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Abstract
This chapter introduces statistical tools to extract geolog-
ically meaningful information from fission-track
(FT) data using both the external detector and
LA-ICP-MS methods. The spontaneous fission of 238U
is a Poisson process resulting in large single-grain age
uncertainties. To overcome this imprecision, it is nearly
always necessary to analyse multiple grains per sample.
The degree to which the analytical uncertainties can
explain the observed scatter of the single-grain data can
be visually assessed on a radial plot and objectively
quantified by a chi-square test. For sufficiently low values
of the chi-square statistic (or sufficiently high p values),
the pooled age of all the grains gives a suitable
description of the underlying ‘true’ age population.
Samples may fail the chi-square test for several reasons.
A first possibility is that the true age population does not
consist of a single discrete age component, but is
characterised by a continuous range of ages. In this case,
a ‘random effects’ model can constrain the true age
distribution using two parameters: the ‘central age’ and
the ‘(over)dispersion’. A second reason why FT data sets
might fail the chi-square test is if they are underlain by
multimodal age distributions. Such distributions may
consist of discrete age components, continuous age
distributions, or a combination of the two. Formalised
statistical tests such as chi-square can be useful in
preventing overfitting of relatively small data sets.
However, they should be used with caution when applied
to large data sets (including length measurements) which
generate sufficient statistical ‘power’ to reject any simple
yet geologically plausible hypothesis.

6.1 Introduction

238U is the heaviest naturally occurring nuclide in the solar
system. Like all nuclides heavier than 208Pb, it is physically
unstable and undergoes radioactive decay to smaller, more
stable nuclides. 99.9998% of the 238U nuclei shed weight by
disintegrating into eight He-nuclei (a-particles) and a 206Pb
atom, forming the basis of the U–Pb and (U–Th)/He clocks.
The remaining 0.0002% of the 238U undergoes spontaneous
fission, forming the basis of FT geochronology (Price and
Walker 1963; Fleischer et al. 1965). Because spontaneous
fission of 238U is such a rare event, the surface density of
fission tracks (in counts per unit area) is 10–11 orders of
magnitude lower than the atomic abundances of 238U and
4He, respectively. So whereas the U–Pb and (U–Th)/He
methods are based on mass spectrometric analyses of bil-
lions of Pb and He atoms, FT ages are commonly based on
manual counts of at most a few dozen features. Due to these
low numbers, the FT method is a low precision technique.
Whereas the analytical uncertainty of U–Pb and (U–Th)/He
ages is expressed in % or ‰-units, it is not uncommon for
single-grain FT age uncertainties to exceed 10% or even
100% (Sect. 6.2). Early attempts to quantify these uncer-
tainties (McGee and Johnson 1979; Johnson et al. 1979)
were criticised by Green (1981a, b), who subsequently
engaged in a fruitful collaboration with two statisticians—
Geoff Laslett and Rex Galbraith—to eventually solve the
problem. Thanks to the combined efforts of the latter two
people, it is fair to say that the statistics of the FT method are
better developed than those of any other geochronological
technique. Several statistical tools that were originally
developed for the FT method have subsequently found
applications in other dating methods. Examples of this are
the radial plot (Sect. 6.3), which is routinely used in lumi-
nescence dating (Galbraith 2010b), random effects models
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(Sect. 6.4.2), which have been generalised to (U–Th)/He
(Vermeesch 2010) and U–Pb dating (Rioux et al. 2012), and
finite mixture models (Sect. 6.5), which were adapted for
detrital U–Pb geochronology (Sambridge and Compston 1994).

The statistical analysis of fission tracks is a rich and
diverse field of research, and this short chapter cannot pos-
sibly cover all its intricacies. Numerate readers are referred
to the book by Galbraith (2005), which provides a com-
prehensive, detailed and self-contained review of the subject,
from which the present chapter heavily borrows. The chapter
comprises five sections, which address statistical issues of
progressively higher order. Section 6.2 introduces the FT
age equation using the external detector method (EDM),
which offers the most straightforward and elegant way to
estimate single-grain age uncertainties, even in grains
without spontaneous fission tracks. Section 6.3 compares
and contrasts different ways to visually represent multi-grain
assemblages of FT data, including kernel density estimates,
cumulative age distributions and radial plots. Section 6.4
reviews the various ways to estimate the ‘average’ age of
such multi-grain assemblages, including the arithmetic mean
age, the pooled age and the central age. This section will also
introduce a chi-square test for age homogeneity, which is
used to assess the extent to which the scatter of the
single-grain ages exceeds the formal analytical uncertainties
obtained from Sect. 6.2. This leads to the concept of
‘overdispersion’ (Sect. 6.4.2) and more complex distribu-
tions consisting of one or several continuous and/or discrete
age components. Section 6.5 discusses three classes of
mixed effects models to resolve discrete mixtures, continu-
ous mixtures and minimum ages, respectively. It will show
that these models obey the classic bias–variance trade-off,
which will lead to a cautionary note regarding the use of
formalised statistical hypothesis tests for FT interpretation.
Finally, Sect. 6.6 will give the briefest of introductions to
some statistical aspects of thermal history modelling, a more
comprehensive discussion of which is provided in Chap. 3,
(Ketcham 2018). In recent years, several fission-track labo-
ratories around the world have abandoned the elegance and
robustness of the EDM for the convenience of
ICP-MS-based measurements. Unfortunately, the statistics
of the latter is less straightforward and less well developed
than that of the EDM. Section 6.7 presents an attempt to
address this problem.

6.2 The Age Equation

The fundamental FT age equation is given by:

t ¼ 1
kD

ln 1þ kD
kf

qs
½238U�R

 !
ð6:1Þ

where kD is the total decay constant of 238U
(1.55125 � 10−10 year−1; Jaffey et al. 1971), kf is the fission
decay constant (7.9–8.7 � 10−17 year−1; Holden and Hoff-
man 2000)1, qs is the density (tracks per unit area) of the
spontaneous fission tracks on an internal crystal surface,

½238U� is the current number of 238U atoms per unit volume,
and R is etchable range of the fission tracks, which is half the

equivalent isotropic FT length. ½238U� can be determined by
irradiating the (etched) sample with thermal neutrons in a
reactor. This irradiation induces synthetic fission of 235U in
the mineral, producing tracks that can be monitored by
attaching a mica detector to the polished mineral surface and
etching this monitor subsequent to irradiation. Using
this external detector method (EDM), Eq. 6.1 can be
rewritten as:

t ¼ 1
kD

ln 1þ 1
2
kDfqd

qs
qi

� �
ð6:2Þ

where f is a calibration factor (Hurford and Green 1983), qi
is the surface density of the induced fission tracks in the
mica detector and qd is the surface density of the induced
fission tracks in a dosimeter glass of known (and constant)
U-concentration. The latter value is needed to ‘recycle’ the
calibration constant from one irradiation batch to the next, as
neutron fluences might vary through time, or within a sample
stack. qs, qi and qd are unknown but can be estimated by
counting the number of tracks N* over a given area A*

(where ‘*’ is either ‘s’ for ‘spontaneous’, ‘i’ for ‘induced’ or
‘d’ for ‘dosimeter’):

q̂s ¼
Ns

As
; q̂i ¼

Ni

Ai
and q̂d ¼

Nd

Ad
ð6:3Þ

It is customary for the spontaneous and induced fission
tracks to be counted over the same area (i.e. As ¼ Ai), either
using an automated microscope stage (Smith and
Leigh-Jones 1985; Dumitru 1993) or by simply reposition-
ing the mica detector on the grain mount after etching
(Jonckheere et al. 2003). Using these measurements, the
estimated FT age (̂t) is given by

t̂ ¼ 1
kD

ln 1þ 1
2
kDf̂q̂d

Ns

Ni

� �
ð6:4Þ

where f̂ is obtained by applying Eq. 6.4 to an age standard
and rearranging. Equations 6.2 and 6.4 assume that the ratio
of the etchable range (R) between the grain and the mica
detector is the same for the sample and the standard.

1The uncertainty associated with the fission decay constant vanishes
when kf is folded into the f-calibration constant. This is one of the
main reasons why the f-method was developed (see Chap. 1, Hurford
2018).
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Violation of this assumption leads to apparent FT ages of
unclear geological significance. This is an important caveat
as samples with shortened tracks are very common. See
Sect. 6.6 and Chap. 3 (Ketcham 2018) for further details on
how to deal with this situation. The standard error s½̂t� of the
single-grain age estimate is given by standard first-order
Taylor expansion:

s½̂t�2 � @ t̂

@f̂

� �2

s½f̂�2 þ @ t̂

@Ns

� �2

s½Ns�2þ
@ t̂

@Ni

� �2

s½Ni�2 þ
@ t̂

@Nd

� �2

s½Nd�2

ð6:5Þ

where it is important to point out that all covariance terms

are zero because f̂, Ns, Ni and Nd are independent variables.
2

To simplify the calculation of the partial derivatives, we note
that lnð1þ xÞ � x if x � 1 so that, for reasonably low Ns=Ni

values, Eq. 6.4 reduces to

t̂ � 1
2
f̂q̂d

Ns

Ni
ð6:6Þ

Using this linear approximation, it is easy to show that
Eq. 6.5 becomes:

s½̂t�
t̂

� �2

� s½f̂�
f̂

 !2

þ s½Ns�
Ns

� �2

þ s½Ni�
Ni

� �2

þ s½Nd�
Nd

� �2

ð6:7Þ

The standard error of the calibration constant f̂ is obtained
by repeated measurements of the age standard and will not be
discussed further. The standard errors of Ns, Ni and Nd are
governed by the Poisson distribution, whose mean equals its
variance. This crucial property can be illustrated with a
physical example inwhich amica print attached to a dosimeter
glass is subdivided into a number of equally sized squares
(Fig. 6.1, left). Counting the number of induced fission tracks
Nd in each square yields a skewed frequency distribution
whose mean indeed equals its variance (Fig. 6.1, right).

Applying this fact to Eq. 6.7, we can replace s½Ns�2 with Ns,

s½Ni�2 with Ni and s½Nd�2 with Nd to obtain the following
expression for the standard error of the estimated FT age:

s½̂t� � t̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s½f̂�
f̂

 !2

þ 1
Ns

þ 1
Ni

þ 1
Nd

vuut ð6:8Þ

Note that this equation breaks down if Ns ¼ 0. There are
two solutions to this problem. The easiest of these is to
replace Ns and Ni with Ns þ 1=2 and Ni þ 1=2, respectively
(Galbraith 2005, p. 80). A second (and preferred) approach
is to calculate exact (and asymmetric) confidence intervals.
See Galbraith (2005, p. 50) for further details about this
procedure.

6.3 Fission-Track Plots

The single-grain uncertainties given by Eq. 6.8 tend to be
very large. For example, a grain containing just four spon-
taneous fission tracks (i.e. Ns = 4) is associated with an
analytical uncertainty of

ffiffiffi
4

p
=4 ¼ 50% even ignoring the

analytical uncertainty associated with the f-calibration con-
stant, the dosimeter glass, or the induced FT count. The
single-grain age precision of the FT method, then, is orders
of magnitude lower than that of other established
geochronometers such as 40Ar/39Ar or 206Pb/238U, which
achieve percent or permil level uncertainties. To overcome
this limitation and ‘beat down the noise’, it is important that
multiple grains are analysed from a sample and averaged
using methods described in Sect. 6.4. Multi-grain assem-
blages of FT data are also very useful for sedimentary
provenance analysis and form the basis of a new field of
research called ‘detrital thermochronology’ (Bernet 2018;
Carter 2018). Irrespective of the application, it is useful for
any multi-grain FT data set to first be assessed visually. This
section will introduce three graphical devices to do this:
cumulative age distributions, (kernel) density estimates and
radial plots. To illustrate these graphical devices as well as
the different summary statistics of Sect. 6.4, consider the
four different geological scenarios shown in Fig. 6.2:

I. A rapidly cooled volcanic rock extruded at 15 Ma.
II. A slowly cooled intrusive rock exhibiting a range of

Cl/F ratios resulting in a 150 Ma ± 20% range of
apparent FT ages.

III. A detrital sample collected from a river draining two
volcanic layers extruded at 15 and 75 Ma, respectively.

IV. A detrital sample collected from a river draining
lithologies I and II.

6.3.1 The Cumulative Age Distribution (CAD)

The cumulative distribution function cdf(x) describes the
fraction of the detrital age population whose age is less than
or equal to x:

cdfðxÞ ¼ Pðt� xÞ ð6:9Þ

2Ns, Ni are independent within a single grain, but of course not
between different grains of the same sample, as the spontaneous and
induced track counts both depend on the U-concentration, which
tends to vary significantly from grain to grain (McGee and Johnson
1979; Johnson et al. 1979; Green 1981b; Galbraith 1981; Carter
1990).
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Under Scenario I, the cdf consists of a simple step
function, indicating that 0% of the grains are younger, and
100% are older than the extrusive age (Fig. 6.2, I-a). Under
Scenario II, the cdf is spread out over a wider range, so that
90% of the ages are between 90 and 210 Ma (Fig. 6.2, II-a).
Under Scenario III (Fig. 6.2, III-a), the cdf consists of two
discrete steps at 15 and 75 Ma, the relative heights of which
depend on the hypsometry of the river catchment and the
spatial distribution of erosion (Vermeesch 2007). Finally,
under Scenario IV, the cdf consists of a discrete step from 0
to 50% at 15 Ma, followed by a sigmoidal rise to 100% at
75 Ma (Fig. 6.2, IV-a).

In reality, the cdfs of Scenarios I–IV are, of course,
unknown and must be estimated from sample data, by means
of an empirical cumulative distribution function (ecdf), which
may be referred to as a cumulative age distribution (CAD) in a
geochronological context (Vermeesch 2007). A CAD is
simply a step function in which the single-grain age estimates
(̂tj, for j = 1 ! n) are plotted against their rank order:

CADðxÞ ¼
Xn

j¼1

1ð̂tj � xÞ=n ð6:10Þ

where 1(TRUE) = 1 and 1(FALSE) = 0. In contrast with the
true cdfs, the measured CADs are invariably smoother, as the
analytical uncertainties spread the dates out over a greater
range. Because the uncertainties of FT ages are so large, the
difference between the measured CADs and the true cdfs is
very significant. Sections 6.4 and 6.5 of this chapter present
several algorithms to extract the key parameters of the true

age distribution (i.e. the cdfs) from the measurement distri-
bution (CADs).

6.3.2 (Kernel) Density Estimates (KDEs)

A probability density function (pdf) is defined as the first
derivative of the cdf:

pdfðxÞ ¼ d½cdfðyÞ�
dy

����
x

, cdfðxÞ ¼
Zx

�1

pdfðyÞdy ð6:11Þ

Under Scenario I, the pdf is a discrete peak of zero width
and infinite height, marking the timing of the volcanic
eruption (Fig. 6.2, I-b). In contrast, under Scenario II, the
pdf is a smooth (a)symmetric bell curve reflecting the spread
in closing temperatures and, hence, ages, associated with the
range of Cl/F-ratios present in apatites of this slowly cooled
pluton (Fig. 6.2, II-b). Under Scenario III, the pdf consists of
two discrete spikes corresponding to the two volcanic events
(Fig. 6.2, III-b). Finally, under Scenario IV, the pdf effec-
tively combines those of Scenarios I and II (Fig. 6.2, IV-b).
The pdfs, like the cdfs discussed before, are unknown but
can be estimated from sample data.

There are several ways to do this. Arguably the simplest of
these is the histogram, in which the observations are grouped
into a number of discrete bins. Kernel density estimates
(KDEs) are a continuous alternative to the histogram, which
are constructed by arranging the measurements from young

Fig. 6.1 Left: induced fission tracks recorded in a mica detector
attached to a dosimeter glass. Numbers indicate the number of tracks
counted in 48 150 � 150 lm-sized areas. Colours indicate single
(yellow), double (blue) and triple (red) etch pits. Dosimeter glasses
exhibit a uniform U-concentration so that the observed variation in the

number of tracks is only due to Poisson statistics. Fission tracks were
counted with FastTracks image recognition software (see Chap. 4,
Gleadow 2018). Right: the frequency distribution of the FT counts,
which has a mean of 3.7 and a variance of 3.5 counts per graticule,
consistent with a Poisson distribution
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to old along the time axis, adding a Gaussian ‘bell curve’ (or
any other symmetric shape) on top of them and then summing
those to create one continuous curve (Silverman 1986; Ver-
meesch 2012). The standard deviation of the Gaussian ‘ker-
nel’ is called the ‘bandwidth’ of the estimator and may be
chosen through a host of different approaches, a proper dis-
cussion of which falls outside the scope of this review
(Abramson 1982; Silverman 1986; Botev et al. 2010; Ver-
meesch 2012). An important feature of all these algorithms is
that the bandwidth monotonically decreases with increasing
sample size. Please note that the so-called probability density
plot (PDP, not to be confused with pdf!), in which the ana-
lytical uncertainty (or 0.6 times the analytical uncertainty,
Brandon 1996) is used as a ‘bandwidth’ does not possess this
feature. Therefore, PDPs are not proper density estimates,
and consequently, their use is not recommended (Galbraith
1998; Vermeesch 2012). Like the CAD, which is a smooth
version of the cdf, KDEs (and histograms) are smooth ver-
sions of the pdf. But whereas the CAD has only been
smoothed once, histograms and KDEs are smoothed twice,
once by the analytical uncertainties, and once by the width of
the bins or kernels. Because the analytical uncertainties of FT
data are so big, the components of FT age distributions are
often spread out very widely, resulting in poorly resolved
KDEs (blue curves in Figs. 6.2b).

6.3.3 Radial Plots

Single-grain fission-track age uncertainties are not only
large, but generally also variable (‘heteroscedastic’). Due to
a combination of Poisson sampling statistics and variable
U-concentrations, the analytical uncertainties propagated
using Eq. 6.8 may vary over an order of magnitude within
the same sample. Neither CADs nor KDEs (let alone PDPs)
are able to capture this uncertainty. The radial plot is a
graphical device that was specifically designed to address
this issue (Galbraith 1988, 1990; Dunkl 2002; Vermeesch
2009). Given j = 1 … n numerical values zj and their
analytical uncertainties rj, the radial plot is a bivariate
ðxj; yjÞ scatterplot setting out a standardised estimate
ðyj ¼ ½zj � z0�=rjÞ, where z0 is some reference value) against
the single-grain precision (xj ¼ 1=rj). For FT data using the
EDM,3 it is convenient to use the following definitions for zj
and rj (Galbraith 1990):

zj ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsj þ 3=8

Nsj þNij þ 3=4

s
ð6:12Þ

and

rj ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsj þNij þ 1=2

p ð6:13Þ

Precise measurements plot towards the right-hand side of
the radial plot while imprecise measurements plot closer to the
origin. A single-grain age may be read off by extrapolating a
line from the origin (0,0) of the radial plot through the sample
point (xj, yj) to a radial scale plotted at some convenient dis-
tance. Similarly, the analytical uncertainty can be obtained by
extrapolating lines from the origin to the radial scale through
the top and the bottom of an imaginary 2 r-error bar added to
each sample point. Finally, drawing two parallel lines at 2r
distances from either side of the origin allow the analyst to
visually assess whether all the single-grain ages within a
sample agree within the analytical uncertainties.

Revisiting Scenario I of Fig. 6.2, the data points plot within
a 2r band on the radial plot, consistent with a single discrete
age component (Fig. 6.2, I-c). Under Scenario II, the data are
more dispersed and scatter beyond the 2r band, reflecting the
dispersion of the underlying geological ages (Fig. 6.2, II-c).
Under Scenario III, the data are randomly scattered along two
linear trajectories which represent the two volcanic events
(Fig. 6.2, III-c). Finally, Scenario IV combines the radial
patterns of Scenarios I and II, as expected (Fig. 6.2, IV-c). Of
all the summary plots in Fig. 6.2, the radial plot contains the
largest amount of quantitative information about the age
measurements and about the underlying geological ages.
Using the graphical design principles of Tufte (1983), the
radial plot exhibits a far higher ‘ink-to-information ratio’ than
the CAD, KDE or histogram.Wewill therefore use it as a basis
from which to introduce the summary statistics discussed in
the next section of this chapter.

6.4 Summary Statistics

The previous sections have shown that the presence of large
and highly variable analytical uncertainties can easily
obscure the underlying age distribution and all the geologi-
cally meaningful information encoded by it. The next two
sections will introduce some useful summary statistics which
can be used to disentangle that geologically meaningful
information from the random noise produced by the Poisson
counting uncertainties.

6.4.1 The Pooled Age

Let us begin with the single discrete age component in
Scenario I of the previous section. Several approaches can be

3The remainder of this and the next three sections of this chapter will
focus on the EDM. Alternative equations for ICP-MS-based
fission-track data are provided in Sect. 6.7.
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used to estimate this age from a set of noisy sample data.
Panels I-a, I-b and I-c of Fig. 6.2 show that the single-grain
age estimates follow an asymmetric probability distribution
(symmetric when plotted on a logarithmic scale) which is
skewed towards older ages. This is a consequence of the fact
that, if Nsj and Nij are sampled from two independent
Poisson distributions with expected values qs and qi,
respectively, then the conditional probability of Nsj on
Nsj þNij follows a binomial distribution:

PðNsjjNsj þNijÞ ¼ Nsj þNij

Nsj

� �
hNsjð1� hÞNij � fjðhÞ

ð6:14Þ

where h � qs=ðqs þ qiÞ and
a
b

� �
is the binomial coeffi-

cient. Given a sample of n sets of FT counts, this leads to the
following (log-)likelihood function for h:

LðhÞ ¼
Xn

j¼1

ln fjðhÞ ð6:15Þ

where fjðhÞ is the probability mass function for the jth grain
defined in Eq. 6.14. As a first approach to obtaining an
‘average’ age, one might be tempted to simply take the
arithmetic mean of the single-grain age estimates. Unfortu-
nately, the arithmetic mean does not cope well with outliers
and asymmetric distributions and therefore yields poor
estimates of the geological age. The geometric mean fares
much better. It is closely related to the ‘central age’, which is
discussed in Sect. 6.4.2. The ‘pooled age’ is obtained by
maximising Eq. 6.15 to obtain a ‘maximum likelihood’

estimate (ĥ), and substituting eĥ for Ns=Ni in Eq. 6.2, where
Ns ¼

Pn
j¼1 Nsj and Ni ¼

Pn
j¼1 Nij. This is equivalent to

taking the sum of all the spontaneous and induced tracks,
respectively, and treating these as if they belonged to a
single crystal. This procedure yields the correct age if the
true ages are indeed derived from a single discrete age
component (i.e. Scenario I). However, if there is any dis-
persion of the true FT ages, as is the case under Scenario II,
then the pooled age will be biased towards values that are far
too old. Whether this is the case or not can be verified using
a formalised statistical hypothesis test. Galbraith (2005,
p. 46) shows that in the absence of excess dispersion, the
following statistic:

c2 ¼ 1
NsNi

Xn

j¼1

ðNsjNi � NijNsÞ2
Nsj þNij

ð6:16Þ

follows a chi-square distribution with n − 1 degrees of
freedom. The probability of observing a value greater than c2

under this distribution is called the p value and can be used
to formally test the assumption of zero dispersion.
A 0.05 cut-off is often used as a criterion to abandon the
single-grain age model of Scenario I and, hence, the pooled
age.

6.4.2 Central Ages and ‘Overdispersion’

A more meaningful age estimate for Scenario II is obtained
using a two-parameter ‘random effects’ model, in which the
true qs=qi-ratio is assumed to follow a log-normal distribu-
tion with location parameter µ and scale parameter r (Gal-
braith and Laslett 1993):

lnðqs=qiÞ	Nðl; r2Þ ð6:17Þ

This model gives rise to a two-parameter log-likelihood
function:

Lðl;r2Þ ¼
Xn

j¼1

ln fjðl; r2Þ ð6:18Þ

where the probability mass function fjðl; r2Þ is defined as:

fjðl; r2Þ ¼ Nsj þNij

Nsj

� � Z1

�1

ebNsj 1þ eb
� ��Nsj�Nij

r
ffiffiffiffiffiffi
2p

p
eðb�lÞ2=ð2r2Þ

db

ð6:19Þ

in which the FT ratios are subject to two sources of varia-
tion: the Poisson uncertainty described by Eq. 6.15 and an
‘(over)dispersion’ factor r. Maximising Eq. 6.18 results in
two estimates l̂ and r̂ and their respective standard errors.
Substituting el̂ for Ns=Ni in Eq. 6.2 produces the so-called
central age. r̂ quantifies the excess scatter of the single-grain
ages that cannot be explained by the Poisson counting
statistics alone. This dispersion can be just as informative as
the central age itself, as it encodes geologically meaningful
information about the compositional heterogeneity and
cooling history of the sample. In the absence of excess
dispersion (i.e. if r̂ ¼ 0) the central age equals the pooled
age.

6.5 Mixture Models

A FT data set may fail the chi-square test introduced in the
previous section for different reasons. The true ages may
exhibit excess scatter according to Eq. 6.18. Or it may be so
that there are more than one age component (Galbraith and
Green 1990; Galbraith and Laslett 1993). These components
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could either be discrete age peaks (Scenario III) or they
could be any combination of discrete and continuous age
components (Scenario IV).

6.5.1 Finite Mixtures

Finite mixture models are a generalisation of the discrete age
model of Scenario I in which the true ages are not derived
from a single, but from multiple age populations (Galbraith
and Green 1990). Scenario III is an example of this with two
such components. In contrast with the common age model of
Scenario I, which is completely described by a single
parameter (h, or the pooled age), and the random effects
model, which comprises two parameters (µ and r, or the
central age and overdispersion), the finite mixture of Sce-
nario III requires three parameters. These are the age of the
first component, the age of the second component and the
proportion of the grains belonging to the first component.
The proportion belonging to the second component is simply
the complement of the latter value. Generalising to N com-
ponents, the log-likelihood function becomes:

Lðpk; hk; k ¼ 1. . .NÞ ¼
Xn

j¼1

ln
XN

k¼1

pkfjðhkÞ
" #

with pN ¼ 1�
XN�1

k¼1

pk

ð6:20Þ

where fjðhkÞ is given by Eq. 6.14. Equation 6.20 can be
solved numerically. Applying it to the single component data
set of Scenario I again yields the pooled age as a special
case. The detrital FT ages in Scenario III clearly fall into two
groups so it is quite evident that there are two age compo-
nents. Unfortunately, the situation is not always this clear.
Due to the large single-grain age uncertainties discussed in
Sect. 6.2, the boundaries between adjacent age components
are often blurred, making it difficult to decide how many
‘peaks’ to fit. Several statistical approaches may be used to
answer this question. One possibility is to use a
log-likelihood ratio test. Suppose that we have solved
Eq. 6.20 for the case of N = 2 age components and denote
the corresponding maximum log-likelihood value as L2. We
then consider an alternative model with N = 3 components.
This results in two additional parameters (p2 and h3) and a
new maximum log-likelihood value, L3. We can assess
whether the three-component model is a significant
improvement over the two-component fit by comparing
twice the difference between L3 and L2 to a chi-square
distribution with two degrees of freedom (because we have
added two additional parameters) and calculating the corre-
sponding p value like before. An illustration of the

log-likelihood ratio test is provided in Sect. 6.5.2. An
alternative approach is to maximise the so-called Bayes
Information Criterion (BIC), which is defined as

BIC ¼ �2Lmax þ p lnðnÞ ð6:21Þ

where Lmax is the maximum log-likelihood of a model
comprising p parameters and n grains. A worked example of
this method is omitted for brevity, and the reader is referred
to Galbraith (2005, p. 91) for further details.

6.5.2 Continuous Mixtures

So far we have considered pdfs consisting of a single dis-
crete age peak (Scenario I), a single continuous age distri-
bution (Scenario II) and multiple discrete age peaks
(Scenario III). The logical next step is to consider multiple
continuous age distributions (Jasra et al. 2006). In principle
such models can be obtained by maximising the following
likelihood function

Lðpk; lk; r2k ; k ¼ 1. . .NÞ ¼
Xn

j¼1

ln
XN

k¼1

pkfjðlk; r2kÞ
" #

with pN ¼ 1�
XN�1

k¼1

pk

ð6:22Þ

where fjðlk; r2kÞ is given by Eq. 6.19. However, in reality
this is often impractical due to the high number of param-
eters involved, which require exceedingly large data sets. In
detrital geochronology, the analyst rarely knows that the data
are underlain by a continuous mixture and so it is tempting
to reduce the number of unknown parameters by simply
assuming a discrete mixture. Unfortunately, this is fraught
with problems as well since there is no upper bound on the
number of discrete age components to fit to a continuous
data set. To illustrate this point, let us reconsider the data set
of Scenario II, this time applying a finite mixture model
rather than the random effects model of Sect. 6.4.2.

For a small sample of n = 10 grains, the chi-square test for
age homogeneity yields a p value of 0.47, which is above the
0.05 cut-off and thus provides insufficient evidence to reject
the common age model (Table 6.1; Fig. 6.3a). Increasing the
sample size to n = 25 results in a p value of 0.03, justifying
the addition of extra model parameters (Fig. 6.2, I-c). Further
increasing the sample size to n = 100 reduces the likelihood
of the common age model (Eq. 6.15) and results in a p value
of 0.0027, well below the 0.05 cut-off. Let us now replace the
common age model with a two-component finite mixture
model. For the same 100-grain sample, this increases the

116 P. Vermeesch



log-likelihood from −4598.3 to −4591.4 (Table 6.1). Using
the log-likelihood ratio test introduced in Sect. 6.5.1, that
corresponds to a chi-square value of
2 � (4598.3 − 4591.4) = 13.8 and a p value of 0.001,
lending support to the abandonment of the single age model
in favour of the two-parameter model (Fig. 6.3b). However,
doing the same calculation for a three-component model
yields a log-likelihood of −4590.6 and a chi-square value of
2 � (4591.4 − 4590.6) = 1.6, resulting in an insignificant
p value of 0.45 (Table 6.1). Thus, the 100-grain sample does
not support the three-component model. It is only when the
sample size is increased from 100 to 1000 grains that the
chi-square test gains enough ‘power’ to justify the
three-component finite mixture model (Fig. 6.3c). It is easy
to see that this trend continues ad infinitum: with increasing
sample size, it is possible to add ever larger numbers of
components (Fig. 6.3).

One might object to this hypothetical example by noting
that the finite mixture model is clearly inappropriate for a data
set that is derived from a continuous mixture. But the key
point is that all statistical models are inappropriate to some
degree. Even the random effects model is a mathematical
abstraction that does not exist in the real world. True age

distributions (pdfs) may be approximately (log)normal as in
Scenario I, but they are never exactly so. Given a sufficiently
large sample, formalised statistical hypothesis tests such as
chi-square are always able to detect even the most minute
deviation from any hypothetical age model and thereby
provide statistical justification to add further parameters. This
is important in the common situation where one is interested
in the youngest age component of a fission-track age distri-
bution, for example when one aims to calculate ‘lag times’
and estimate exhumation rates (Garver et al. 1999; Bernet
2018). It would be imprudent to estimate the lag-time by
applying a general purpose multi-component mixture model
and simply picking the youngest age component. This would
provide a biased estimate of the minimum age, which would
steadily drift towards younger values with increasing sample
size (Fig. 6.3). Instead, it is better to use a simpler but more
stable and robust model employing three4 or four parameters
to explicitly determine the minimum age component:

Table 6.1 Application of the log-likelihood ratio test to a finite mixture fitting experiment shown in Fig. 6.3. Rows mark different sample sizes
(with n marking the number of grains) drawn from Scenario II. Columns labelled as LN show the log-likelihood of different model fits, where
N marks the number of components. Columns labelled as pðv22Þ list the p values of a chi-square test with two degrees of freedom, which can be
used to assess whether it is statistically justified to increment the number of fitting parameters (N) by one

L1 pðv22Þ L2 pðv22Þ L3 pðv22Þ L4

n = 10 −422.4 0.67 −422.0 1.00 −422.0 1.00 −422.0

n = 100 −4598.3 0.001 −4591.4 0.45 −4590.6 1.00 −4590.6

n = 1000 −45,030.7 0.00 −44,966.5 0.00003 −44,956.1 0.67 −44,955.7

Fig. 6.3 Application of finite mixture modelling to the continuous
mixture of Scenario II (Fig. 6.2). Increasing sample size from left (a) to
right (c) provides statistical justification to fit more components using
the log-likelihood ratio approach of Table 6.1. Note that the age of the
youngest age component gets progressively younger with increasing

sample size, from 150 Ma for sample (a) to 94 Ma for sample (c), and
is therefore not a reliable estimator of the minimum age. pðv2Þ marks
the p value of the chi-square test for age homogeneity and not the
log-likelihood ratio tests of Table 6.1

4Eq. 6.23 may be simplified by imposing the requirement that l ¼ eh,
which significantly benefits numerical stability, while having only a
minor effect on the accuracy of h.
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Lðp; h; l; r2Þ ¼
Xn

j¼1

ln pfjðhÞþ ð1� pÞf 0j ðl; r2Þ
h i

ð6:23Þ

where fjðhÞ is given by Eq. 6.14 and f 0j ðl; r2Þ is a truncated
version of Eq. 6.19 (Galbraith and Laslett 1993). Applying
this model to the synthetic example of Scenario IV correctly
yields the age of the youngest volcanic unit regardless of
sample size (Fig. 6.2, IV-c). In conclusion, statistical
hypothesis tests such as chi-square can be used to prevent
overinterpreting perceived ‘clusters’ of data that may arise
from random statistical sampling fluctuations. But they must
be used with caution, bearing in mind the simplifying
assumptions which all mathematical models inevitably make
and the dependence of test statistics and p values on sample
size. Ignoring this dependence may lead to statistical models
that might make sense in a mathematical sense, but have
little or no geological relevance. This note of caution applies
not only to mixture modelling but even more so to thermal
history modelling, as will be discussed next.

6.6 Thermal History Modelling

So far in this chapter, we have made the implicit assumption
(in Eq. 6.2) that all fission tracks have the same length. In
reality, however, this is not the case and the length of (ap-
atite) fission tracks varies anywhere between 0 and 16 lm as
a function of the thermal history and chemical composition
of a sample (Gleadow et al. 1986). If the compositional
effects (notably the Cl/F ratio, Green et al. 1986) are well
characterised, then the measured length distribution of hor-
izontally confined fission tracks can be used to reconstruct
the thermal history of a sample. Laboratory experiments
show that the thermal annealing of fission tracks in apatite
obeys a so-called fanning Arrhenius relationship, in which
the degree of shortening logarithmically depends on both the
amount and duration of heating (Green et al. 1985; Laslett
et al. 1987; Laslett and Galbraith 1996; Ketcham et al. 1999,
2007):

ln 1�
ffiffiffiffiffiffiffiffiffiffi
L=L0

K
p� 	

¼ c0 � c1
lnðtÞ� lnðtcÞ
1=T � 1=Tc

ð6:24Þ

where L0 and L are the initial and measured track length,
t and T are time and absolute temperature, respectively, and
c0, c1, K, tc and Tc are fitting parameters (Laslett and Gal-
braith 1996; Ketcham et al. 1999). Using these laboratory
results, thermal history reconstructions are a two-step pro-
cess. First, a large number of random thermal histories are
generated, and for each of these, the fanning Arrhenius
relationship is used to predict the corresponding FT length

distribution (Corrigan 1991; Lutz and Omar 1991; Gallagher
1995; Willett 1997; Ketcham et al. 2000; Ketcham 2005;
Gallagher 2012). Then, these ‘forward model’ predictions
are compared with the measured values and the ‘best’ mat-
ches are retained for geological interpretation. All the ‘in-
verse modelling’ software that has been developed over the
years for the purpose of thermal history reconstructions
essentially follows this same recipe. The most important
difference between these algorithms is how they assess the
goodness of fit and decide which candidate t–T paths to
retain and which to reject.

One class of software, including the popular HeFTy
program and its predecessor AFTSolve (Ketcham et al.
2000; Ketcham 2005), uses the p value of formalised
hypothesis tests like the chi-square test described in the
previous sections, to decide whether the measured FT length
distribution is a ‘good’ (p > 0.5), ‘acceptable’
(0.5 > p > 0.05) or ‘poor’ (p < 0.05) fit. The problem with
this approach is that, due to the dependence of p values on
sample size, it inevitably breaks down for large data sets.
This is because the statistical ‘power’ of statistical hypoth-
esis test to resolve even the tiniest disagreement between the
measured and the predicted length distribution, monotoni-
cally increases with increasing sample size (Vermeesch and
Tian 2014).

A second class of inverse modelling algorithms (includ-
ing QTQt, Gallagher 2012) does not employ formalised
hypothesis tests or p values, but aims to extract the ‘most
likely’ thermal history models among all possible t–T paths
(Gallagher 1995; Willett 1997). These methods do not
‘break down’ when they are applied to large data sets. On
the contrary, large data sets are ‘rewarded’ in the form of
tighter ‘credibility intervals’ and higher resolution t–T paths.
Furthermore, they are easily extended to multi-sample and
multi-method data sets. However, with great power also
comes great responsibility. Vermeesch and Tian (2014)
show that QTQt always produces a ‘best fitting’ thermal
history even for physically impossible data sets. To avoid
this potential problem, it is of paramount importance that the
model predictions are shown alongside the FT data (Gal-
lagher 2012, 2016, Vermeesch and Tian 2014).

6.7 LA-ICP-MS-Based FT Dating

The EDM outlined in Sect. 6.2 continues to be the most
widely used analytical protocol in FT dating. However, over
the past decade, an increasing number of laboratories have
abandoned it and switched to LA-ICP-MS as a means of
determining the uranium concentration of datable minerals,
thus reducing sample turnover time and removing the need
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to handle radioactive materials (Hasebe et al. 2004, 2009;
Chew and Donelick 2012; Soares et al. 2014; Abdullin et al.
2016; Vermeesch 2017). The statistical analysis of
ICP-MS-based FT data is less straightforward and less well
developed than that of the EDM. As described in Sect. 6.2,
the latter is based on simple ratios of Poisson variables, and
forms the basis of a large edifice of statistical methods which
cannot be directly applied to ICP-MS-based data. This sec-
tion provides an attempt to address this issue.

6.7.1 Age Equation

The FT age equation for ICP-MS-based data is based on
Eq. 6.1:

t̂ ¼ 1
kD

ln 1þ kD
kf

Ns

½Û�AsR q

� �
ð6:25Þ

where Ns is the number of spontaneous tracks counted over
an area As, q is an ‘efficiency factor’ (*0.93 for apatite and
*1 for zircon, Iwano and Danhara 1998; Enkelmann and
Jonckheere 2003; Jonckheere 2003; Soares et al. 2013) and
½Û� is the 238U-concentration (in atoms per unit volume)
measured by LA-ICP-MS. Equation 6.25 requires an explicit
value for kf and assumes that the etchable range (R) is
accurately known (Soares et al. 2014). Alternatively, these
factors may be folded into a calibration factor akin to the
EDM (Eq. 6.4):

t̂ ¼ 1
kD

ln 1þ 1
2
kDf̂

Ns

As½Û�

� �
ð6:26Þ

in which f̂ is determined by analysing a standard of known
FT age (Hasebe et al. 2004). Note that, in contrast with the
‘absolute’ dating method of Eq. 6.25, the f-calibration
method of Eq. 6.26 allows ½Û� to be expressed in any con-
centration units (e.g. ppm or wt% of total U) or could even
be replaced with the measured U/Ca-, U/Si- or U/Zr-ratios
produced by the ICP-MS instrument. The standard error of
the estimated age is given by

s½̂t� � t̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s½f̂�
f̂

 !2

þ s½Û�
Û

� �2

þ 1
Ns

vuut ð6:27Þ

for the f-calibration approach (Eq. 6.26), where s½Û� is the
standard error of the uranium concentration measurement (or

the U/Ca-ratio measurement, say), which can be estimated
using two alternative approaches as discussed in Sect. 6.7.2.
Equation 6.27 can also be applied to the ‘absolute’ dating

method (Eq. 6.25) by simply setting s½f̂�=f̂ ¼ 0.

6.7.2 Error Propagation of LA-ICP-MS-Based
Uranium Concentrations

Uranium-bearing minerals such as apatite and zircon often
exhibit compositional zoning, which must either be removed
or quantified in order to ensure unbiased ages.

1. The effect of compositional zoning can be removed by
covering the entire counting area with one large laser
spot (Soares et al. 2014) or a raster (Hasebe et al. 2004).
s½Û� is then simply given by the analytical uncertainty of
the LA-ICP-MS instrument, which typically is an order
of magnitude lower than the standard errors of induced
track counts in the EDM.

2. Alternatively, the uranium heterogeneity can be quanti-
fied by analysing multiple spots per analysed grain
(Hasebe et al. 2009). In this case, it is commonly found
that the variance of the different uranium measurements
within each grain far exceeds the formal analytical
uncertainty of each spot measurement. The following
paragraphs will outline a method to measure that dis-
persion, even if some of the grains in a sample were only
visited by the laser once.

The true statistical distribution of the U-concentrations
within each grain is unknown but is likely to be log-normal:

ln½Ûjk� 	Nðlj; r2j Þ ð6:28Þ

where Ûjk is the kth out of nj uranium concentration mea-
surements, and lj and r2j are the (unknown) mean and
variance of a normal distribution. Unfortunately, it is diffi-
cult to accurately estimate these two parameters from just a
handful of spot measurements and it is downright impossible
if nj ¼ 1. This problem requires a simplifying assumption
such as rj ¼ r 8 j. In that case, we can estimate the param-
eters of Eq. 6.28 as follows:

l̂j ¼
Xnj

k¼1

ln½Ûjk�=nj ð6:29Þ
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