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Abstract

Confusion readily occurs in memory processes between patterns that overlap substantially. Possible mechanisms are considered that
might operate in an automatic manner to reduce such confusion. One such mechanism is the recall of patterns in a distorted way, so
that they are enriched with greater activity in distinctive elements of experienced patterns than in overlapping elements. Selective
consolidation based on such enriched patterns would reduce confusion in long-term recall and might benefit discrimination learning.
It is shown how automatic algorithms could achieve this through a process with two phases. In the first phase, somewhat analogous
to slow-wave sleep, it is necessary for the normal tendency of the nervous system to learn correlations of associated activity to be
disabled. The second phase must occur while the cells most active in the first phase are relatively inexcitable. Enriched patterns would
be generated during this phase through recall, which might be triggered by bursts of activity such as occur in rapid eye movement sleep.
Selective consolidation would take place during the second phase. If such processes do occur in the nervous system, it seems likely

that they would have evolved to occur during sleep.
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1. Introduction

Itis a biological fact that most animals sleep. We should
therefore expect that many physiological functions will
have adapted through evolution to take advantage of the
conditions during sleep. A valid approach to sleep re-
search may be to mimic this process: to ask how known
limitations on function might benefit through processes
that could more readily take place during sleep than during
waking. The answers may not correspond to the mecha-
nisms that have evolved. However, the special conditions
that may be required for benefits to take place and the
specific predictions may stimulate questions for experi-
mental research. We adopt this approach here, in relation
to a problem we describe broadly as that of confusion in
memory mechanisms.

The paper presents an overview of the issues, some of
which are set out in more technical detail in previous
publications [11,12]. We consider first what we mean by
confusion, how it affects biological fitness and the ways
that there are in principle to get round the problems. We
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then consider how information processing algorithms
could be implemented to diminish confusion and how such
implementation could benefit from the existence of a sleep
state.

A particularly interesting conclusion is that maximum
benefit seems to require an interplay between two radically
different and alternating brain states, with different char-
acteristics. We refer to these as Phases 1 and 2 of the
processes leading to benefit. The corresponding functional
states of the brain would resemble, in at least some
superficial respects, the states of slow-wave sleep (SWS)
and rapid eye movement sleep. The required interaction
between the alternating phases is not known to exist be-
tween the states of sleep, but would not be readily evident
unless specifically sought experimentally. In essence, the
suggestion is that memory consolidation takes place in
association with recall in Phase 2 (analogous to REM
sleep) and is rendered particularly beneficial by transient
consequences of specific activity that occurred in the pre-
ceding Phase 1 (analogous to SWS). The after-effects of
Phase 1 would most simply involve a short-lived diminu-
tion of excitability or efficacy in cells that were strongly
active during this phase. The conditions in Phase 1 that
lead to this selective dropout must not themselves be re-
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membered or consolidated. Their beneficial effect is to
enrich the subsequent recall and consolidation through
greater relative activation of cells that do not contribute to
confusion.

The hypotheses arising from this work are consistent
with the more general hypotheses put forward by Giuditta
et al. [14] and Clark et al. {3], that a period of unlearn-
ing of some sort might take place in SWS, followed by
consolidation in REM sleep. However, the effects of SWS,
for the current proposals, need only be transient, since
they serve merely to condition the system for the subse-
quent consolidation period in REM sleep. The transient
effects of SWS could resemble the kind of long-lasting
after-effect proposed by Crick and Mitchison after REM
sleep [4,5]; however, the role of REM sleep in the present
proposals is opposite to that suggested in their work. The
synapses that are selectively strengthened in REM sleep
with the present algorithms give a greater long-term ad-
vantage, it is argued, than the simpler single-stage unlearn-
ing algorithms.

2. Generalisation, overlap and confusion

The problem we address as confusion is a failure to
distinguish patterns that are similar, but that have impor-
tant differences. Confusion is essentially the same phe-
nomenon as what is less disparagingly called generalisation
when differences between patterns happen to be unimpor-
tant. Generalisation is a well-known and natural charac-
teristic of neural network solutions to pattern classifica-
tion problems [21]. Associations learned with one set of
input patterns tend to transfer readily to testing situations
in which the patterns are similar to those in training, but
not identical. This can be a valuable characteristic of bio-
logical systems, as for example when an animal correctly
generalises responses it has learned in a limited set of
either dangerous or beneficial situations. Generalisation
becomes undesirable and referred to as confusion, when
small differences between input patterns are crucial: for
example, when we ascribe the same name to two people
who look alike.

The reason that generalisation is so conspicuous a char-
acteristic of neural network behaviour is that the activity
of each element or cell in a network usually depends on
summed influences from a large number of other elements.
The characteristics of the sum are relatively insensitive to
differences in any small number of the individual influ-
ences. Two patterns of activity in which most of the ac-
tive cells are identical (i.e., which overlap a lot) tend to
generate similar summed influences on other cells. This is
not an absolute rule of course, since the cells that are
differently active may have profound effects, outweighing

the influence of the common cells. This can happen par-
ticularly where a small number of cells exert powerful in-
hibition on output cells. However, generalisation is a natu-
ral feature of situations where there are many similar
summed influences.

It is necessary to introduce some terminology and sim-
plifying assumptions for our discussion. We are often con-
cerned with pairs of overlapping patterns of activity such
as P1 and P2 in Fig. 1. These patterns are treated as being
within a largely homogeneous population of N cells that
contain representations of sensory events. For simplicity,
activity of individual cells is taken to be binary (i.e., they
are active or not active, without graded levels of activity).
This is strictly unrealistic in relation to the nervous system,
but it simplifies discussion of the problems without, so far
as we can see, in any way generating them. The fraction
of cells (o) active in one pattern we refer to as the activ-
ity ratio for that pattern. The fraction of the cells () in one
pattern that are also active in the second pattern we refer
to as the overlap fraction. The cells that are active in both
patterns are common cells with respect to the two patterns
and those that are active in only one of the two patterns
are distinct cells. There are two sets of distinct cells when
considering P1 and P2, designated D1 and D2 in Fig. 1.
Cells in D2 constitute intrusion errors from P2 if they be-
come active when P1 is appropriate and vice versa. The
rest of the population (the majority of the cells when « is

Pattern PI1
(aN cells)

Paffern P2
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=

Fig. 1. The nomenclature and cell groups used in relation to overlapping
sets of binary active celis, forming patterns of activity P1 and P2. The
total number of cells is N, the activity ratio for any one pattern is « and
the fractional overlap between patterns is 8. The different categories of
connections in relation to the problem of confusion between P1 and P2
are indicated by arrows. Excitatory connections that need to be selec-
tively strengthened to diminish confusion in recall of P1 or P2 are shown
black: those that assist recall but also contribute to confusion are shown
as grey; other connections that will only be strengthened through other
experience, neither P1 nor P2, are shown white. It is particularly impor-
tant during procedures for selective consolidation not to strengthen con-
nections between D1 and D2, marked **.
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small) have no involvement in P1 or P2 and are referred
to as spurious cells in relation to the confusion problems
associated with P1 and P2.

Generalisation and confusion may be altered by re-
coding information to a new representation with altered
overlap characteristics. Consider an example in the visual
system. Identical geometrical patterns of light at different
sites on the retina may activate wholly distinct sets of cells
in the eye. At the stage of representation within the visual
cortex it is found that overlap has been introduced. The
cortical representations of visual stimuli include cells that
are sensitive to features of shape at the retina, substantially
independent of position. Shape is an important type of
similarity between stimuli, sometimes more important than
position. It is easy to see how overlap between represen-
tations of stimuli with similar shape may introduce valu-
able generalisation, while overlap based on position would
contribute to confusion between stimuli of different shapes.

The difference between desirable generalisation and un-
desirable confusion rests on which differences between
stimuli are important. This means, of course, important for
the animal. The biological function of the nervous system
is to generate actions appropriate to circumstances, best
tailored to ensure survival for the animal and its species.
Importance means relevance to such choices of action. An
ideal representation of the environment, based on such
considerations, would be one in which overlap occurs
when and only when different stimuli have similar impli-
cations for action. Such an ideal state of affairs cannot
exist for all stimuli, however. Animals are bound to expe-
rience stimuli from time to time that differ substantially
from others in their implications, but little in their repre-
sentations. The problem of confusion arises acutely in
such circumstances and poses a challenge in how it may
be minimised.

3. How might sleep aid in reducing confusion?

We distinguish two fundamentally different procedures
to reduce confusion. The first is to alter representations of
stimuli to reduce overlap fractions. The second is to retain
overlapping representations but to alter selectively the
strengths of synaptic connections involving the distinct
and common parts of overlapping patterns. The first is the
more obvious approach and indeed is one of the conse-
quences of our natural waking reactions to confusion situ-
ations.

Consider an everyday example. Suppose you repeatedly
leave the house having mistakenly picked up your spouse’s
keys instead of your own. A natural sequence of responses
might be the following:

(1) Worry about the problem.

(i) Pay more attention to the keys, thus increasing the
number of attributes of them that are represented in
the brain at the time a decision is made.

(ii1) Identify distinct aspects of the two sets of keys and
enhance the attention paid to these aspects.

(iv) If all else fails, label the two sets more distinctly.

One effect of these actions is to alter the representation of
the keys generated in the brain when the keys are seen. The
fourth action (probably the first action of a sensible per-
son!) does this in a particularly direct manner. However,
in considering the general neurobiological problem of con-
fusion we should regard this as cheating, since it is often
not possible to influence the external nature of confused
stimuli. Steps (ii) and (ii1) alter both the number of features
represented and the balance between distinct and com-
mon features. The benefits will be similar to those arising
in multi-layer artificial networks [22] where the selection
and adjustment of intermediate feature-detecting units
generates better representations for a particular task.

Step (i) in the table of responses (worry) is not included
to be flippant but as a reminder that this simple instance
of confusion is just the kind of thing that can have a
surprisingly profound influence on behaviour. In particu-
lar, it is just the sort of problem that might influence sleep
experience. There may be processes taking place during
both sleep and waking that we are not aware of. It has
been suggested by Marr [20] that alterations of stimulus
representation may sometimes with advantage occur dur-
ing sleep. Selective adjustment of synaptic weights (with-
out altering overlapping representations) has also been
proposed [4] as a mechanism to reduce the tendency of
network dynamics to become dominated by readily elic-
ited states.

The thesis advanced here is that it is in principle pos-
sible during a sleep-like state to generate recalled patterns
to include largely the distinct elements of normal over-
lapping representations (either D1 or D2, but not both
together, in Fig. 1). Memory consolidation based on these
abnormal patterns, enriched with distinct features, may
diminish subsequent confusion when tasks involve the full
patterns.

4. Recall through auto-associative excitation

Recall or internal re-creation of a representation of ex-
perienced events, is a conspicuous feature of our own use
of memory. We know this from introspection in ourselves
and through language or artistic communication. We ex-
perience forms of recall during both waking and sleep. We
have few means of studying recall directly in non-human
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animals, though it seems likely that it occurs in some
manner in many species. The ability to identify patterns as
familiar (recognition memory) requires similar stored infor-
mation and is better established in experimental animals
[7].

The recall of a nearly accurate representation of an
experience from a trigger involving a few active features
and the settling of similar patterns (or even random pat-
terns) into familiar prototypes are well-known examples of
behaviour that can readily be produced in neural networks
through the process of auto-association [10,11,17,13,24].
Mutually excitatory interactions between cells, if strength-
ened during occurrence of patterns through the type of
mechanism proposed by Hebb [15], tend to support pref-
erentially the recurrence of these patterns. This requires
only one stimulus presentation, as in one-trial episodic
learning. There is no scope for later error-correction, as
can occur with repetitive training, since the correct pattern
is not available for repetition. One cannot in general replay
a face that has been seen once, to establish if recall of it
is correct.

Auto-associative recall requires sparse coding of repre-
sentations and a certain minimum density of connections
between cells to be efficient. The constraints for handling
randomly related patterns [ 10,11] are given approximately
by the following relationships:
a< =~ 1/vM and R> ~30/a, where « is the activity ratio
(Fig. 1), M the number of patterns to be learned and R the
number of other cells within the population (irrespective
of size) to which each cell is connected. A larger « than
the limit leads to poor performance, while a well below the
limit means that an extravagant number of connections is
required, as indicated by the second constraint.

When there is overlap between experienced patterns,
recall tends to generate hybrid intermediates between the
overlapping patterns. Recall of pattern P1 in Fig. 1 would
readily lead to activation of cells within D2. We call these
intrusion errors from P2. Intrusion errors from D1 would
similarly occur during recall of P2. In the extreme of total
confusion, recall of either P1 or P2 might lead to the same
hybrid pattern, including elements of each.

Consider an example of overlapping episodic memories.
Suppose you visit two similar sites on an excursion, say
Buckingham Palace and Hampton Court. When recalling
one of these, you may introduce intrusion errors from the
other, with the likelihood increasing with the degree of
similarity of your experiences in the two sites. If recall
takes place after several years, residual long-term memory
will be less reliable but may still include accurate recall of
many details. Intrusion errors may be more common and
there may even be total confusion in the sense that you
cannot discriminate the two memories and may not even
be aware that there were two different sites.

Confusion (or generalisation) errors always amount to
a degradation of episodic recall and they must reduce
whatever value it may have. Short of revisiting the sites,
how can confusion be reduced? A diligent tourist might
make a conscious effort, in the days after learning, to re-
duce the likelihood of confusions in long-term memory. A
possible strategy would be to recall the separate sites (using
the detailed and relatively reliable transient memory still
available), to identify distinct features of each site and to
think of associative links amongst such features. Not many
of us take time to do this kind of thing, at least not while
we are awake. Could it be done automatically, as part of
the process of memory consolidation?

5. Reduction of confusion in recall through selective con-
solidation

Confusion in long-term recall can be reduced if the rela-
tive strengths of associations underlying long-term me-
mory for overlapping patterns are adjusted selectively
[11,12]. Fig. 1 shows the four-cell categories that enter
into a confusion problem involving two specific patterns.
These are the distincr cells (D1 and D2), the common cells
and spurious cells that should not be active in either pat-
tern. There are many classes of connection amongst these
categories, shown as arrows in Fig. 1. Each class plays a
different role in recall and confusion.

The black arrows are connections that aid correct recall
of P1 and P2 and do not contribute to intrusion errors
between P1 and P2. Selective enhancement of these is
beneficial. The grey arrows are connections that assist
recall of P1 and P2, but also contribute to intrusion errors.
The COMMON-to-D1 and COMMON-to-D2 connec-
tions do this directly. For example, after recall of P1 the
COMMON-to-D2 connections may provide activation of
D2 cells above threshold. The COMMON-to-COMMON
and DISTINCT-to-COMMON connections contribute to
intrusion errors less directly: the problem arises early in a
progressive recall process [ 10] triggered by a set of active
cells that includes cells from D1. Strong COMMON-to-
COMMON and DISTINCT-to-COMMON connections
lead to early recruitment of common cells. These are not
errors, since they belong to P1, but they tend to lead to
intrusion errors. A preponderance of active common cells
early in recall, when the rest of the D1 cells have yet to be
recruited, results in almost as much activation onto D2
cells as onto the desired D1 cells. This can lead to a hy-
brid pattern or to a high probability of settling eventually
into a stable recall of P2 rather than P1.

To achieve the best long-term recall it is necessary to
have strong connections corresponding to both the black
and the grey arrows in Fig. 1. The black connections,
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however, need to be stronger. The other connections
(white) are not useful in recall of P1 or P2, though they
may be important in recall of other patterns; they are best
left unchanged in procedures to aid recall of P1 and P2.
It is particularly important that those marked ** should
not be strengthened, since they would directly contribute
to intrusion errors.

The desired discrimination between the black and grey
connections in Fig. 1 poses an interesting theoretical chal-
lenge: how can the nervous system identify these connec-
tions and treat them selectively? Even with good transient
memory mechanisms for P1 and P2, this is not straight-
forward. Individual synapses can be identified by their
pre- and post-synaptic cells. With Hebbian modification
conditions they are strengthened when both are active
together. Thus the joint set of black and grey connections
will be selected and strengthened with such mechanisms
whenever there is separate recall of P1 and P2. Selective
strengthening of the black connections would require that
the partial patterns (just D1 or just D2) be activated on
their own. Alternatively and providing only a partial so-
lution, the COMMON-to-COMMON connections
(though not the COMMON-to-DISTINCT and DIS-
TINCT-to-COMMON connections) could in principle be
selected and weakened relative to the others by activation
of just the common cells.

It is simpler to see how the nervous system might se-
lectively activate the common cells than the distinct cells.
If recall of P1 is allowed to proceed under conditions with
little inhibition and generally low neural thresholds, it will
readily lead to recruitment of a/l the cells in either P1 or
P2, forming a hybrid pattern (Fig. 2). If this state is rap-
idly followed by a sharp increase of thresholds, the cells
that remain active longest will be just the common cells,
since these have the greatest number of afferent connec-
tions strengthened by experience of P1 and P2. Thus with
alternations of low and high threshold beyond the limits
that are normally desirable for accurate recall of experi-
enced patterns, the common cells will be those that are
activated most and that remain active with the greatest
inhibition (Fig. 2, Phase 1). Weakening of the connections
between these cells with an associative ‘unlearning’
mechanism is essentially the kind of mechanism proposed
by Crick and Mitchison [4] and would achieve part but
not all of what is required for differential consolidation in
the present context. It must be noted that if the nervous
system is to operate in this way it is essential that the
hybrid patterns (including, e.g., all cells of either P1 or P2)
should not lead to associative strengthening of active con-
nections, since this would strengthen the connections
marked ** in Fig. 1 that would highly effectively cause
intrusion errors. If the procedure takes place, it must take
place with normal learning mechanisms disabled.

PHASE 1

Low threshold High threshold

ratigued celis

Randomly
triggered
recall

PHASE 2

Fig. 2. A 2-phase procedure for activating the distinct cells (crescent
shaped zones in the diagram) that are not part of the overlap between
a pair of patterns. Phase 1 consists of alternate high and low threshold
levels imposed on the cells, leading to hybrid patterns (at low threshold)
and to patterns with the greatest number of strong afferent connections
from these hybrid patterns (generally the common cells) at high thresh-
old. The cells still active at high threshold are rendered inactive or in-
excitable following Phase 1-~2. Phase 2 is a period in which randomly
triggered recall of patterns occurs, leading to activation of sets of cells
that are strongly bound by associative connections, but that were not
amongst the most readily activated in Phase 1. Associative strengthen-
ing of connections must not take place during activation of the hybrid
patterns in Phase 1.

The distinct cells in P1 and P2 are not so easily acti-
vated on their own as are the common cells. There does
not seem to be any direct manoeuvre that would render
them the most easily activated cells. However, prior acti-
vation of just the common cells could make this possible
if, as a result, the common cells somehow become difficult
to activate. This is the basis of the 2-phase mechanism
proposed for optimal selective consolidation [11] (Fig. 2).
Phase 1 requires alternating high and low threshold con-
ditions, without strengthening or consolidation of synapses
between active cells. This leads to selective fatigue of the
cells that are most active in the high threshold state of
phase 1, lasting into phase 2. Normal recall processes
become effective in Phase 2, triggered for example by ran-
dom activation [8] under conditions of tight threshold
control. This ensures that self-sustaining sets of cells be-
come active, bound by strong excitatory connections: pat-
terns such as D1 or D2 are activated, but not both to-
gether. Consolidation of the connections that are active
both pre- and post-synaptically could then occur in this
phase. Depending on the degree of fatigue of the common
cells, the patterns forming the basis for this selective con-
solidation will be either exclusively the distinct cells or
enriched with greater activation of these celis. The nature
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of the fatigue process is not very critical so long as it re-
duces the recruitment of common cells: it could be a tem-
porary elevation of threshold or a reduction of synaptic
efficacy of synapses onto these cells.

Selective consolidation to reduce confusion in long-term
recall requires a transient memory that lasts through the
consolidation process. Such memory mechanisms exist on
many different time scales [1], but their mechanisms are
not well understood. A specific model of transient and
long-term memory, where both changes reside in the same
set of synapses, has been used [11] to assess the effect of
the selective consolidation procedures on long-term con-
fusion. Fig. 3 shows recall quality for pairs of patterns that
overlapped by 74°,, with and without selective consoli-
dation. The unselective condition (circles) led to uniform
increments of synaptic weight for each connection in the
experienced patterns: recall quality fell rapidly as more
patterns were stored, to levels corresponding to total con-
fusion between the paired patierns. With selective con-
solidation (square symbols) recall was markedly improved.
The selective procedure (Fig. 2) was repeated after learn-
ing of each pair of patterns until it was no longer selective:
eventually the activation of all cells in Phasc 1 becomes
approximately uniform and Phase 2 ceases to be selective.

Some of the improvements in recall evident in Fig. 3
might have been due merely 1o equalising the connection

—o— Normal consolidation
—u— 4+ selecfive consolidation |
— = Binary weights

------ Total contusion

Recall Qudlity (%)
[+:3
o

0 10 20 30 40 50
Number of Patterns Stored

Fig. 3. The effect of sclective consolidation on recall performance with
overlapping patterns. Up to 50 patterns were experienced and stored.
cach consisting of 70 active cells out of 700. Each pattern had a twin
amongst the set, with which it had 74° overlap (52 cells). Recall qual-
ity is plotted as a function of the number of patterns stored. Conditions
were: normal consolidation consisting of equal increments of synaptic
weight for cach association cxperienced (circles): consolidation using
binary weights for which all experienced associations have equal weight
(broken line); normal consolidation plus selective consolidation that
preferentially increased weights for connections between distinet cells in
cach pattern according to an automatic algorithm described in the text
and in more detail in the original paper [11]. Recall quality of 67",
corresponds to correct recall of common cells but total confusion (i.c..
no discrimination) between distinct cells of the pattern 1o be recalled and
its overlapping twin. Recall with normal consolidation (using either
graded or binary weights) fell rapidly to around this level, while perform-
ance with selective consolidation was much better.

strengths within the distinct and common zones of over-
lapping patterns. With unselective consolidation (circles),
double usage of connections in the common zone pro-
duced double strengthening. Eliminating this effect in a
more simple manner by using binary synapses in the simu-
lations (dashed line) produced, however, much less im-
provement than did the full algorithm for selective con-
solidation.

6. Might selective consolidation occur during sleep?

Selective recall of patterns, enriched with distinctive
features, requires special conditions. Phase 1 leading to
this involves the generation of hybrid patterns in which
associations of activity must not be learned. If this is to
be achieved (e.g., through neuromodulatory influences on
synaptic plasticity) it requires that the relevant parts of the
nervous system may not, at the same time, be involved in
learning associations due to external stimulation. Sleep
periods, when animals are cut off from external stimula-
tion, would seem the best times to implement such a
mechanism.

Phase 1 requires synchronous fluctuations of neuronal
thresholds in whole populations of cells. Fluctuations that
superficially resemble such conditions are known to occur
in slow-wave sleep [6]. Memory and synaptic plasticity
are also known to be impaired in slow-wave sleep
[23,19,2,18]. Thus it is tempting, if speculative, to suggest
a parallel between SWS and Phase 1. This phase must
occur before and is in cssence only the prelude to Phase
2 in which enriched patterns are generated and consoli-
dated. Phase 2 requires recall to take place with tight
threshold control, similar to that which presumably nor-
mally occurs in waking, to ensure that only sets of cells
bound together through learned experience become acti-
vated. Consolidation of connections must occur in Phase
2, which might occur under waking or sleeping conditions.
However, the activity patterns will be abnormal because
of the after-effects of the prior Phase 1. If an animal is
awake in Phase 2, it will be in an abnormal state in which
clements of normal recall are hard to elicit. It is tempting
to suggest that Phase 2 might occur specifically in REM
sleep. conditioned by the prior SWS and with recall trig-
gered by the bursts of activity associated with PGO waves
[9]. Several lines of evidence suggest that memory con-
solidation can occur in REM sleep [ 16]. Theoretical con-
siderations do not preclude retention of memories of the
patterns generated in Phase 2 (if it occurs), as they did for
Phase 1. However, the bizarre and incomplete quality of
these experiences must not be confused with reality.

If evolutionary pressures have led to implementation of
an algorithm such as is proposed here for the diminution
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of confusion in long-term memory, then it is hard to see
how they would have failed to take advantage of the con-
ditions during sleep for its implementation. If the proce-
dures do take place during sleep, then some of the most
obvious matters for experimental verification are firstly
that interference with sleep behaviour and cueing of par-
ticular topics so as to influence sleep processing might
affect performance in tasks where confusion is a promi-
nent feature and secondly that there should be some after-
effect of SWS extending through much of the subsequent
REM sleep, whereby cells most highly activated in the
former tend to be harder to excite in the latter.

7. Could selective consolidation aid discrimination learn-
ing as well as recall?

In recent work we have addressed the issue whether
selective consolidation (using recalled patterns that are
rich in distinctive features) could aid the learning of dis-
criminations, as well as long-term recall. In particular, we
are interested whether it could be of benefit in situations
where normally a large number of repetitions of training
sessions is required to produce satisfactory performance.
The new task is to generate, for each input pattern, a
correct output pattern that has been associated with it in
training. Algorithms for solving this problem usually in-
volve learning rules, for changing synaptic weights, that
take account of errors made during training {21,22].

The use of recall instead of real training sessions to
provide consolidation in the learning of discriminations
seems risky. It is different from the situation with episodic
memory, where there is initially good transient memory
that fades away. With discrimination learning, perform-
ance 1s initially poor and gradually improves with training.
Before this process is complete, internally generated recall
of training conditions will be prone to errors: if used for
consolidation it may simply perpetuate these errors. We
have considered, however, whether in situations where
there is overlap between input patterns, enrichment of
recalled patterns to emphasise distinct features might offer
compensating advantages. The first question to ask is
whether it would be an advantage if real training sessions
were carried out with masked patterns, eliminating the
common cells in overlapping input patterns.

We have shown in simulations that masking input pat-
terns to leave just distinct cells active can improve the
speed with which a simple learning system can discrimi-
nate between stimuli and avoid confusion errors (Fig. 4).
The task was to generate correct output patterns (20 active
out of 100 output cells) for 100 different input patterns
(also 20 active out of 100 input cells, for full patterns). The
required output patterns were all randomly related and
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Fig. 4. Average numbers of incorrectly activated cells for all 100 output
patterns in a paired association task learned in a network with a single
layer of input to output connections, following different numbers of
training sessions. Learning employed the delta rule as described in the
text, with # =0.02. The mean result for five runs with different data sets
are shown, with the mean + 1 S.D. for these five runs. Three different
conditions were used, corresponding to full input patterns (F), masked
patterns (M) and restored patterns (R) described in the text.

thus overlapped on average by 20%,. 50 of the input pat-
terns were randomly related: the others were each twinned
with one of the first 50 patterns, sharing 15 cells in com-
mon (f = 0.75), with the rest selected at random from those
not active in the twin. Thus the problem was to learn 100
paired associations, with much scope for confusion, since
each input pattern overlapped substantially with its twin
in the training set. The errors in the output are classed as
‘confusion errors’ when incorrectly activated cells were
amongst those that would have been correct for the
twinned input pattern.

Learning took place while the paired input and output
patterns were presented together during training sessions.
Modification of the synaptic weight (w ) of each direct
connection from an input cell (i) onto an output cell (j) was
made according to the perceptron or delta rule [21,22].
The changes depend on the binary presynaptic activity
(a;), desired binary output activity (4;) and synaptic acti-
vation s; onto cell j (i.e., the summed synaptic weights from
all active inputs: 5; = Zw;;a;):

Aw; = n(a; - 55)a;

The parameter #, affecting speed and stability of learning,
was set to 0.02. For purposes of testing, the output pat-
terns were always taken as the correct number of output
cells (20): those with the greatest summed activation (sj)
on presentation of an input pattern. This is the output
pattern that would be active with recurrent inhibitory feed-
back set to regulate the correct activity ratio at the output.
In Fig. 4 it is shown that with full patterns presented as
described above (condition F), errors in the task were
almost completely eliminated after 50 training sessions.
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After the first few sessions, nearly all the errors were con-
fusion errors involving outputs that would have been
appropriate for the twinned pattern.

We ran the simulations with the same input patterns
masked to eliminate overlap (condition M), leaving only
the five active cells that were distinct from each twinned
pattern. The required output patterns were unchanged.
The effect was to change the overall numbers of errors
rather little: sometimes higher and sometimes lower than
with the full patterns. However, the confusion errors were
substantially fewer (Fig. 4: black bars). The fraction of
total errors that were confusion errors dropped to around
209% (i.e., the activity ratio at the output), since masked
patterns bear much the same relationship to their twins as
they do to other input patterns. With masked patterns,
there was a big increase of ordinary errors, i.e., those not
associated with the twin. This is due to the loss of cells that
help to discriminate each full input pattern from the non-
twinned input patterns. This increase in distributed errors
Just about balanced the drop in confusion errors involv-
ing the twin.

The confusion errors in this simulation amount to over-
lap with a single other output pattern, appropriate in other
circumstances. The distributed errors do not amount to
overlap with any single output pattern. On average, 209,
of total errors overlap with any output pattern that is not
associated with the twinned input: less than or equal to the
observed numbers of confusion errors. Thus the effect of
masking on the maximum erroneous overlap between out-
puts during training is represented in Fig. 4 by the confu-
sion errors (black bars) rather than by the total errors.
From the point of view of overlap and confusion fed
through to later stages of neural analysis, there was sub-
stantial improvement with masked patterns.

Since the masked patterns had a lower activity ratio
than the full patterns, we ran a control simulation (R in
Fig. 4) in which the activity ratio of the masked patterns
was restored to normal with the addition of random cells
to each pattern. This confirmed that the principal effects
of masking were due to the elimination of common cells,
not to the reduction of activity ratio.

8. What kinds of learning could benefit from enriched
recall during sleep?

Many complex issues are raised by the considerations
and simulations set out here. The only solid conclusions
are that automatic algorithms can be devised to use recall
to help diminish confusion problems in memory in at least
some circumstances and that some of these algorithms
require special conditions for their implementation. These
conditions seem to be inconsistent with use of the relevant

parts of the nervous system for interactions with the en-
vironment and it is therefore suggested that if they have
evolved they would very likely have evolved to occur dur-
ing sleep. The core idea is that it is sometimes useful to
generate enriched recall of experienced patterns, in which
the features distinct from other patterns are emphasised.
Use of these enriched and abnormal patterns can benefit
subsequent waking performance.

The generation of these enriched patterns requires, at
least with the algorithms we can devise, conditions in
which the normal ability of the nervous system to store
traces or memories of its activity patterns is temporarily
suspended or curtailed. This state we tentatively identify
as occurring during slow-wave sleep. The enriched pat-
terns are generated following this state, at a time when
transient after-effects render shared cells or features less
susceptible to recall. Consolidation occurs during this
phase of the procedure, which we tentatively identify with
REM sleep.

The enriched patterns could play a role in the selective
consolidation of long-term memories so that confusion
between overlapping patterns will be reduced at times
when transient memories have faded. This can in principle
reduce subsequent confusion in two situations: firstly,
when pairs of overlapping memories have been freshly
experienced and are being consolidated and secondly when
a single new experience overlaps with an old and already
consolidated experience [11].

Recall of enriched patterns could also play a role in
improving discrimination learning. Learning to discrimi-
nate between different input patterns, producing different
appropriate outputs for each, can require many repeti-
tions. This is especially the case when overlap between
input patterns leads to a substantial number of confusion
errors. We have shown that the use of masked input pat-
terns (eliminating overlap between overlapping pairs of
input patterns) can speed training to criteria based on
output overlap. We have not yet set up full simulations to
assess how much such benefit would extrapolate to sav-
ings in training trials with full patterns. It does, however,
look at least plausible in principle that selectively enriched
consolidation could benefit discrimination learning as well
as long-term recall.
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