encode the dependency between two variables, \(x \) and \(y \). We will adopt Van den Berg’s (1996) plural information states (see also Nouwen 2003, 2007, Brasoveanu 2007, 2008, 2010).

The idea is to model contexts as a pair consisting of a possible world and a set of assignments. Following Brasoveanu (2008) and Dotlačil (2013) we allow assignments to return plural entities.

Definition 7. (Assignments and contexts)

- The domain \(D \) of the model \(\mathcal{M} \) is closed under sum-formation \(\oplus \).
- An assignment is a total function from variables to \(D \).
- A context is a set of pairs consisting of a possible world \(w \) and a set \(A \) of assignments.
- The possible worlds of a context \(W_c \) is defined as \(\{ w \mid \text{for some } \langle w, A \rangle \in c \} \).
- The assignment sets of a context \(A_c \) is defined as \(\{ A \mid \text{for some } \langle w, A \rangle \in c \} \).

Definition 8. (Plural Dynamic Semantics)

\[
[t]_A^M := \begin{cases}
 I(t) & \text{if } t \text{ is a constant} \\
 \{ \oplus \{ a(t) \mid a \in A \} \} & \text{if } t \text{ is a variable}
\end{cases}
\]

\[
c[P(t_1, \ldots, t_n)]_{M} := \{ \langle w, A \rangle \in c \mid \langle [t_1]^A, \ldots, [t_n]^A \rangle \in I_w(P) \}
\]

\[
c[\neg \varphi]_{M} := \{ \langle w, A \rangle \in c \mid \{ \langle w, A \rangle \} [\varphi] = \emptyset \}
\]

\[
c[(\varphi \land \psi)]_{M} := c[\varphi] [\psi]
\]

\[
c[(t_1 = t_2)]_{M} := \{ \langle w, A \rangle \in c \mid [t_1]^A = [t_2]^A \}
\]

From now on, we will write \(A(x) \) instead of \(\oplus \{ a(x) \mid a \in A \} \).

Definition 9. (Random Assignment)

\[
c[\exists x] := \begin{cases}
 \langle w, B \rangle & \text{for some } \langle w, A \rangle \in c, \\
 \text{for each } a \in A, \text{ there is } b \in B \text{ such that } a \approx_x b, \text{ and } \\
 \text{for each } b \in B, \text{ there is } a \in A \text{ such that } a \approx_x b
\end{cases}
\]

We keep the same assumptions about the semantics of nouns as before:

\[
(30) \quad a. \quad e \in I(w, \text{Farmer}) \iff e \text{ is a singular entity and is a farmer in } w \\
b. \quad e \in I(w, \text{Farmers}) \iff \text{each singular part of } e \text{ is a farmer in } w
\]
c[Farmer(x)] = \{ \langle w, A \rangle \in c \mid A(x) \in I_w(\text{Farmer}) \}
 = \{ \langle w, A \rangle \in c \mid \text{for any } a, a' \in A, a(x) = a'(x) \text{ and}
 \text{the unique } e = a(x) \text{ for any } a \in A \text{ is a farmer in } w \}

c[Farmers(x)] = \{ \langle w, A \rangle \in c \mid A(x) \in I_w(\text{Farmers}) \}

\textbf{Definition 10.} (Maximality Operator)
\[c[M^x(\varphi)] := \{ \langle w, A \rangle \in c[\exists x \land \varphi] \mid \text{for no } \langle w, A' \rangle \in c[\exists x \land \varphi], A(x) \subset A'(x) \} \]

\section*{4.2 ‘Exactly One’}
\begin{align*}
(31) & \quad c[\text{ExactlyOne}^x(\varphi)(\psi)] = \{ \langle w, A \rangle \in c[M^x(\varphi \land \psi)] \mid \#(A(x)) = 1 \} \\
(32) & \quad \text{Exactly one}^x \text{ linguist smokes.} \quad \Leftrightarrow \text{ExactlyOne}^x(\text{Linguist}(x))(\text{Smokes}(x)) \\
(33) & \quad \text{Consider the following possible worlds.} \\
 \begin{array}{l}
 \bullet w_1: \text{Andrew, a linguist, smokes. No other linguist smokes.} \\
 \bullet w_2: \text{Bill, a linguist, smokes. No other linguist smokes.} \\
 \bullet w_3: \text{Andrew and Bill, both linguists, smoke. No other linguist smokes.} \\
 \bullet w_4: \text{No linguist smokes.} \\
 \end{array}
\end{align*}

Firstly, let:
\[\{ \langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \langle w_3, A_3 \rangle, \langle w_4, A_4 \rangle \} \in M^x(\text{Linguist}(x) \land \text{Smokes}(x)) = c' \]

For each \(\langle w, A \rangle \in c' \), and for each \(a \in A \), \(a \) must be an atomic entity that is a linguist in \(w \) and smokes in \(w \). So \(w_1 \) will not be in \(W_{c'} \).

But we will still have pairs like \(\langle w_3, A \rangle \), as long as each \(a \in A \) assigns \(x \) either Andrew or Bill, and but not Andrew \(\oplus \) Bill, but at the same time, it’s required that \(A(x) = \text{Andrew} \oplus \text{Bill} \), due to the maximality operator.

The number restriction of exactly one filters out the pairs whose world is \(w_3 \).
\[\{ \langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \langle w_3, A_3 \rangle, \langle w_4, A_4 \rangle \} \in \text{ExactlyOne}^x(\text{Linguist}(x))(\text{Smokes}(x)) \]
\[= \{ \langle w, A \rangle \in c' \mid \#(A(x)) = 1 \} \]
\[= \{ \langle w_1, A_1' \rangle \in \{ w_1, A_1 \} \mid \exists x \mid A_1'(x) = \text{Andrew} \} \cup \{ \langle w_2, A_2' \rangle \in \{ w_2, A_2 \} \mid \exists x \mid A_2'(x) = \text{Bill} \} \]

\section*{4.3 Plurality Inferences in Non-monotonic Contexts}
\begin{align*}
(34) & \quad \text{a. Exactly one}^x \text{ linguist wrote papers}^y \text{ (last year).} \\
 & \quad \Leftrightarrow \text{ExactlyOne}^x(\text{Linguist}(x))(\exists y \land \text{Papers}(y) \land \text{Wrote}(x, y)) \\
 & \quad \text{b. Exactly one}^x \text{ linguist wrote a}^y \text{ paper (last year).} \\
 & \quad \Leftrightarrow \text{ExactlyOne}^x(\text{Linguist}(x))(\exists y \land \text{Paper}(y) \land \text{Wrote}(x, y))
\end{align*}

The idea is the same as before. The singular version (34b) is dynamically more informative than the plural version (34a), although they are truth-conditionally equivalent. This gives rise to an implicature that \(y \) is assigned a plural entity as its value.

(35) \quad \text{Consider the following worlds.} \\
 \begin{array}{l}
 \bullet w_1: \text{Andrew, a linguist, wrote exactly one paper, } p_1. \text{ No other linguist wrote any paper.} \\
 \end{array}
• w_5: Andrew, a linguist, wrote exactly two papers, p_1 and p_2. No other linguist wrote any paper.

• w_6: Bill, a linguist, wrote exactly one paper, p_3. No other linguist wrote any paper.

• w_7: Bill, a linguist, wrote exactly two papers, p_3 and p_4. No other linguist wrote any paper.

• w_8: Andrew, a linguist, wrote exactly one paper, p_1 and Bill, a linguist, wrote exactly one paper, p_3.

• w_9: No linguist wrote any paper.

\[
\begin{align*}
&\{\langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \\
&\langle w_3, A_3 \rangle, \langle w_4, A_4 \rangle, \\
&\langle w_5, A_5 \rangle, \langle w_6, A_6 \rangle\} \quad [M^x[\text{Linguist}(x) \land \exists y \land \text{Paper}(y) \land \text{Wrote}(x, y)]] = c'_{sg} \\
&\{\langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \\
&\langle w_3, A_3 \rangle, \langle w_4, A_4 \rangle, \\
&\langle w_5, A_5 \rangle, \langle w_6, A_6 \rangle\} \quad [M^x[\text{Linguist}(x) \land \exists y \land \text{Papers}(y) \land \text{Wrote}(x, y)]] = c'_{pl}
\end{align*}
\]

Note that $W_{c_{sg}} = W_{c_{pl}} = \{w_1, w_2, w_3, w_4, w_5\}$.

- For each $\langle w, A \rangle \in c'_{sg}$, each $a \in A$, $a(y)$ is either an atomic entity that is a paper in w, and furthermore, $a(x)$ is the author of $a(y)$ in w.

- For each $\langle w, A \rangle \in c'_{pl}$, each $a \in A$, $a(y)$ is either an atomic entity that is a paper or a plural entity that is made up of multiple papers in w, and furthermore, $a(x)$ is the author of $a(y)$ in w.

The number restriction of exactly one will eliminate those pairs whose possible world is w_5.

\[
\begin{align*}
&\{\langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \\
&\langle w_3, A_3 \rangle, \langle w_4, A_4 \rangle, \\
&\langle w_5, A_5 \rangle, \langle w_6, A_6 \rangle\} \quad [\text{ExactlyOne}^x[\text{Linguist}(x)\land \exists y \land \text{Paper}(y) \land \text{Wrote}(x, y)]] \\
= &\{\langle w, A \rangle \in c'_{pl} \mid \#(A(x)) = 1\} \\
= &\bigcup \left\{ \begin{array}{l}
\{\langle w_1, A'_1 \rangle \in \{ w_1, A_1 \} [\exists x \land \exists y] \quad | \quad A'_1(x) = \text{Andrew and } A'_1(y) = p_1 \}, \\
\{\langle w_2, A'_2 \rangle \in \{ w_2, A_2 \} [\exists x \land \exists y] \quad | \quad A'_2(x) = \text{Andrew and } \\
\text{either } A'_2(y) = p_1 \text{ or } A'_2(y) = p_2 \}, \\
\{\langle w_3, A'_3 \rangle \in \{ w_3, A_3 \} [\exists x \land \exists y] \quad | \quad A'_3(x) = \text{Bill and } A'_3(y) = p_3 \}, \\
\{\langle w_4, A'_4 \rangle \in \{ w_4, A_4 \} [\exists x \land \exists y] \quad | \quad A'_4(x) = \text{Benjamin and } \\
\text{either } A'_4(y) = p_3 \text{ or } A'_4(y) = p_4 \} \end{array} \right\}
\end{align*}
\]

\[
\begin{align*}
&\{\langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \\
&\langle w_3, A_3 \rangle, \langle w_4, A_4 \rangle, \\
&\langle w_5, A_5 \rangle, \langle w_6, A_6 \rangle\} \quad [\text{ExactlyOne}^x[\text{Linguist}(x)\land \exists y \land \text{Papers}(y) \land \text{Wrote}(x, y)]] \\
= &\{\langle w, A \rangle \in c'_{pl} \mid \#(A(x)) = 1\} \\
= &\bigcup \left\{ \begin{array}{l}
\{\langle w_1, A'_1 \rangle \in \{ w_1, A_1 \} [\exists x \land \exists y] \quad | \quad A'_1(x) = \text{Andrew and } A'_1(y) = p_1 \}, \\
\{\langle w_2, A'_2 \rangle \in \{ w_2, A_2 \} [\exists x \land \exists y] \quad | \quad A'_2(x) = \text{Andrew and } \\
\text{either } A'_2(y) = p_1 \text{ or } A'_2(y) = p_2 \text{ or } A'_2(y) = p_1 \oplus p_2 \}, \\
\{\langle w_3, A'_3 \rangle \in \{ w_3, A_3 \} [\exists x \land \exists y] \quad | \quad A'_3(x) = \text{Bill and } A'_3(y) = p_3 \}, \\
\{\langle w_4, A'_4 \rangle \in \{ w_4, A_4 \} [\exists x \land \exists y] \quad | \quad A'_4(x) = \text{Bill and } \\
\text{either } A'_4(y) = p_3 \text{ or } A'_4(y) = p_3 \text{ or } A'_4(y) = p_3 \oplus p_4 \} \end{array} \right\}
\end{align*}
\]
Since $c''_{sg} \subset c''_{pl}$, a scalar implicature is generated, yielding the following set:

$$\{ \langle w_2, A'_2 \rangle \in \{ w_2, A_2 \} \mid \exists x \land \exists y \mid A'_2(x) = \text{Andrew} \text{ and } A'_2(y) = p_1 \oplus p_2 \}$$

$$\{ \langle w_4, A'_4 \rangle \in \{ w_4, A_4 \} \mid \exists x \land \exists y \mid A'_4(x) = \text{Benjamin} \text{ and } A'_4(y) = p_3 \oplus p_4 \}$$

So in the end, only w_2 and w_4 survived, as desired. Furthermore, this accounts for cross-sentential anaphora naturally:

(36) He$_x$ submitted them$_y$ to journals.

4.4 ‘Everyone’

The same mechanism makes good predictions for other quantificational contexts.

(37) a. Everyonex wrote papersy. \rightarrow Everyone$^x(\exists y \land \text{Paper}(y) \land \text{Wrote}(x, y))$

b. Everyonex wrote ay paper. \rightarrow Everyone$^x(\exists y \land \text{Paper}(y) \land \text{Wrote}(x, y))$

The predicted scalar inference is that at least one person wrote multiple papers. This is because the singular version (37b) will produce a set of pairs $\langle w, A \rangle$ such that for each $a \in A$, $a(y)$ is an atomic entity that is a paper in w, and $a(x)$ is its author in w, and $A(x)$ is the plurality consisting of all the (relevant) people. The pairs resulting from (37a) will contain in addition to these pairs, those pairs $\langle w, A \rangle$ such that for some $a \in A$, $a(y)$ is a plural entity that is a paper in w. And only these pairs remain after computing the scalar implicature.

Here are the details. First, we need the distributivity operator, which creates quantificational dependency.7

Definition 11. (Distributivity Operator)

\[
\begin{align*}
\text{c}[D_x(\varphi)] & \equiv \{ \langle w, A' \rangle \mid \text{for some } \langle w, A \rangle \in c, A(x) = A'(x) \text{ and } \\
& \text{for each } e \subseteq A, \langle w, A'_{|x\rightarrow e} \rangle \in \{ \langle w, A_{|x\rightarrow e} \rangle \mid \varphi \} \}
\end{align*}
\]

\[
e \subseteq A :\Rightarrow e \subseteq E \text{ and } e \text{ is atomic }
\]

\[
A_{|x\rightarrow e} :\equiv \{ a \in A \mid a(x) = e \}
\]

(38) $\text{c}[\text{Everyone}^x(\varphi)] = \{ \langle w, A \rangle \in \text{c}[D_x(\text{Human}(x) \land \varphi))] \mid A(x) = \bigoplus \{ e \in D \mid e \text{ is a human in } w \} \}$

(39) Consider the following worlds, each with three humans, Andrew, Bill, and Chris.

- w_1: Andrew wrote exactly one paper, p_1, Bill wrote exactly one paper, p_2, and Chris wrote exactly one paper, p_3.
- w_2: Andrew wrote exactly two papers, p_1 and q_1, Bill wrote exactly two papers, p_2 and q_2, and Chris wrote exactly two papers, p_3 and q_3.
- w_3: Andrew wrote exactly two papers, p_1 and q_1, Bill wrote exactly one paper, p_2, and Chris wrote exactly one paper, p_3.
- w_4: Andrew wrote exactly two papers, p_1 and q_1, Bill and Chris wrote no papers.
- w_5: No one wrote any paper.

7We actually have to deal with partiality more carefully in the general case, but to keep the exposition simple, I’ll ignore it (this is fine because we are only talking about cases involving random assignment). See Van den Berg (1996) and Nouwen (2003) in particular. See also Nouwen (2003) and Nouwen (2007) for an undergeneration problem of this system and a solution to it.
\[
\begin{align*}
\{ \langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \langle w_3, A_3 \rangle \} & \quad [M^2(D_x(\text{Human}(x) \land \exists y \land \text{Paper}(y) \land \text{Wrote}(x, y)))] = c'_{sg} \\
\{ \langle w_4, A_4 \rangle, \langle w_5, A_5 \rangle \} & \quad [M^2(D_x(\text{Human}(x) \land \exists y \land \text{Paper}(y) \land \text{Wrote}(x, y)))] = c'_{pl}
\end{align*}
\]

\(W_{c'_{sg}} = W_{c'_{pl}} = \{ w_1, w_2, w_3, w_4 \}.\) Note that \(w_4\) is not excluded at this point.

- For each \(\langle w', A' \rangle \in c'_{sg},\) for each \(a' \in A',\) \(a(y)\) is an atomic entity that is a paper in \(w',\) and \(a(x)\) is its author in \(w'.\)
- For each \(\langle w', A' \rangle \in c'_{pl},\) for each \(a' \in A',\) each atomic part of \(a(y)\) is a paper in \(w',\) and \(a(x)\) is the author of the paper or papers in \(w'.\)
- For each \(\langle w', A' \rangle \in c'_{sg/pl}, A'(x) = \text{Chris} if w' = w_4 and A'(x) = \text{Andrew} \oplus \text{Bill} \oplus \text{Chris}, if otherwise.

\[
\begin{align*}
\{ \langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \langle w_3, A_3 \rangle \} & \quad [\text{Everyone}^x(\exists y \land \text{Paper}(y) \land \text{Wrote}(x, y))] \\
\{ \langle w_4, A_4 \rangle, \langle w_5, A_5 \rangle \} & \quad [\text{Everyone}^x(\exists y \land \text{Paper}(y) \land \text{Wrote}(x, y))]
\end{align*}
\]

\(= \{ \langle w', A' \rangle \in c'_{pl} \mid A'(x) = \bigoplus \{ e \in D \mid e \text{ is a human in } w \} \}
\]
existential quantifier, which makes sense since it feeds anaphora:

The current account derives Crnič, Chemla & Fox's (2015) observation about disjunction under a universal quantifier.

(40) Everyone speaks French or German.

According to the ‘standard view’, this sentence has as scalar implicatures the negations of (41).

(41) a. Everyone speaks French.
 b. Everyone speaks German.
 c. Everyone speaks both French and German.

Crnič et al. (2015) point out that this prediction is too strong, because (40) is judged as compatible with (41a) or (41b) (though not both at the same time). In other words, we do not want to have the negations of (41a) and (41b) as scalar implicatures.

Crnič, Chemla & Fox's (2015) propose that the relevant scalar implicatures are locally exhaustified versions of (41a) and (41b):

(42) a. Everyone speaks French but not German.
 b. Everyone speaks German but not French.

Under the present account, local exhaustification is unnecessary. First, we can treat or as an existential quantifier, which makes sense since it feeds anaphora:
(43) Bill speaks French orc German (but I don’t remember which). He learned it\textsubscript{c} at school.

And assume that we have the following alternatives:

(44) Everyonec speaks French orc German.
 a. Everyonec speaks Frenchc.
 b. Everyonec speaks Germanc.
 c. Everyonec speaks French andc German.

In the standard view, the scalar implicatures derived from (44a) and (44b) are too strong, but in the current view, we are not excluding all possible worlds where everyone speaks French or where everyone speaks German, but only those pairs consisting of one of such possible worlds and an assignment \(A \) such that \(A(x) \) is French or \(A(x) \) is German. Therefore, we keep those possible worlds paired with an assignment \(A \) that is not uniform with respect to \(x \), that is, for some \(a \in A \), \(a(x) \) is French, and for other \(a \in A \), \(a(x) \) is German.

More concretely:

(45) Assume the following possible worlds:
 - \(w_1 \): Everyone speaks French and no one speaks German.
 - \(w_2 \): Everyone speaks German and no one speaks French.
 - \(w_3 \): Some speak French but not German and some speak German and not French.
 - \(w_4 \): Everyone speaks French and some speak German.
 - \(w_5 \): Everyone speaks German and no one speaks French.
 - \(w_6 \): Everyone speaks both French and German.

\[
\begin{align*}
\{ \langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \langle w_3, A_3 \rangle \} & : [M^x_D(x(\text{Human}(x) \land \exists y \land \text{French}(y) \land \text{Speak}(y)))] = c'_v \\
\{ \langle w_4, A_4 \rangle, \langle w_5, A_5 \rangle, \langle w_6, A_6 \rangle \} & : [M^x_D(x(\text{Human}(x) \land \exists y \land \text{French}(y) \land \text{Speak}(y)))] = c'_f \\
\{ \langle w_1, A_1 \rangle, \langle w_2, A_2 \rangle, \langle w_3, A_3 \rangle \} & : [M^x_D(x(\text{Human}(x) \land \exists y \land \text{German}(y) \land \text{Speak}(y)))] = c'_c \\
\{ \langle w_4, A_4 \rangle, \langle w_5, A_5 \rangle, \langle w_6, A_6 \rangle \} & : [M^x_D(x(\text{Human}(x) \land \exists y \land \text{German}(y) \land \text{Speak}(y)))] = c'_g
\end{align*}
\]

\textit{Every}c throws away those pairs \(\langle w, A \rangle \) such that \(A(x) \) is not all people in \(w \).

Crucially, after the scalar implicature, pairs like \(\langle w_4, A'_1 \rangle \) will remain, where \(A'_1(y) = \text{French} \oplus \text{German} \) but for some \(a, b \in A', a(y) = \text{French} \) and \(b(y) = \text{German} \), because such pairs are not generated by the alternatives.

\textbf{Prediction} (to be tested): it in the following must vary between French and German (across linguistic subjects).

(46) Everyone speaks French or German. They all learned it at school.

Should be false in the following model with five people:

- Jean and Marie speak French natively, learned German at school.
- Wataru speaks Japanese natively, learned German at school.
- Katie speaks English natively, learned German at school.
• Ivan speaks Russian natively, learned German at school.

vs.

• Jean and Marie speak French natively, learned German at school.
• Wataru speaks Japanese natively, learned French at school.
• Katie speaks English natively, learned German at school.
• Ivan speaks Russian natively, learned French at school.

5 Conclusions and Further Thoughts

What I proposed is a rather conservative account of plurality inferences in the sense that it makes use of two old ideas, the Gricean Maxim of Quantity and dynamic semantics. It explains a lot of data without additional mechanisms such as local scalar implicatures or higher-order implicatures (although I do not necessarily deny them).

Being a scalar implicature theory, it crucially assumes that the plural is number neutral, but this assumption is not so innocuous. See discussion in Farkas & de Swart (2010), Bale & Khanjian (2014).

The idea of implicatures based on anaphoric potentials might give a nice account of the semantics and pragmatics of items like ‘epistemic indefinites’ and superlative modifiers. van Rooij (2017) discusses similar ideas in related frameworks, but he only deals with truth-conditional implicatures.

5.1 Primary vs. Secondary Implicatures

Two types of conversational implicatures are often distinguished, primary and secondary (Sauerland 2004).

(47) Some of these movies are interesting.
 a. the speaker believes all of these movies are interesting (Primary)
 b. the speaker believes —all of these movies are interesting (Secondary)

Standard Gricean reasoning generates a primary implicature, which may be strengthened to a secondary implicature via additional assumptions, e.g. Opinionatedness.

(48) a. Suppose that the speaker obeys the Maxim of Quantity.
 b. If she is certain that the alternative sentence All of these movies are interesting is true, she should have uttered it.
 c. Because she didn’t, she is not certain that it is true.

If there’s reason to believe that the speaker is opinionated, i.e. she knows that all of the movies are interesting or that not all of the movies are interesting, then it follows from (48b) that the speaker is certain that not all of the movies are interesting.

Under our account of the plurality inference, we can reformulate the reasoning in terms of not only the speaker’s propositional beliefs, but referents the speaker believes a variable varies across.

(49) a. Suppose that the speaker obeys the Maxim of Quantity.
 b. If she intends to restrict the referents of the variable only to atomic entities, she should have uttered Andrew wrote a paper.
 c. Because she didn’t, she didn’t intend to restrict the referents only to atomic entities.
The resulting primary implicature (49b) is weaker than the plurality inference. To derive the plurality inference, we just need an extra assumption similar to Opinionatedness, e.g. either the speaker believes that the variable should only vary across atomic entities, or the speaker believes that it should only vary across plural entities.

5.2 Definite Plurals

Definite plurals also give rise to plurality inferences.

(50) a. Chris’s student is smart.
 b. Chris’s students are smart.

The two sentences have different presuppositions.

- If Chris is known to have exactly one student, then (50a) and (50b) will mean the same thing.
- Otherwise, (50a) is not usable. So (50b) should be the only option, and should not have a plurality inference.

Sauerland (2003) derives the plurality inferences of plural definites as anti-presuppositions. I could adopt this analysis cases like (50).

Mayr (2015) observes, however, that the anti-presuppositional account wrongly predicts definite plurals to be felicitous in contexts where the exact number is not known. His main data is the following.\(^8\)

(51) Context: It is common belief that Paul either wrote exactly one song or several songs.
 a. #The song is good.
 b. #The songs are good. (Mayr 2015:211)

Mayr (2015) proposes instead that they should be accounted for by NP-level embedded scalar implicatures, and always have plurality inferences.

But do definite plurals always have plurality inferences?

(52) I’ve never met a female Japanese philosopher or read her papers.

Speculation: The anomaly of (51) might be due to something about restrictions on when the opinionatedness assumption holds and when it does not?

References

\(^8\)His other data involve dynamic binding, and I’m not sure whether they should be understood in the same way, although they are certainly problematic for the simplest version of the anti-presupposition idea.

(i) a. #If Paul wrote either several songs or just one, the new song is good.
 b. #If Paul wrote either several songs or just one, the new songs are good. (Mayr 2015:212)

