
 1 

Similar to :- Neural Computation (2001) 13: 477-504  

The limits of counting accuracy in distributed neural representations 

A.R. Gardner-Medwin1 & H.B. Barlow2 

1Dept. of Physiology, University College London,  London WC1E 6BT, UK  

and 2Physiological Laboratory, Cambridge CB2 3EG, UK 

 

Keywords:   counting, representation, learning, overlap, sensory coding, efficiency, 

frequency, association, adaptation, attention 

Learning about a causal or statistical association depends on comparing frequencies of 

joint occurrence with frequencies expected from separate occurrences, and to do this 

events must somehow be counted.  Physiological mechanisms can easily generate the 

necessary measures if there is a direct, one-to-one, relationship between significant 

events and neural activity, but if the events are represented across cell populations in a 

distributed manner, the counting of one event will be interfered with by the occurrence 

of others.  Although the mean interference can be allowed for, there is inevitably an 

increase in the variance of frequency estimates that results in the need for extra data to 

achieve reliable learning.  This lowering of statistical efficiency (Fisher, 1925) is 

calculated as the ratio of the minimum to actual variance of the estimates.  We define 

two neural models, based on presynaptic and Hebbian synaptic modification, and 

explore the effects of sparse coding and the relative frequencies of events on the 

efficiency of frequency estimates.  High counting efficiency must be a desirable feature 

of biological representations, but the results show that  the number of events that can be 

counted simultaneously with 50% efficiency is less than the number of cells or 0.1-0.25 

of the number of synapses (on the two models), i.e. many fewer than can be 

unambiguously represented. Direct representations would lead to greater counting 

efficiency, but distributed representations have the versatility to detect and count many 

unforeseen or rare events.  Efficient counting of rare but important events requires that 

they engage more active cells than common or unimportant ones.  The results suggest 

reasons why representations in the cerebral cortex appear to use extravagant numbers of 

cells and modular organisation, and they emphasise the importance of neuronal trigger 

features and the phenomena of habituation and attention. 

1  Introduction 

The world we live in is highly structured, and to compete in it successfully an 

animal has to be able to use the predictive power that this structure makes possible.  

Evolution has moulded innate genetic mechanisms that help with the universal basics of 

finding food, avoiding predators, selecting habitats, and so forth, but much of the 

structure is local, transient, and stochastic, rather than universal and fully deterministic.  

Higher animals greatly improve the accuracy of their predictions by learning about this 

statistical structure through experience: they learn what sensory experiences are 

associated with rewards and punishments, and they also learn about contingencies and 

relationships between sensory experiences even when these are not directly reinforced.    
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Sensory inputs are graded in character, and may provide weak or strong 

evidence for identification of a discrete binary state of the environment such as the 

presence or absence of a specific object. Such classifications are the data on which 

much simple inference is built, and about which associations must be learned. Learning 

any association requires a quantitative step in which the frequency of a joint event is 

observed to be very different from the frequency predicted from the probabilities of its 

constituents.  Without this step, associations cannot be reliably recognised, and 

inappropriate behaviour could result from attaching too much importance to chance 

conjunctions or too little to genuine causal ones. Estimating a frequency depends in its 

turn on counting, using that word in the rather general sense of marking when a discrete 

event occurs and forming a measure of how many times it has occurred during some 

epoch. 

 Counting is thus a crucial prerequisite for all learning, but the form in which 

sensory experiences are represented limits how accurately it can be done.  If there is at 

least one cell in a representation of the external world that fires in one-to-one relation to 

the occurrence of an event (ie if that event is directly represented according to our 

definitions – see Box 1), then there is no difficulty in seeing how physiological 

mechanisms within such a cell could generate an accurate measure of the event 

frequency.  On the other hand there is a problem when the events correspond to patterns 

on a set of neurons (ie with a distributed representation – Box 1).  In a distributed 

representation a particular event causes a pattern of activity in several cells, but even 

when this pattern is unique, there is no unique element in the system that signals when 

the particular event occurs and does not signal at other times.  Each cell active in any 

pattern is likely to be active for several different events during a counting epoch, so no 

part of the system is reliably active when, and only when, the particular event occurs. 

 The interference that results from this overlap in distributed representations can 

be dealt with in two ways: (1) cells and connections can be devoted to identifying 

directly in a one-to-one manner when the patterns occur, i.e. a direct representation can 

be generated, or (2) the interference can be accepted and the frequency of occurrence of 

the distributed patterns estimated from the frequency of use of their individual active 

elements.  The second procedure is liable to increase the variance of estimated counts, 

and distributed representation would be disadvantageous when this happens because the 

speed and reliability of learning would be impaired. 

 On the other hand, distributed representation is often regarded as a desirable 

feature of the brain because it brings the capacity to distinguish large numbers of events 

with relatively few cells (see for instance Hinton & Anderson  1981; Rumelhart & 

McClelland  1986; Hinton, McClelland & Rumelhart 1986; Churchland 1986; Farah 

1994).  With sparse distributed representations, networks can also operate as content-

addressable memories that store and retrieve amounts of information approaching the 

maximum permitted by their numbers of modifiable elements (Willshaw et al., 1969; 

Gardner-Medwin, 1976).  

 Recently Page (2000) has emphasised some disadvantages of distributed 

representations and argued that connectionist models should include a "localist" 

component, but we are not aware of any detailed discussion of the potential loss of 

counting accuracy that results from overlap, so our goal in this paper was to analyse this 

quantitatively.  To give the analysis concrete meaning we formulated two specific 

neural models of the way frequency estimates could be made.  Neither is intended as a 

direct model of the way the brain actually counts, nor do we claim that counting is the 

sole function of any part of the brain, but the models help to identify issues that relate 
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more to the nature of representations than to specific mechanisms. Counting is a 

necessary part of learning, and representations that could not support efficient counting 

could not support efficient learning. 

 We express our results in terms of the reduction in statistical efficiency (Fisher, 

1925) of these models, since this reveals the practical consequences of the loss of 

counting accuracy in terms of the need for more experience before an association or 

contingency can be learned reliably.  We do not know of any experimental measures of 

the statistical efficiency of a learning task, but it has a long history in sensory and 

perceptual psychology where, for biologically important tasks, the efficiencies are often 

surprisingly high (Rose, 1942; Tanner & Birdsall, 1958;  Jones, 1959;  Barlow, 1962;  

Barlow & Reeves, 1979; Barlow & Tripathy; 1997).  

  From our analysis we conclude that compact distributed representations (i.e. 

ones with little redundancy) enormously reduce the efficiency of counting and must 

therefore slow down reliable learning, but this is not the case if they are redundant, 

having many more cells than are required simply for representation.  The analysis 

enables us to identify principles for sustaining high efficiency in distributed 

representations, and we have confirmed some of the calculations through simulation.  

We think these results throw light on the complementary advantages of distributed and 

direct representation. 

1.1 The statistical efficiency of counting.  The events we experience are often 

determined by chance, and it is their probabilities that matter for the determination of 

optimal behaviour.  Probability estimates must be based on finite samples of events, 

with inherent variability, and accurate counting is advantageous insofar as it helps to 

make the most efficient use of such samples.  For simplicity, we analyse the common 

situation in which the numbers of events follow (at least approximately) a Poisson 

distribution about the mean, or expected, value.  The variance is then equal to the mean 

(), and the coefficient of variation (i.e. standard deviation ÷ mean) is 1/.  

 A good algorithm for counting is unbiased, i.e. on average it gives the actual 

number within the sample, but it may nevertheless introduce a variance V.  This 

variance arises within the nervous system, in a manner quite distinct from the Poisson 

variance whose origin is in the environment; we assume they are independent and 

therefore sum to a total variance V+.  It is convenient to consider the fractional 

increase of variance, caused by the algorithm in a particular context, which we call the 

relative variance (): 

   = V /        (1.1) 

Adding variance to a probability estimate has a similar effect to making do with a 

smaller sample, with a larger coefficient of variation.  Following Fisher (1925) we 

define efficiency e as the fraction of the sample that is effectively made use of: 

  e =  /(  +V) =  (1 + )-1    (1.2) 

Efficiency is a direct function of , and if  then e <50%, which means that the time 

and resources required to gather reliable data will be more than two times greater than is 

in principle achievable with an ideal algorithm.  If << then efficiency is nearly 100% 

and there would be little to gain from a better algorithm in the same situation. 

2  A simple illustration 

 As an illustration of the problem, consider how to count the occurrences of a 

particular letter (e.g. 'A') in a sequence of letters forming some text. If 'A' has a direct 
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representation in the sense that an element is active when and only when 'A' occurs (as 

on a keyboard) then it is easy to count the occurrences of 'A' with precision.  But if 'A' is 

represented by a distinctive pattern of active elements (as in the ASCII code) then the 

problem is to infer from counts of usage of individual elements whether and how often 

'A' has occurred.  The ASCII code is compact, with 127 keyboard and control characters 

distinguished on just 7 bits.  Obviously 7 usage counts cannot in general provide enough 

information to infer 127 different counts precisely. The result is under-determined 

except for a few simple cases.  In general there is only a statistical relation between the 

occurrence of letters and the usage of their representational elements, and our problem 

is to calculate, for cases ranging from direct representations to compact codes, how 

much variance is added when inferring these frequencies. 

 Note that 7 specific subsets of characters have a 1:1 relation to activity on 

individual bits in the code.  For example, the least significant bit is active for a set 

including the characters (ACEG..) as well as many others.  Such subsets have special 

significance because the summed occurrences of events in them is easily computed on 

the corresponding bit.  In the ASCII code they are generally not subsets of particular 

interest, but in the brain it would be advantageous for them to correspond to categories 

of events that can be grouped together for learning.  This would improve generalisation, 

increase the sample size for learning about the categories, and reduce the consequences 

of overlap errors.  Our analysis ignores the benefit from such organisation and assumes 

that the representations of different events are randomly related, though we discuss this 

further in section 6.2. 

 The conversion of directly represented key presses into a distributed ASCII 

code is certainly not advantageous for the purpose of counting characters.  The events 

that the brain must count, however, are not often directly represented at an early stage, 

nor do they occur one at a time in a mutually exclusive manner as do typed characters.  

Each event may arouse widespread and varied activity that requires much neural 

computation before it is organised in a consistent form, suitable for counting and 

learning.  We assume here that perceptual mechanisms exploit the redundancy of 

sensory messages and generate suitable inputs for our models as outlined below and 

discussed later (Section 6). These simplifications enable us to focus on the limitations of 

counting accuracy that arise even under relatively ideal conditions. 

3  Formal definition of the task 

 Consider a set of Z binary cells (Fig. 1) on which is generated, one at a time, a 

sequence of  patterns of activity belonging to a set {P1..PN} that correspond to N distinct 

categorisations of the environment described as events {E1..EN}. The patterns (binary 

vectors) are said to represent the events.  Each pattern Pi is an independent random 

selection of Wi active cells out of the Z cells, with the activity ratio i =Wi/Z.  The 

corresponding vector {xi1..xiZ} has elements 1 or 0 where cells are active or inactive in 

Pi.  The active cells in two different patterns Pi, Pj overlap by Uij cells (Uij0), where  

  = = Zk jkikij xU ,1 )x (  

Note that two different events may occasionally have identical representations, since 

these are assigned at random. 

 Consider an epoch during which the total numbers of occurrences {mi} of 

events {Ei} can be treated as independent Poisson variables with expectations {i}. The 

totals M and T are defined as M=i(mi) and T=i(i).  The task we define is to 

estimate, using only plausible neural mechanisms, the actual number of occurrences 

(mc) of representations of an individual event Ec when this event is identified by a test 
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presentation after the counting epoch. We suppose that the system can employ an 

accurate count of the total occurrences (M) summed over all events during the epoch, 

and also the average activity ratio   during the epoch:  

    = i (mi i) /M     (3.1) 

 We require specific and neurally plausible models of the way the task is done, 

and these are described in the next two sections.  The first model (section 3.1) is based 

on modifiable projections from the cells of a representation. They support counting by 

increasing effectiveness in proportion to presynaptic usage, though associative changes 

or habituation might alternatively support learning or novelty detection with similar 

constraints.  The second model (3.2) is based on changes of internal support for a 

pattern of activation. This greatly adds to the number of variables available to store 

relevant information by involving modifiable synapses between elements of a 

distributed representation, analogous to the rich interconnections of the cerebral cortex. 

 Readers wishing to skip the mathematical derivations in sections 3.1, 3.2 

should look at their initial paragraphs with Figs. 1,2 and proceed to section 4. 

3.1 The projection model. This model (Fig.1) estimates mc by obtaining a sum Sc of 

the usage, during the epoch, of all those cells that are active in the representation of Ec. 

This computation is readily carried out with a single accumulator cell X (Fig. 1) onto 

which project synapses from all the Z cells.  

 The strengths of these synapses increase in proportion to their usage.  When the 

event Ec is presented in a test situation after the end of an epoch of such counting, the 

summed activation onto X gives the desired total: 

  Sc  =  cells k (xck events j (xjk mj) ) 

   = mcWc  +  events jc (mj Ujc)    (3.2) 

 If there were no interference from overlap between active cells in Ec and in any 

other events occurring during the epoch (i.e. if mj=0 for all j for which Ujc>0), then Sc = 

mcWc.  In this situation, Sc/Wc gives a precise estimate of mc and is easily computed 

since Wc is the number of cells active during the test presentation of Ec.  In general Sc 

will be larger than mcWc due to overlap between event representations.  An adjustment 

for this can be made on the basis of the total number of events M and the average 

activity ratio  , yielding a revised sum S'c: 

   S'c = Sc  -  M Wc       (3.3) 

Expansion using equations  3.1,3.2 yields: 

 S'c  =  mcWc(1-c) + events jc (mj (Ujc - jWc))   (3.4) 

The expectation of each term in the sum in equation 3.4 is zero, since Ujc=jWc and 

the covariance for variations of mj and Ujc is zero since they are determined by 

independent processes.  An unbiased estimate m̂ c of mc is therefore given by: 

  m̂ c = S'c / (Wc (1-c))     (3.5) 

 To calculate the reliability and statistical efficiency of this estimate m̂ c we 

need to know the variance of S'c due to the interference terms in equation 3.4. This is 

simplified by the facts that mj and Ujc vary independently and that Ujc= jWc : 

  Var(S'c) = jc (mj
2Var(Ujc) + Var(Ujc) Var(mj))     (3.6) 
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Ujc has a hypergeometric distribution, close to a binomial distribution, with expectation 

jWc and variance j(1-j)(1-c)(1-1/Z)-1Wc.   Substituting these values and 

mj=Var(mj)=j for the Poisson distribution of mj we obtain: 

  Var(S'c) = Wc jc ( j(1-j)(1-c)(1-1/Z)-1( j + j
2) ) (3.7) 

 Note that this analysis includes two sources of uncertainty in estimates of mc : 

variation of the frequencies of interfering events around their means, and uncertainty of 

the overlap of representations of individual interfering events.  The overlaps between 

different representations are strictly fixed quantities for a given nervous system, so this 

source of variation does not contribute if the nervous system can adapt appropriately.  

Results of calculations are therefore given for both the full variance (equation 3.7) and 

for the expectation value of Varm(S'c) when {Ujc} is fixed, i.e. for variations of {mj} 

alone. This modified result is obtained as follows.  Instead of equation 3.6 we have the 

variance of S'c (equation 3.4) due to variations of {mj} alone : 

 Varm(S'c) =  jc ( (Ujc -jWc)
2 j)     (3.8) 

This depends on the particular (fixed) values of {Ujc}, but we can calculate its 

expectation for randomly selected representations: 

 Varm(S'c) = jc ( (Ujc
2 - 2jWcUjc +j

2Wc
2) j )   

   = Wc jc (j(1-j)(1-c)(1-1/Z) j )   (3.9) 

This expression is similar to equation 3.7, omitting the terms j
2.  Note that if  j<<1 for 

all events that might occur, the difference between the two expressions is negligible. 

This corresponds to a situation where there may be many possible interfering events but 

each one has a low probability of occurrence. The variance does not then depend on 

whether individual overlaps are fixed and known, since the events that occur are 

themselves unpredictable. 

 The relative variance  (equation 1.1) for an estimate m̂ c of a desired count is 

obtained by dividing the results in equations 3.7, 3.9 firstly by the square of the divisor 

in equation 3.5 (Wc (1-c))
2, and secondly by the expectation of the count c.  Square 

brackets are used to denote the terms in equation 3.7 due to overlap variance that are 

omitted in equation 3.9: 

 
ccc

cj jjjj

c
Z

m





)1(

]))[ )(1( (

)1(

1
)ˆ(

2

−

 +−


−
=


   (3.10) 

3.2 The internal support model.  In the projection model the stored variables 

correspond to the usage of individual cells.  The number of such variables is restricted 

to the number of cells Z, and this is a limiting factor in inferring event frequencies.  The 

second model takes advantage of the greater number of synapses connecting cells, 

which in the cerebral cortex can exceed the number of cells by factors of 103 or more.  

The numbers of pairings of pre- and post- synaptic activity can be stored by Hebbian 

mechanisms and yield substantially independent information at separate synapses 

(Gardner-Medwin, 1969). The number of stored variables for a task analogous to 

counting is greatly increased, though at the cost of more complex mechanisms for 

handling the information. 

 The support model (Fig.2) employs excitatory synapses that acquire strengths 

proportional to the number of times the pre- and post- synaptic cells have been active 

together during events experienced in a counting epoch.  Full connectivity (Z2 synapses 

counting all possible pairings of activity) is assumed here in order to establish optimum 
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performance, though the same principles would apply in a degraded manner with sparse 

connectivity.  During test presentation of the counted event Ec the potentiated synapses 

between its active cells act in an auto-associative manner to give excitatory support for 

maintenance of the representation (Gardner-Medwin, 1976, 1989).  The extent of this 

internal excitatory support depends substantially on whether, and how often, Ec has 

been active during the epoch. Interference is caused by overlapping events, just as with 

the projection model though with less impact because the shared fraction of pairings of 

cell activity is, with sparse representations, much less than the shared fraction of active 

cells.  

 Measurement of internally generated excitation requires appropriate external 

handling of the cell population (Fig. 2). In principle the whole histogram of internal 

excitation onto different cells can be established by imposing fluctuating levels of 

diffuse inhibition along with activation of the pattern representing Ec. Our analysis 

requires just the total (or average) excitation onto the cells of Ec (Equation 3.11, below).  

The neural dynamics may introduce practical limitations on the accuracy of such a 

measure in a given period of time, so our results represent an upper bound on 

performance employing this model. 

 We restrict the analysis for simplicity to situations with equal activity ratios for 

all events (j    Wj W) and full connectivity.  Each of Z cells is connected to every 

other cell with Hebbian synapses counting pre- and post- synaptic coincidences, 

including autapses that effectively count individual cell usage. Analysis follows the 

same lines as for the projection model (section 3.1) and only the principal results are 

stated here, with some steps omitted. 

 When Ec is presented as a test stimulus, the total excitation Qc from one cell to 

another within Ec is given, analogous to equation 3.2, by: 

  Qc  =  mcW
2 +  events jc (mj Ujc

2)    (3.11) 

A corrected value Q'c is calculated to allow for average levels of interference: 

  Q'c = Qc  -  M  W (  W  + − )(−)−    (3.12) 

This has expectation equal to mcW
2 (1-) (1+-2/Z)(−)−  so we can obtain an 

unbiased estimate of  mc as follows: 

  m̂ c = Q'c / (W
2 (1-) (1+-2/Z)(−)−)  (3.13) 

The full variance of Q'c  is calculated as for S'c (equation 3.6), taking account of the 

independent Poisson distributions for the numbers of interfering events {mj} and 

hypergeometric distributions for the overlaps {Ujc}:- 

   +=
cj

jjjcc UVarQVar )()()'(
22

     (3.14) 

The algebraic expansion of Var(Ujc
2) is complex, but is simplified with the terminology 

F(r)=(W!/(W-r)!)2(Z-r)!/Z! :- 
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The relative variance for the frequency estimate m̂ c (equation 3.13) can then be written 

as :    
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where  


=

cj

jI   is the expected total number of occurrences of interfering events,   

Icj ji   
=

2
 is the average number of repeats of individual interfering events, 

weighted according to their frequencies, and  is given by: 

 22224
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 depends on both W and Z, but for networks of different size (Z) it has a minimum 

value for an optimal choice of  )2/( ZW   that is only weakly dependent on Z: min = 

3.9 for Z=10, 6.7 for Z=100, 8.7 for Z=1000,  9.9 for Z = 105 . The corresponding 

optimal activity ratio, to give minimum variance and maximum counting efficiency with 

this model, is therefore Z2/1 . 

4  Results for events represented with equal activity ratios 

 Analysis for the support model (3.2) was restricted, for simplicity, to cases 

where all activity ratios are equal.  In this section we also apply this restriction to the 

projection model (3.1) to assist initial interpretation and comparisons.  The relative 

variance for the projection model (equation 3.10) becomes: 

 ]  ) 1 (  [         
)1(

1
)ˆ( i

c

I
c

Z
m 




 +

−
=     (4.1) 

Both this and the corresponding equation 3.16 for the support model can be broken 

down as products of a representation-dependent term ((Z-1)-1 or Z-2 ) and a term that 

depends only on the expected frequencies of the counted and interfering events.  The 

latter term is the same for both models and we call it the interference ratio ( c ) for a 

particular event Ec :  

    ]  ) 1 (  [   
event counted of soccurrence Expected

event counted  theother than events of soccurrence Expected
ic +=       (4.2)  

The interference ratio expresses the extent to which a counted event is likely to be 

swamped by interfering events during the counting epoch.  The principal determinant is 

the ratio of occurrences of interfering and counted events:  cI  . The term in square 

brackets expresses the added uncertainty that can be introduced when interfering events 

occur with multiple repetitions ( i 1), because overlaps that are above and below 

expectation do not then average out so effectively.  As described after equation 3.7, 

stable conditions may allow the nervous system to adapt to compensate for a fixed set of 

overlaps, corresponding to omission of this term; it is in any case negligible if  

interfering events seldom repeat ( 1i ). 

 We can see how c governs the relative variance of the count by substituting in 

equations 4.1, 3.16 for the two models: 
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If  the number of cells (or synapses, for the support model) is much less than the 

interference ratio (Z<<c  or Z2 <<  c ), then  and counting efficiency is 

necessarily very low.  High efficiency (>50%) requires  <1 and networks that are 

correspondingly much larger and very redundant from an information theoretic point of 

view (see Section 6.1).  For a particular number of cells Z, 50% efficiency for an event 

Ec requires that c < Z or  Z2 on the two models.  For the support model the highest 

levels of interference are tolerated with sparse representations giving minimum , with 

 approximately 1/(2Z) and c < 0.1-0.25 Z2  (Section 3.2). 

 If we set a given criterion of efficiency, the maximum interference ratio c 

scales in proportion to Z for the projection model and approximately Z2 for the support 

model.  This is consistent with what one might expect given that the numbers of 

underlying variables used to accumulate counts are respectively Z and Z2 in the two 

models, though the performance per cell in the projection model is up to 10 times 

greater than the performance per synapse in the support model. 

 Fig. 3 illustrates the dependence of efficiency on the number of cells Z, for an 

interference ratio c =100 and =0.1.  When Z exceeds 100 (=c), the efficiency 

exceeds about 50% on the projection model and 93% on the internal support model. The 

advantage of the second model (based on counts of  paired cellular activity) results from 

the fact that the proportion of pairings shared with a typical interfering event (2 ) is 

less than the proportion of shared active cells ().  Efficiency with the projection model 

is independent of , while with the support model it is maximised by choosing  to 

minimise  in equation 4.4 (see above).   

 Simulations were performed using LABVIEW (National Instruments) to 

confirm some of the results in the foregoing analysis.  Fig. 4A,B shows simulation 

results for conditions for which Fig. 3 gives the theoretical expectations (N=101 

equiprobable events, =10, c=100, =0.1, Z=100). The observed efficiencies are in 

agreement (see legend to Fig. 4) and the graphs illustrate the extent of correspondence 

between estimated and true counts.  The horizontal spread on these graphs shows the 

Poisson variation of the true counts about their mean (=10), while the vertical 

deviation from the (dashed) lines of equality shows the added variance due to the 

algorithms. The closeness of the regression lines and the lines of equality (ideal 

performance) shows that the algorithms are unbiassed, while the efficiency is the mean 

squared error divided by  (almost equivalent to the squared correlation coefficient r2).  

Performance is better for the support model (Fig. 4B) than the projection model (Fig. 

4A) and is worse (Fig. 4C) if adaptation to fixed stochastic conditions and overlaps is 

not employed.  The interference ratio (c: equation 4.2) rose for Fig. 4C to c=1089 

with the same number of events handled by the network.  With just 10 events 

(substantially fewer than the number of cells), c was restored to 100 and the efficiency 

to 50% as predicted (Fig. 4D). 

 The theoretical dependence of efficiency on , Z and c for representations 

having uniform  is shown in contour plots in Fig. 5A,B for the projection and support 

models respectively. Contours of equal efficiency (for c =100) are plotted against  

and log(Z/c).  For the projection model (Fig. 5A) the efficiency is independent of  

and depends only on the ratio Z/c (or, more strictly, (Z-1)/c : equation 4.3). This 

graph would not be significantly different for any larger value of c. For the support 

model (Fig. 5B) the efficiency is higher then for the projection model (Fig. 5A) for all 

combinations of Z/c and , especially if  is close to the optimum level of sparseness 

corresponding to the contour minima (  Z2/1 ). Higher interference ratios (c >100) 
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yield even greater efficiencies with a given value of Z/c, while the benefits of sparse 

coding with the support model become more pronounced. 

  Some of the implications of these plots are illustrated here with an example.  

Suppose initially that events are represented by 12 active cells on a population of 30 

(=0.4, Z=30).  With an interference ratio c=100,  the counting efficiency would be 

22% on the projection model and 45% on the support model (points marked a on Figs. 

4A,B). These are modest efficiencies, but changing the representations with the same 

event statistics can improve the efficiency. 

 Representing events with more sparse activity on the same number of cells, as 

might be achieved by simply raising activation thresholds, can improve counting 

efficiency with the support model, though not with the projection model.  

Representation with 4 instead of 12 active cells out of 30 (=0.13) gives efficiencies of 

22%, 63% on the two models (points b).  Though efficiency is improved with the 

support model, note that information may be lost by this encoding since there are only 

about 104 distinct patterns with 4 active cells out of 30, compared with 108 having 12 

active.  A better strategy is to use more cells.  For example, recoding to 5 active cells on 

100 we get 50%, 93% efficiency on the two models (points c), and with 4 active on 300 

we get 75%, 98% (points d).  Each of these encodings retains about 108 distinguishable 

patterns, so incurs no loss of information.  The improvement in counting efficiency is 

achieved at the cost of extra redundancy, with in this example a tenfold increase of the 

number of cells. 

 These levels of efficiency fall short of the 100% efficiency that can be 

achieved if cells are assigned to direct representations for each event of interest.  100 

cells would be enough (without duplication or spare capacity) to provide direct 

representations for 100 events, which is the largest number that can simultaneously have 

interference ratios c=100.  If these 100 cells are used instead for a distributed 

repesentation for these 100 events, then there would be a moderate loss of efficiency to 

50% or 93% on the two models.  The merits of distributed and direct representation are 

considered further in the discussion, but these results suggest that if distributed 

representations are to be used for efficient counting then just as many cells may be 

required as for direct representations.  However, their ability to represent rare and novel 

events unambiguously gives them greater flexibility even in relation to counting. 
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5  Events with different probabilities and different activity ratios 

 The interference ratio c is higher for rare events than for common events, 

since the factor that varies most in proportionate terms in equation 4.2 is the 

denominator c.  If, as assumed in the last section, all event representations have the 

same activity ratio , this means that rare events (with probability less than about 1/Z 

on the projection model) are counted inefficiently because the overlap errors act like a 

source of intrinsic noise.  Though only relatively few events (at most Z or Z2/) can 

simultaneously be counted with  50% efficiency, many of the huge number with 

distinct representations on a network may occur, but too rarely to be countable.  Since 

the relative frequencies of different events are not stable features of an animal's 

environment, however, an infrequent event in one epoch may be counted efficiently in 

different epochs when it occurs more frequently (see Discussion, section 6.4). 

 The poor counting efficiency for rare events may also be boosted if they are 

represented with higher activity ratios than other events.  This requires that particular 

events be identified as worthy of such amplification, through being recognised as 

important, or simply novel. Conversely, lowering  for common or unimportant events 

will be beneficial.  The mechanisms that may vary activity ratios are discussed later 

(Section 6.3). The results are illustrated in Fig. 6 for a simple example using the 

projection model, based on equation 3.10. Calculations are for 7 events with different 

frequencies, firstly with equal activity ratios =0.02 (squares) and secondly with 

activity ratios inversely proportional to frequency (crosses), giving more uniform 

efficiency.  The way in which rare events benefit from higher  is that the high 

probability that individual cells will be active for other interfering events is 

compensated by the pooling of information from more active cells.  Experimentation 

with different power law relationships =k-n  required n in the range 1.0 to 1.3 to give 

approximately uniform efficiency over a range of conditions, with n~1.0 when all 

values of  are <<1 .  Though these results are presented only for the projection model, 

it is clear that qualitatively similar conclusions must apply for the support model. 

6  Discussion   

 Counting events, or determining their frequencies, is necessary for learning and 

for appropriate control of behaviour.  This paper analyses the uncertainty in estimating 

frequencies that arises from sharing active elements between the distributed 

representations of different events.   

To analyse this problem we make substantial simplifying assumptions. We treat 

neurons as binary, with different events represented by randomly related selections of 

active cells. We treat the frequencies of interfering events as independent Poisson 

variables.  And lastly, we employ just two simple models as counting algorithms, with 

numbers of physiological variables equal to the numbers of cells in one case and 

synapses in the other.    

   Sensory information contains a great deal of associative statistical structure that 

is absent from the representations we model. Our results would require modification for 

structured data; but it has long been argued, with considerable supporting evidence 

(Attneave 1954; Barlow 1959, 1989; Watanabe 1960; Atick 1992), that a prime function 

of sensory and perceptual processing is to remove much of the associative statistical 

structure of the raw sensory input by using knowledge of what is predictable.  The 

resulting less structured input would be closer to what we have assumed for our 

analysis. Notice, however, that inference-like processes are involved in unsupervised 
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learning and perceptual coding, and that these will be influenced by errors of counting 

in ways similar to those analysed here. 

 Our aim in the discussion is to identify simple insights and principles that are 

likely to apply to all processes of adaptation and learning that depend on counting.  

There are five sections: the counting problem in general; five principles for reducing the 

interference problem; possible applications of these principles in the brain; relative 

merits of direct and distributed representations; and the problem of handling the huge 

numbers of representable events on a distributed network. 

6.1  The counting problem in distributed representations.  Counting with distributed 

representations nearly always leads to errors, but the loss of efficiency need not be great 

if the representations follow principles outlined in the next section.  We shall see 

that the capacity of a network to count different events (and therefore to learn about 

them) is generally enormously less than its capacity to represent different events. 

The interference ratio c , defined in equation 4.2, gives direct insight into what 

limits counting efficiency.  At its simplest this is the ratio of the total number of 

interfering events (of any type) to the number of events being counted over a defined 

counting epoch.  In our first (projection) model, the number of cells employed in the 

representations (Z) must exceed c if the efficiency is to remain above 50%;  in the 

second (internal support) model fewer cells may suffice for equivalent performance, 

provided the number of synapses (Z2) is at least 4-10 times c (equation 4.4).  

Increasing the number of cells increases efficiency, and with either model, 3 times as 

many cells or synapses are required to achieve 75% efficiency, and 9 times as many for 

90% efficiency. Multiple repetitions of individual interfering events tend to amplify the 

errors due to overlap and raise these requirements further (equation 4.2). 

 In a situation where all events are equally frequent, the interference ratio is just 

the number of different events, and this number is limited, as above, to roughly Z or 

Z2/10 for 50% efficiency.  In the more general case where events have different 

probabilities or activate different numbers of cells, their counting  efficiencies will vary; 

roughly speaking, it is those with the largest products of activity ratio and expected 

frequency (ii ) that have the greatest counting efficiency (section 5), and the number 

that are simultaneously countable is again limited to roughly Z or Z2/10.  Events that are 

rare and sparsely represented cannot be efficiently counted, though if their probability 

rises they may become countable in a different epoch (Section 6.4). 

 The number of simultaneously countable events is dramatically fewer than the 

2z distinct events that can be unambiguously represented on Z cells, and it scales with 

only the first or second power of Z, not exponentially. This parallels long-established 

results on the storage and recall of patterns using synaptic weight changes, where the 

number of retrievable patterns scales between the first and second power of the number 

of cells, with the retrievable information (in bits) ranging from 8% to 69% (with 

extreme assumptions) of the number of synapses involved for different models (e.g. 

Willshaw et al., 1969; Gardner-Medwin, 1976; Hopfield, 1982).  Huge levels of 

redundancy are required in order simultaneously to count or learn about a large number 

(n) of events, compared with the minimum number of cells (log2(n)) on which these 

events could be distinctly represented.  For Z=n, as required either for direct 

representations, or for distributed representations with 50% counting efficiency on our 

projection model, the redundancy defined in this way is 93% for n=100 rising to 99.9% 

for n=104. This problem will re-emerge in various guises in the following sections. 
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6.2 Principles for minimizing counting errors. Our results lead to the following 

principles  for achieving effective counting in distributed representations. 

1. Where many events are to be counted on a net, use highly redundant codes with 

many times the number of cells needed simply to distinguish these events. 

2. Use sparse coding for common and unimportant events, but raise the activity ratio 

for events that can be identified as likely to have useful associations, especially if the 

events are rare.  

3. Minimise overlap between representations, aiming for overlaps less than those of 

the random selections of active cells that we have assumed for analysis. 

These principles arise directly from the analysis of the problem as we have defined it, 

namely to count particular reproducible events on a network in the context of interfering 

events represented on the same network.  Two more principles arise from considering 

how representations can economically permit counting that is effective for learning. 

4. Representations should be organised so that counting can occur in small modules, 

each being a focus of  information likely to be relevant to a particular type of 

association. Large numbers of events would then be grouped for counting into  

subsets (those that have the same representation in a module). 

5. The special subsets that activate individual cells should, where possible, be ones 

that resemble each other in their associations. Overlap between representations 

should ideally mirror similarities in the implications of events in the external world. 

These extra principles can help to avoid the necessity of counting large numbers of 

individual events, making learning depend on the counting of fewer categorisations of 

the environment, and therefore manageable on fewer cells. They can lead to appropriate 

generalisation of learning, and can make learning faster since events within a subset 

obviously occur more often than the individual events. 

6.3  Does the brain follow these principles?  One of the puzzles about the cortical 

representation of sensory information lies in the enormous number of cells that appear 

to be  devoted to this purpose.  A region of 1 deg2 at the human fovea contains about 

10,000 sample points at the Nyquist interval (taking the spatial frequency limit as 50 

cycles/deg), and the number of retinal cones sampling the image is quite close to this 

figure.  But the number of cells in the primary visual cortex devoted to that region is of 

order 108.  Some of the 104 fold increase may be explained by the role of the primary 

visual cortex in distributing information to many destinations, but this cannot account 

for all of it and one must conclude that this cortical representation is grossly redundant.  

The selective advantage that has driven the evolution of cortical redundancy may be the 

necessity for efficient counting and learning, as encapsulated in our first principle. 

In relation to the second principle, evidence for sparse coding was put forward 

by Legéndy & Salcman in 1985, and it was clear from the earliest recordings from 

single neurons in the cerebral cortex that they are hard to excite vigorously and must 

spend most of their time firing at very low rates, with only brief periods of strong 

activity when they happen to be excited by their appropriate trigger feature.  Field 

(1994), Baddeley (1996), Baddeley et al (1997), Olshausen & Field (1997), van Hateren 

& van der Schaaf (1998), Smyth et al (1998), Tolhurst et al (1999), Tadmor & Tolhurst 

(1999) and others have now quantitatively substantiated this impression.   

Counting accuracy for a particular event benefits from the sparse coding of other 

events (reducing their overlap and interference), not from its own sparse coding. 

Sparsity is especially important for common events because of the extent of interference 
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they can cause, and because it can be afforded with little impact on their own counting, 

which is already quick and efficient.  The benefits of sparsity are greatest for counting 

based on Hebbian synaptic modification (as in our support model and a related model 

for direct detection of associations: Gardner-Medwin & Barlow, 1992).  Significant 

events (particularly rare ones) may need higher activity ratios to boost their counting 

efficiency at the expense of others.  We envisage that this might be achieved if  

selective attention to important and novel events favours the representation of more 

features of the environment through lowering of cell thresholds and the acquisition of 

more detailed sensory information.  Adaptation and habituation on the other hand can 

raise thresholds, favouring the required sparse representation of common events.  This 

flexibility of distributed representations is attractive, for in biological circumstances the 

probability and significance of individual events is highly context dependent. 

Overlap reduction, as advocated in our third principle, follows to some extent 

from any mechanism achieving sparse coding.  But there are also indications that well-

known phenomena like the waterfall illusion and other after-effects of pattern 

adaptation involve a "repulsion" mechanism (Barlow 1990) that would directly reduce 

overlap between representations following persistent co-activation of their elements 

(Barlow & Földiák 1989; Földiák 1990; Carandini et al 1997).  Similar after-effects 

offer possible mechanisms for improving the long-term recall of overlapping 

representations of events, through processing during sleep (Gardner-Medwin, 1989). 

The fourth principle fits rather well with the organisation of the cortex in 

modules at several scales.  The great majority of interactions between cortical cells are 

with other cells that are close by (Braitenberg and Schüz, 1991), so the smallest module 

might be a mini-column or column, such as are found in sensory areas (Edelman & 

Mountcastle, 1978).  These would be the focus of the statistical structure comprising 

local correlations. Each pyramidal cell receives many (predominantly local) inputs that 

effectively define its module, as the connections to the accumulator cell define the 

network in our projection model (Fig.1).  The outputs then go to other areas of 

specialisation, for example area MT as a focus for the spatio-temporal correlations of 

motion information. Optimal organisation of a large system must involve mixing 

diverse forms of information to find new types of association (Barlow, 1981), as well as 

concentrating information that has revealed associations in the past, and this seems 

broadly consistent with cortical structure. 

 The trigger features of  cortical neurons often make sense in terms of 

behaviourally important objects in the world surrounding an animal, suggesting that the 

brain exploits the advantages expressed in the fifth principle. For instance, complex 

cells in V1 respond to the same spatio-temporal pattern at several places in the receptive 

field, effectively generalising for position.  The same is true for motion selectivity in 

MT, and perhaps for cells that respond to faces or hands in in infero-temporal cortex 

(Gross et al, 1985).  Such direct representation of significant features (Barlow 1972, 

1995) assists in making distributed representations workable.  

6.4 The relative merits of counting with direct and distributed representations.   

Maximum counting efficiencies for events represented within a network or counting 

module would be achieved with direct representations, but this requires pre-

specification of the patterns to be detected and counted. In contrast, a distributed 

network has the flexibility to represent and count, without modification, events that 

have not been foreseen. Our results show that provided these unforeseen representations 

have no more than chance levels of overlap with those of other events (as in our 

models),  good performance can be achieved on a network of  Z cells with almost any 
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limited selection (numbering of order Z or Z2/10) of frequent events out of the very 

large number (of order 2Z) that can be represented.  Infrequent but important events can 

be included within this selection by raising their activity ratios. 

The potential for unambiguous representation of a huge number of rare and 

unforeseen events means that distributed networks can be very versatile for counting 

purposes in a non-stationary environment.  Learning often takes place in short epochs 

during which some type of experience is frequent - for example learning on a summer 

walk that nettles sting, or enlarging one's vocabulary in a French lesson.  A system in 

which there is gradual decay of interference from previous epochs, reasonably matched 

in its time-course to the duration of a significant counting epoch, can in principle allow 

efficient counting of any transiently frequent event that is represented by any one of the 

patterns that the network can generate.  This can assist in learning associations from 

short periods of intense and novel experience, though of course there may be hazards in 

generalising such associations to other periods. 

 Once direct representations are set up for significant events, many such events 

might in principle be simultaneously detected and counted, through parallel processing. 

This cannot occur where events have overlapping distributed representations: one 

cannot have two different patterns simultaneously on the same set of cells.  Thus there is 

a trade off between the flexibility of distributed representations in handling unforeseen 

events, and the constraint that they can only handle them one at a time.  Since events of 

importance at the sensory periphery are not generally mutually exclusive, it seems 

necessary to use distributed representations in a serial rather than a parallel fashion by 

attending to one aspect of the environment at a time.  This is a significant cost to be paid 

for the versatility of distributed representations, but it resembles in some degree the way 

we handle novel and complex experience. 

6.5 Managing the combinatorial problem.  Huge numbers of high level feature 

detectors are required by some models of sensory coding based on direct representations 

– the the so called grandmother-cell or yellow-volkswagen problem (Harris, 1980; 

Lettvin, 1995).  The ability of distributed representations to represent  a vastly greater 

number of events than is possible with direct representation is often thought to permit a 

way round this problem, but our results show that economy is not so simply achieved. 

For counting and learning, distributed representations have no advantage (or with our 

support model, rather limited advantage) over direct representations, because the 

maximum number that can be efficiently counted scales only with Z or Z2 rather than 

2Z. Where distributed networks are used for representing larger numbers of significant 

events, counting on subsets of events (our fourth principle) may permit an economy of 

cells.  This economy relies, however, on it being possible to separate off into a relatively 

small module the information that is needed to establish one type of association about 

an event, while other modules receive information relevant to other associations. A 

combination of economical representation of events on distributed networks with the 

more extravagant use of cells required for counting may depend, for success, on a 

property of the represented events, namely that their associations can be learned and 

generalised from a separable fraction of the information they convey. 

The combinatorial problem arises in an acute form at a sensory surface such as 

the retina, since impossibly large numbers of patterns can (and do) occur on small 

numbers of cells. Receptors that are not grouped close together experience states that 

are largely independent in a detailed scene, and for just 50 receptors many of the 1015 

distinct events may be almost equally likely (even considering just 2 states per cell).  

This means it is out of the question to count peripheral sensory events separately, and it 
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would probably be impossible to identify even the correlations due to image structure 

without the topographic organisation that allows this to be done initially on small sets of 

cells.  The considerable (10,000-fold) expansion in cell numbers from retina to cortex 

(Section 6.3) allows for the counting of many subsets of events, but it would not go far 

towards efficient counting of useful events without using a hierarchy of small modules 

each analysing different forms of structure to be found in the image. 

6.6 Conclusion  Our analysis suggests ways in which distributed and direct 

representations should be related, and it has implications for understanding many 

features of the cortex.  These include the expansion of cell numbers involved in cortical 

sensory representations, the extensive intra-cortical connectivity and its modular 

organisation, the tendency for trigger features to correspond to behaviourally 

meaningful subsets of events,  phenomena of habituation to common events, alerting to 

rare events and attention to one thing at a time.  Distributed representation is 

unavoidable in the brain but may cause serious errors in counting and inefficiency in 

learning unless guided by the principles that we have identified. 
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Fig. 1.  Outline of the projection model.  Sets of binary cells (for example, those marked 

by ellipses) are activated when there are repeatable sensory or neural events.  The 

frequency of occurrence of a particular event Ec (with its active cells black) is estimated 

from activation of an accumulator cell X when Ec is re-presented. Synaptic weights onto 

X are proportional to the usage of individual cells. Additional circuitry (not shown) 

counts the number of active cells Wc and estimates both the average number of active 

cells and the total number of events (M) during the counting period. 

 

 
Fig. 2.  Outline of the internal support model. Internal excitatory synapses within the 

network measure the frequency of co-occurrences of activity in pairs of cells by a 

Hebbian mechanism.  On re-presentation of the event Ec to be counted (indicated by the 

hatched active cells), the total of the internal activation stabilising the active pattern is 

estimated by testing the effect of a diffuse inhibitory influence on the number of active 

cells.   
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Fig. 3. Counting efficiency as a function of the number of cells (Z) used for distributed 

representations assumed to have the same activity ratio () for all events. Calculations 

are for c=100, i.e. 100 times more total occurrences of interfering events than of the 

counted event. The full lines are for =0.1 with the projection model (heavy line) and 

support model (thin line) and for =1/()  for maximum efficiency using the support 

model (dotted line)  Note that if all events are equiprobable,  implying that there is a 

total of just 101 different event types occurring, then 7 cells would suffice to represent 

them distinctly if there were no need for counting.  High counting efficiency requires 

ten times this number, and the corresponding ratio would be higher for larger numbers 

of events. 
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Fig. 4. Estimated counts plotted against actual counts, obtained by simulation with the 

projection model (A,C,D) and the support model (B).  The network had 100 cells 

(Z=100) with 10 active during events (W=10, =0.1), selected at random for each of 

101 different events for A,B,C and 10 for D. The numbers of occurrences of each event 

were  independent Poisson variables with mean =10.  New sets of representations and 

counts were generated to calculate each point. Estimated counts used the algorithms 

either with (A,B) or without (C,D) adaptation to the actual overlapping of 

representations of interfering events with the counted event.  Interference ratios (c: 

equation 4.2) were therefore 100 for A,B,D and 1089 for C. Perfect estimates would lie 

on the line of equality (dashed). The full line shows the linear regression of estimates on 

actual counts.  Efficiency e is shown, calculated as the mean squared error for the 100 

points, divided by ; this was not significantly different (in 5 repeats of such 

simulations) from efficiencies expected from the theoretical analysis (equations 4.3, 4.4, 

1.2) which were A:50%, B:93.3%, C:8.3%, D:50%.  
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Fig. 5. Plots showing counting efficiency (indicated on contours) as a function of 

activity ratio  on the horizontal axis (assumed equal for all events), and log10 of the 

factor by which the number of cells Z exceeds the interference ratio c (vertical axis). 

Plots are for the projection model (A) and the support model (B), calculated for c=100, 

though plot (A) is essentially identical for all larger values of c, apart from the cut off 

at low  corresponding to the requirement W1.  Points a-d are referred to in the text. 
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Fig. 6. The effect of non-uniform event frequencies on counting efficiency. The number 

of active cells (A) and the counting efficiency (B) are shown for 7 events with widely 

differing average counts during a counting epoch (horizontal axes). Two different 

assumptions are made: events are represented each with the same number of active cells 

(), or with a number inversely proportional to the event probability ().  In each case 

the mean value of  (weighted with probabilities of occurrence) is 0.02.  Calculations 

are for the projection model with Z=400 cells and full variances (equation 3.10). Rare 

events have lower counting efficiency when all representations have equal activity 

ratios, but approximately uniform efficiency is achieved () when more active cells are 

used to represent rare events. 
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Definitions 

The network is a set of Z binary cells.  An event, relative to the network, is any 

stimulation that causes a specific activity vector (pattern of W active and Z-W inactive 

cells). This vector is the representation of the event.  Repeated occurence of a 

representation implies repetition of the same event, even if the external stimulus is 

different. 

A direct representation of an event contains at least one active cell that is active in no 

other event. The cell/s that directly represent an event in this way have a 1:1 relation 

between their activity and occurrences of the event. 

All other representations are distributed representations: each active cell is active also in 

other events, and identification of an event requires interaction with more than one cell. 

Compact distributed representations employ relatively few cells to distinguish a given 

number (N) of events, close to the minimum Z=log2(N). 

The activity ratio of a representation is the fraction of cells ( =W /Z) that are active in 

it.  A sparse representation has a low activity ratio.  Direct representations are not 

necessarily sparse, though they must have extreme sparseness (W=1) to represent the 

greatest possible number of distinct events (Z) on a network.  

Overlap between 2 representations is the number of shared active cells (U). 

Counting of an event means estimating how many times it has occurred during a 

counting epoch.  Counting accuracy is limited by overlap and by the interference ratio 

(equation 4.2), which in simple cases is the total number of occurrences of interfering 

events (i.e. different from the counted event) divided by occurrences of the counted 

event.  

Box 1. Definitions. 

 

Principal symbols employed 

Z  number of binary cells in the network 

Pi  A binary pattern (or vector) of activity on the network  

Ei  An event causing the pattern Pi (its representation) 

N  the number of such distinct events that may occur with finite probability 

during a counting epoch 

Wi  number of active cells in the representation of Ei 

i =Wi /Z activity ratio for the representation of Ei  

Uij  overlap (i.e. number of shared active cells) between Pi, Pj  

i  expectation of the number of occurrences of Ei in a counting epoch 

mi  actual number of occurrences of Ei  

=

i

imM  total number of event occurrences within the counting epoch 

V  variance introduced in estimating a count m 

 = V/    relative variance, i.e. the variance of the estimate of m relative to the 

intrinsic Poisson variance of m (=) 

e=  /(+V) efficiency in estimating  given the variance V in counting a sample 

c    Interference ratio while counting Ec  (equation 4.2) 

<y> The statistical expectation of any variable y 

{yi} The set of yi  for all possible values of i 

ŷ  An estimate of y 

Box 2.  Principal symbols employed. 


