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It is not known what biological benefits may derive from information handling
during sleep. Several facts about sleep suggest that information handling does take
place, in different fashions in the two principal phases of sleep ('Slow Wave’ and
"Paradoxical’ or 'Rapid Eye Movement’ (REM) Sleep). This paper seeks to identify
benefits that could arise from such 'off-line’ information processing, in relation to one
of the simpler, but neurally potentially important, forms of memory: auto-association.
One of the interesting outcomes is that the constraints of the theory lead naturally to
an algorithm that requires two stages for its implementation, resembling in some
respects the two phases of sleep [1].

In both phases of sleep the nervous system is cut off from its sensory and motor
systems. Bizarre forms of recall and lines of thought take place, often driven
substantially by association. Memory is poor. Activity and internal experiences during
sleep can be remembered in some detail, especially on immediate rehearsal after
awakening from REM sleep. Nevertheless, memory performance is in no way
comparable to what it would be like for similarly unusual, vivid and often emotionally
charged experiences in waking life. Physiological evidence indicates synchronous
fluctuations of threshold in cortical neurons during Slow Wave Sleep, and activity in
the visual pathway during Paradoxical Sleep that arises from the brainstem rather than
from the eyes, so-called 'PGO’ waves.

Theoretical approaches to the handling of information by neural networks may
be able to prompt testable suggestions about benefits from information processing
during sleep. Several suggestions already exist in the literature, either arising within
specific theoretical models [e.g. 2] or within a more general theoretical framework [3,4].
The approach adopted here is to examine one of the simpler types of memory (auto-
association) as rigorously and quantitatively as possible, and to see how algorithms can
be applied to relax the constraints that normally would limit performance. Such
processing might or might not require the isolation and the poor memory registration
that are characteristic of sleep. As it tuns out, not only are both these features
necessary for some of the major benefits, but also a separation of the algorithm into two
interdependent phases seems to be required, with possibly significant similarities to the
two phases of sleep. This is consistent with the thesis of Giu_ditta (5], who argues that
hypotheses about sleep function should take account of the interdependence of two sleep

phases.
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Auto-Association . . . o
Auto-association is the development of strong excitatory 1nteractions within 3

population of nodes, between nodes that have been active together. It permits previously
active patterns to be re-elicited on presentation of a subscf of the active nodes or a set
resembling the previously active set. It is not ot.mous that it shoulq alw.ays be dcs:mb!c
to "complete’ previously experienced pattemns in a neural system in this way. Early in
a sensory pathway it is probably not dcsirablf. to.do s0. At hlghgr perceptual !cv'cls
completion seems to be a part of gestalt perception, in relat'xon to which al:lto-assoc.xauo'n
was probably first proposed as a neural mechanism [6].- Tpggcrcd evocation of episodic
memory is commonplace in human memory, where it is usually bgncﬁcml b.ut may
sometimes cause trouble (as for example with victims of horrific experiences).
Performance in this area of ’content-addressable memory’ is one of the skills at which

the human brain seems to excel.

Auto-association can be implemented with a Hebbian modification rule (7, 8],
rules involving decreases as well as increases of weights [9, 10] or rules involving both
positive and negative activity parameters and weights [11]. Only the first and simplest
rule is considered in this article. The same issues in relation to overlap and confusion
will arise, at least qualitatively, with any strategy for episodic recall. Therefore it is at
least plausible that the principles that arise in the present analysis may have application
in more complex settings with other primary algorithms.

In some respects auto-association can be treated analytically as a special case
of "cross-association’, in which connections are strengthened between active cells in two
separate populations [7]. Unlike cross-association however, auto-association can be
carried out iteratively to improve performance by growing full patterns from a seed (8,
12]. This has been termed ’progressive’ recall, requiring careful management of neural
thresholds by recurrent inhibition [8]. Auto-associative storage can also be used to
provide a measure of the familiarity of a pattern: a form of 'recognition’ memory [1].

Auto-association permits storage and retrieval of the content of a pattern, after
what may be simply a one-trial learning situation. Episodic memory requires such an
algorithm: it is the features that are specific to a particular, possibly unique, experience
that are important. The identification of features that may commonly be grouped
together within patterns (adaptive recoding), or that correlate with external signals
(classification learning), are different forms of memory requiring, by definition,
?rcscman'ons of many related patterns (often many times over). These are equally
important forms of learning, but they are not considered here. It is envisaged that auto-
associative learning of pattern content may contribute to the plasticity of the nervous
system at each of many levels of representation (Fig. 1). The projections for recoding
fmd classify.ing pattemns, for seeding the content of patterns at higher levels, and for
top-down’ influences (hatched arrows in Fig. 1) will be subject to their own plasticity
according to separate algorithms.

Aup—umadve memory employing the Hebb conjunctive rule [6] (i.e.
strengthening that occurs when a synapse is active in a situation in which its activity
contributes to the firing of a postsynaptic neuron) is subject to two broad constraints.
If M patterns are 10 be learned on N cells, each comprising activity in a fraction a of
the neurons, then to avoid serious saturation effects the relation:
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a <= INM 1)

must hold [7]. It is not necessary for each cell to be connected to every other cell, and
in general if the number of connections per cell is R, the relation

aR = 30 @

must hold for a good compromise of performance and efficiency. The quantity aR is
the mean number of inputs received by individual cells in an active pattern from the
other active cells in the pattern. The critical value of order 30 arises because the mean
number of inputs must be large enough to ensure that on the basis of a Poisson
distribution the actual number is not only reliably non-zero, but reliably greater than the
number of inputs onto a typical spurious cell, which is a Poisson variable typically
around 0.5aR at saturation. If oR greatly exceeds 30, then there is unnecessary
redundancy in the connections and the efficiency (i.c. the information capable of being
stored and recovered per synapse) is less than maxirmum [8].

Fig. 1. Schematic representation of the nervous system. Shaded arrows are forward 'and
backward projections reponsible for recoding, pattern classification (feature detc<_:u9n)
and for the seeding of leamed output pattemns. Line arrows are auto-associauve
connections responsible for completion and correction of the content of patterns

experienced at cach level of representation.

It follows from Equation (1) that storage of a large number of patems in these
models requires that the patterns be coded into a sparse representauon, wnh. a low
activity ratio o. Examples of statistics of patterns with differcnt. activity ratios and
essentially the same information content are given in Table I. In pnncxp}e it is possible
to recode information reversibly from one such form to another, and indeed at ea.rly
stages in visual processing there are known mechanisms that have the effect of reducing

activity ratios (c.g. lateral inhibition, feature detection).

It follows from Equation (2) that in large networks storing pattemns with a
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ial i i i the optimal number of
substantial information content (>>30 active cells per pattern),
connections of any one cell can be substantially less than the ngmbcr of cells (R«.N)'
Thus an efficient large auto-associative network in general requires bOtl_l sparse Codxng
(a<<1) and sparse connectivity (R/N <<1). Both conditions are plausibly realistic in
relation to what is known about at least some parts of the cerebral cortex [8].

Table 1. Representation of information at different activity ratios (). Thc. same amount
of information (100 £5 bits) is required to specify each pattern of W active cells from
a total of N. The information content is calculated on the basis of two slightly different
assumptions: I, is for uniform independent probabilities o, giving rise to W as an
expectation value: I,=-N(alog,(a)-(1-a)log,(1-a)). I, is calculated for fixed (mtc'ger)
values of W (= aN) giving rise to probabilities of activation (a) that are not strictly
independent: L=log,(N!/(W!(N-W)!)). I, and I, differ by at most 4% over the indicated
range.

No. No. Activity Information
Cells Active Ratio Content

N w a I A
100 50 0.5 100 96
200 22 0.11 100 97
400 17 0.0425 101 98
1000 13 0.013 100 97
2000 11 0.0055 98 95
4000 10 0.0025 101 98

10000 9 0.0009 104 101

The overlap problem

Auto-association provides an algorithm for one-trial storage of patterns. The
statistical constraints and handling techniques for sparsely connected nets have been
analysed (8] and simulated [1] for simple situations. One of the fundamental limitations
on performance arises through overlap between stored patterns (i.e the existence of
active clements that are common to two or more patterns). This is illustrated in Fig. 2.
The result of overlap is that recall of a pattern P, readily leads to activation of elements
tl'm do not belong to P,, but are part of an overlapping pattern P,. These are called
.’mtmsior.l’ errors. The recalled pattern can readily become some sort of hybrid or
intermediate between P, and P,, even though the disparate elements of P, and P, may
never have been experienced together.

In other contexts, the behaviour of neural networks in response to overlapping
patterns can be an advantage. In classification tasks, a closely related phenomenon is
that of generalisation, whereby learned responses can transfer to patterns that have never

been experienced, but are similar to (i.c. overlap with) ones experienced in the training
set.

132



Fig.2. P'fmcxrns P, and P, cac.h consist of W active cells with an overlap fraction 8. The
cells active in P, and P, fall into categories called common and disparate, with the latter
comprising cells that are specific to P, and specific to P..

When the task is to recall and reevoke an experienced pattern, the consequences
of overlap are often undesirable. Note that this is an observation about the way in which
recall memory is used, not about the fundamental statistical issues underlying what one
may variously call intrusion errors or generalisation. For example, if one visits the
Georgian city of Bath, and then tries to recall details of a particular building in Bath,
one may generate a sketch that is useless as a representation of the specific prompted
building because of numerous intrusion errors from other buildings. It might
nevertheless encapsulate the spirit of Georgian architecture even better than any single
building might have done. The problem of overlap arises specifically where recall
memory is used in an episodic fashion, to identify details of a specific episode or
pattern. To pursuc the example, it is uscless, and indeed positively confusing, 0 have
picked up a general appreciation of the preferred symmetry of Georgian architecture if
one is trying to direct someone how to enter a building that happens t0 have its

entrance on the left.

Given that intrusion errors from overlap are a problem in episodic memory, how
can one reduce these errors? There arc at least three distinct strategies:

1. It may be possible to use classification and pattern recognition techniques at
higher level of representation to identify probable or improbable combinations of
clements in the recall of P, or P,. For example, in the illustration, one might use
knowledge of the general constraints on the positioning of building entrances.

2. It may be possible to reduce overlap in the representation. In episodic memory,
after initial learning, it is too late to reduce overlap in the primary engram. Two things

can happen, however.

i) Current experience may lead to alterations in the representation of future inputs

5o as to reduce overlap for these inputs. For example, once onc has learned to classify

the stereotypes of Georgian architecture one may or future occasions be aple to
represent new buildings in terms of combinations of these Stereotypes and particular
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departures from them. This is a form of 'feature detection’, xhqugh which inputs may
be represented with minimum use of information channels (minimum entropy coding
13]).
= ii) It may be possible to generate recoded versions of the current patterns P, and
P, with less overlap. For example, by surmising (either con'ectly or mcom:ctly)' t.hat
minor differences in building style relate to different periods or dlffcrcr}t 'pcrsonahncs,
it may be possible to build up coherent networks of associatiorfs containing I?, and P,
with less overlap. Such a strategy has both benefits and risks: it may reduce {ntrusion
errors due to overlap between P, and P, while generating errors due to the specific form
of recoding. o
3. It may be possible to adjust the relative weights of associations between
clements of P, and P, to reduce the effects of the overlap.

Strategies 2ii and 3 both require that episodic memories be held in a temporary
robust form that allows algorithms for reducing effects of overlap to operate. The
potential for performing such operations is just one of the benefits that can arise from
having temporary as well as long term (LT) memory stores with flexible consolidation
processes for transfer from one to the other [1]. Strategy 3 is developed here because
it is prima facie the simplest, and need relate only to the current representation and to
a single, potentially homogeneous, set of cells.

trategies for adjusting relative weights to reduce the overlap problem

Within a pair of overlapping patterns there are two distinct categories of cells
described as 'common’ (c) and "disparate’ (d). Between these cells there are 4
categories of associative connection that contribute to recall performance on P, and/or
P, (c—¢, c—d, d—c¢, d—d). Each has its own significance in relation to the overlap
problem. Before discussing them individually, it is helpful to consider briefly the
dynamics of recall in the face of overlap.

If recall is prompted by activation of a seed of active cells specific to P,, then
iterative recall may lead to recruitment of other cells specific to P,, common cells,
incorrect cells specific to P, (intrusion errors), and possibly spurious cells present in
neither P, nor P,. There are actually two inter-related problems arising from overlap:

1. If we suppose that P, has been successfully recalled with near total accuracy,
then the mean excitation onto specific P, cells (from the common cells) may be nearly
as great, with substantial overlap, as the mean excitation onto P, cells. The statistical
separation of the excitation onto the two categories is poor because of the overlap, and
intrusion errors are likely. It is the relative strength of d—d and c—d connections that is
relevant in this situation. Improvements can be made if the d—d connections can be
strengthened relative to c—d.

2. The second problem arises earlier in the progressive recall process. If the
common cells are relatively numerous within Py, then both by simple probability and
by virtue of the strong interactive support that they provide for each other once
acavated, common cells will tend to be recruited in carly iterations of the recall process.
This contributes to the excitation of P, cells as well as P, and diminishes the statistical
weighting in favour of recruitment of P, rather than P, that existed at the start by virtue
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of the specific seed from P,. To reduce the preference for early recall of common cells

it is necessary to increase the strength of d—d connections relative to d—¢ and c—sc
connections.

The idcptiﬁed changes of relative connection strengths can be achieved for
?roblcm 1 extl}cr by increasing d—d weights or by reducing c—d. For problem (2) it
is necessary to increase d—d weights or reduce d—c and/or c—c. The adjustment that
helps W.lth both aspects of the overlap problem is to increase the strength of d—d
connections [1]. An alternative strategy proposed for helping with an analogous
?roblem, that of too ready elicitation of spurious ’parasitic’ states due to densely
interconnected nodes in a network, is to decrease the strength of c—¢ connections [3].
In the present context this strategy diminishes the early recruitment of common cells,
but falils to help with the problem of eliminating intrusion errors once recall is nearly
complete.

To change the weights of a particular category of connections it is necessary
somehow to identify these connections within the network. It is possible to identify the
c—¢ connections by activating solely the ¢ cells (which tend to be the most readily
activated cells [3]). There is no such simple way of identifying directly the d—d
connections in order to strengthen them. A two stage algorithm has been proposed,
however, which achieves this automatically after storage of pairs of overlapping patterns

[1].

In simulations the algorithm for d—d strengthening has been shown to have both
of the desired effects: increase of stability of correctly recalled patterns with fewer
intrusion errors, and early recall of the specifically correct cells in preference to the
common cells. The average quality of recall elicited from a seed was increased
substantially (Fig.3).

Implementation of this algorithm in a neural structure would require two stages
in sequence, with a carry over of some form of temporary 'fatigue’ within cells that are
strongly activated in Stage 1 (which would be largely the "common’ cells) to Stage 2.
Such a carry over of fatigue between the two phases of sleep is not known, but has

probably never been sought experimentally.

Some of the other conditions necessary for implementation of the algorithm bear
quite strong resemblances to known facts about sleep. For example, the first stage
requires large threshold swings to activate firsty the hybrid union of oclls. that are
within P, or P,, then the common cells that recieve greatest excitation from this hybrgd
panem.Itisesscndalthatmmorytraccsshouldnotbclaiddoynforthehybnd
patterns experienced at this time, since this would lead to associations bcm thc
disparate cells of P, and P, that would simply compound the problem of.mtmslon
errors. Stage 2 (cf. Paradoxical Sleep) must always follow Stage 1 and requires recall
from random seeds subject to the tight threshold control that is characteristic of normal
recall (as presumably employed during waking). This ensures that Fohaent sets of
dimuceusmacﬁvawdwgcthampemitenhmcgdsmngthenmgofdwd-od
weights. Though there are striking parallels in these requirements o known facts about
shep.mhpuﬂlebcanbenommthmsuucsdveohuuemhnmbemthe

proposed optimisation procedure and sleep.
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Fig.3. The effect on recall of overlapping patterns, of an algorithm for increasing d—qd
weights. Patterns were learned in pairs with overlap fraction 8=0.74 (Fig.2). (a) Quality
of recall quality with and without the optimising algorithm. Qum=quality corresponding
to correct recall of common cells, with chance levels of discrimination between
specifically correct cells and intrusion errors. M=number of learned pattemns. (b,c)
Recruitment sequence for common cells (com), specifically correct cells (spec) and
intrusion errors (int) during iterative recall without (b) and with (c) the optimising
algorithm. Simulation data from [1].

The advantages derived from specific strengthening of d—d connections can to
some extent be analysed analytically rather than by simulation. An expression can be
derived for the signal to noise rado 't’ for discrimination between excitation onto
specific P, and specific P, cells once P, is correctly recalled. t’ is defined as the ratio
of the difference between the mean excitation onto the two types of cells, to the sum
of the standard deviations for the excitation onto the two types. A value t=2, for
example, permits a threshold to be set between the two levels so as to give
approximately 2.5 % false positive and false negative rates. For a sparsely connected net
with a fraction f of its synapses having been modified, an overlap fraction B between
a pair of patterns, and enhancement of d—d connections by a factor 6, the signal to
noise ratio is given by:

t= V&R) (1-8) (B-6) / ( V (B+6%(1-B)) + v (B+£(1-B)) ) 3)

For B=f=0.5, this gives t=0.13V(aR) for @=l, t=0.31V(aR) for 6=2 and
t=0.71V(aR) for §—ee. This analysis assumes that enhancements of d—d connections for
an overlapping pair of patterns are made on a background of uniform connection
strengths for all the other Synapses in the network at which modification conditions
have been met. Much of the maximum benefit derived from arbitrarily large increases
of d—d weights is obtained with 8=2.
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There is a cost associated with increasing 0 too far. The heavily weigh

affect nd\'rcrscly. the performance in other recall situations, wh);rc t}%c::d \:Z:‘glh‘is‘::
Watc. Fl'g. 4 shows the results of analysis in which such effects are seen in the
3,pa!-m1sc ratio for different aspects of recall of a paired pattern. The entire
experience of the network in this case has consisted of pairs of patterns with overlap
mcnon.B-O.S.. All connections that have at some time in the net's experience been d—d
connections (in this case a fraction 0.36 of those that have been modified generally) are
taken to have a strength 8 relative to the other modified synapses.

o
Signal: { Specific:Spurious
Noise
Ratio Specific:Intrusion

Common:Spurious

Common:Intrusion

0 . : .
1 10 100

Relative d-d strength (6)

Fig. 4. Effect of enhancement of connections between cells in the disparate parts of
overlapping patterns. The ordinate is the signal-noise ratio (in units of VaR) for
discrimination between each of the two categories of correct cells (disparate and
common) and each of the two categories of incorrect cells (intrusion errors from P, and
spurious cells not part of P, or P,). The abscissa is the factor © by which d—d
connections have been enhanced. Conditions are f=B=0.5 as described in the text, and
it is assumed that the entire experience of the net consists of pairs of patterns with

equal overlap B between pairs.

noise ratio for the common cells falls with

It can be seen in Fig.4 that the signal-
falls also for excitation of the disparate

increasing O throughout the range. For 6>=3 it
P, cells compared to spurious recruits. The signal-noise ratio for recruitment of the
specific P, cells against intrusion errors rises continuously with 6. A reasonable
compromise under these conditions would be achieved with @=2-3: there are then
substantial gains in the rejection of intrusion errors and relatively little loss in the
signal-noise ratio for common cells. Precise optimisation would have o depend on the

relative costs of errors associated with the different categories of cells.
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Conclusion . . . .
It is possible to identify strategies for improving performance in auto-association

throu lication of algorithms operating after the initial learning. In this way it may
be pogsgil:fcpto reduce coifusions and intrusion errors rcsulting.fm.m overlap between
similar patterns stored in episodic memory. Some of @c potc'nual 1.mprovcmems'f_or a
specific algorithm have been quantified by both analysis and_mmulanon. The conditions
that would be necessary for implementing such an algorithm neuronally are quite
constrained and raise unresolved issues in relation to the experimental study of sleep.
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