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This paper introduces provenance, a software package within the statistical programming environment R,
which aims to facilitate the visualisation and interpretation of large amounts of sedimentary provenance data,
including mineralogical, petrographic, chemical and isotopic provenance proxies, or any combination of these.
provenance comprises functions to: (a) calculate the sample size required to achieve a given detection limit;
(b) plot distributional data such as detrital zircon U–Pb age spectra as Cumulative Age Distributions (CADs) or
adaptive Kernel Density Estimates (KDEs); (c) plot compositional data as pie charts or ternary diagrams;
(d) correct the effects of hydraulic sorting on sandstone petrography and heavy mineral composition;
(e) assess the settling equivalence of detrital minerals and grain-size dependence of sediment composition;
(f) quantify the dissimilarity between distributional data using the Kolmogorov–Smirnov and Sircombe–
Hazelton distances, or between compositional data using the Aitchison and Bray–Curtis distances; (e) interpret
multi-sample datasets by means of (classical and nonmetric) Multidimensional Scaling (MDS) and Principal
Component Analysis (PCA); and (f) simplify the interpretation ofmulti-methoddatasets bymeans of Generalised
Procrustes Analysis (GPA) and 3-wayMDS. All these tools can be accessed through an intuitive query-based user
interface, which does not require knowledge of the R programming language. provenance is free software
released under the GPL-2 licence and will be further expanded based on user feedback.
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1. Introduction

Sedimentary provenance analysis, in which chemical, mineralogical
and isotopic properties of siliciclastic sediments are used to trace the
flow of sand (or silt) through a sediment routing system, has entered
an era of ‘Big Data’(Vermeesch and Garzanti, 2015). Thanks to techno-
logical improvements, it is now common practise to analyse thousands
of grains in dozens of samples. These large datasets can be prohibitively
difficult to interpret without statistical aids. Over the past few years,
sedimentary geologists and geochronologists have developed a plethora
of methods to address this issue, which are scattered in many different
places and implemented in a variety of different software environments
(e.g van den Boogaart and Tolosana-Delgado, 2008; Ludwig, 2003;
Marshall, 1996; Resentini et al., 2013; Sircombe, 2004; Sircombe and
Hazelton, 2004; Templ et al., 2011; Vermeesch, 2004; Vermeesch, 2012;
Vermeesch, 2013; Vermeesch and Garzanti, 2015). This paper aims to
group some of the most useful tools under a common umbrella, the
provenance package. The various sections of this article are ar-
).
ranged in order of increasing complexity and dimensionality, using a
published dataset from Namibia for examples (Section 2).

Section 3 covers some functions that deal with a single provenance
proxy applied to a single sample of sediment. This includes sample
size calculations (Section 3.1) and functions to plot detrital age distribu-
tions as Kernel Density Estimates and Cumulative Age Distributions
(Section 3.2). Sections 3.3 and 3.4 show how the effects of selective en-
trainment of dense minerals can be undone and howmineralogical and
petrographic provenance proxies are affected by hydraulic sorting.
Section 4 introduces Principal Component Analysis and Multidimen-
sional Scaling as dimension reducing techniques which facilitate the in-
terpretation of multi-sample datasets analysed by a single method. This
section also presents a brief overview of different approaches to quanti-
fy the ‘dissimilarity’ between distributional and compositional data.
Finally, Section 5 covers functionality to combine large datasets compar-
ing multiple samples analysed with multiple methods, using Procrustes
analysis and 3-way Multidimensional Scaling. The various functions in
this paper are illustrated with many code snippets. Further examples
are provided at http://provenance.london-geochron.com and in the
built-in documentation. To run these examples anduse theprovenance
package, one should first install R. This is an increasingly popular pro-
gramming environment similar in scope and purpose to Matlab,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sedgeo.2016.01.009&domain=pdf
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which is available free of charge on any operating system at
http://r-project.org. The actual package can then be installed by typing:

install:packages ṕrovenance ΄
� �

at the command prompt. Once installed, the package can be loaded by
typing:

library provenanceð Þ

The easiest way to use provenance is by typing:

provenanceðÞ

which brings up a query-based user interface, removing the need to
master the syntax of the R programming language (Fig. 1). The
provenance() user interface is self explanatory andwon't be discussed
further in this paper. Instead, the different toolswithin the provenance
package will be illustrated with short code snippets which more
advanced users may incorporate in their own R scripts for enhanced
flexibility and automation. Internal documentation of these functions
can be accessed through the ? command. For example, to display the
documentation for the procrustes function (Section 5):

?procrustes

2. Data handling

Over the years, geologists have tried and tested literally dozens of
provenance proxies (e.g., Basu and Molinaroli, 1989; Hurford and
Carter, 1991; Matter and Ramseyer, 1985; McLennan et al., 1993;
Morton, 1985; Owen, 1987; Renne et al., 1990; Vermeesch and
Garzanti, 2015). Most of these can be divided into two broad classes:

1. distributional data cover single-mineral proxies such as detrital
zircon U–Pb or mica 40Ar/ 39Ar ages, in which samples can be
summarised as lists of ordinal values.
Fig. 1. The query-base
2. compositional data cover multi-mineral proxies such as petrogra-
phy, heavy mineral analysis and bulk geochemistry, in which
samples can be summarised as one-way tables in which each row
can be (re)normalised to unity.

provenance reads raw data as. csv files and casts these into two
classes by separate functions. For example:

DZ b‐ read:distributional DZ:fname:csv;DZ:err:fname:csvð Þ
HM b‐ read:compositional HM:fname:csvð Þ

Here DZ.fname.csv and DZ.err.fname.csv stand for the file names
of someU–Pb age data and their analytical uncertainties (where the lat-
ter argument is optional). Different columns of these files correspond to
different samples, with the rows containing the numerical values of the
single grain analyses. HM.fname.csv stands for thefile nameof a heavy
mineral dataset, stored as a table with samples arranged by row and
each column corresponding to a different type of mineral. The data ob-
jects produced by the two read functions are treated differently by all
subsequent functions.

2.1. Built-in datasets

To illustrate provenance's functionality, the package is bundled
with a published dataset from Namibia (Vermeesch and Garzanti,
2015). Entering

data Namibð Þ

loads a variable called Namib into memory, which is comprised of
one distributional and five compositional datasets: (1) Namib$DZ

contains the zircon U–Pb ages and their analytical uncertainties;
(2) Namib$PT the bulk petrography; (3) Namib$HM the heavy mineral
compositions less the opaque minerals; (4) Namib$PTHM the combined
petrography and heavyminerals, includingmicas and opaque minerals,
normalised to unity; (5) Namib$Major the major element composition
d user interface.

http://r-roject.org
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of the bulk sediment; and (6) Namib$Trace the trace element compo-
sition of the bulk sediment. To avoid having to repeatedly type the
preamble Namib$, we can attach the dataset to the search path:

attach Namibð Þ

After whichwe can access its datamembers as DZ, PT etc. Addition-
ally, provenance also includes a table of mineral and rock densities
(densities) as well as the petrographic/mineralogical end-member
compositions (endmembers) of various tectonic settings which will be
used to evaluate the settling equivalence of detrital components
(Section 3.4). Also these two datasets can be loaded with the data
function:

data densities;endmembersð Þ

The built-in datasets are based on the following nine files: DZ.csv,
DZ.err.csv, PT.csv, HM.csv, PTHM.csv, Major.csv,
Trace.csv, densities.csv and endmembers.csv. The system
paths of these files can be retrieved as follows:

HM:fname:csv b‐ system:file H́M:csv ;́package ¼ ṕrovenance ΄
� �

Further details about these datasets can be obtained from the built-
in help functions ?Namib, ?densities and ?endmembers.

2.2. Basic data manipulation

provenance includes a number of basic operations to query and
manipulate the large datasets contained within distributional and
compositional data objects. For example, to extract the coastal
samples of the Namibian geochronology and heavy mineral datasets:

coast:samples b‐ c Ń1 ;́ Ń2 ;́ T́8 ;́ T́13 ;́ Ń12 ;́ Ń13 ΄
� �

coast:DZ b‐ subsetðDZ;select ¼ coast:samplesÞ
coast:HM b‐ subsetðHM;select ¼ coast:samplesÞ

For compositional data, the subset function also allows the user to
extract subcompositions. For example, to extract the zircon, tourmaline
and rutile content of all samples in the heavy mineral dataset:

ZTR b‐ subset HM;components ¼ c źr ;́ t́m ;́ ŕt ΄
� �� �

Of course, both options can also be combined:

coast:ZTR b‐ subsetðHM;select ¼ coast:samples;
components ¼ c źr ;́ t́m ;́ ŕt Þ́� �

which returns the zircon, tourmaline and rutile contents of the coastal
samples alone. For compositional data, it is often useful to add several
components together, an operationwhich is referred to as ‘amalgamation’
(Aitchison, 1986). This is useful for removing missing components (‘zero
counts’) prior to logratio analysis (Section 4.2). For example, to extract the
QFL (Quartz – Feldspar – Lithics) composition from the petrographic
dataset by amalgamation:

QFL b‐ amalgamate PT;Q ¼ Q́ ;́ F ¼ c ḰF ;́ Ṕ ΄
� �

;L ¼ c Ĺm ;́ Ĺv ;́ Ĺs ΄
� �� �

where KF and P stand for K-feldspar and plagioclase, and Lm, Lv
and Ls refer to the lithic fragments of metamorphic, volcanic and sedi-
mentary origin respectively. In the special case of a three component
system, amalgamation can also be achieved by a different function:

QFL:tern b‐ ternary PT; Q́ ;́c ḰF ;́ Ṕ ΄
� �

;c Ĺm ;́ Ĺv ;́ Ĺs ΄
� �� �
This produces an object of class ternarywhich is handled by a spe-
cial, overloaded version of the plot function (Section 3.2). The statisti-
cal field of compositional data analysis is very rich, and provenance
does not attempt to cover all but its most basic operations. The user is
referred to other R packages such as compositions (van den
Boogaart and Tolosana-Delgado, 2008) and robCompositions

(Templ et al., 2011) for a more comprehensive toolset. Three functions
are provided to facilitate the interaction between provenance and
these other packages. as.acomp and as.data.frame convert compo-
sitional datasets to objects of class acomp and data.frame, for use in
robCompositions and compositions, repectively. For example:

PT:acomp b� as:acomp PTð Þ
PT:data:frame b� as:data:frame PTð Þ

Conversely, the as.compositional function translates acomp or
data.frame objects to compositional data for use in provenance.
For example, using the Kongite and skyeLavas datasets which are
built into compositions and robCompositions:

library compositionsð Þ
data Kongiteð Þ
Kongite:comp b�as:compostional Kongiteð Þ
library robCompositionsð Þ
data skyeLavasð Þ
skyeLavas:comp b� as:compositional skyeLavasð Þ

where Kongite.comp and skyeLavas.comp can be further analysed
by the functions described later in this paper.

3. Functions applying to a single sample

3.1. Sample size calculations

On the most basic level, provenance analysis requires the geologist to
identify certain properties in a representative number of grains from each
sample. The question then arises howmany grains constitute a ‘represen-
tative’ number of grains. The answer to this question depends on the geo-
logical problem of interest. If the main purpose of the study is merely to
characterise the general shape of the distribution (e.g., ‘young’ vs. ‘old’
or ‘narrow’ vs. ‘wide’), then a few dozen grains may be enough (Avdeev
et al., 2011). If instead one is looking for a particular component compris-
ing, say, a fraction f = 1/N of the total population (where N is an integer
denoting the number of fractions), then the likelihoodofmissing this frac-
tion is given by (1- f)n, where n is the number of grains (Dodson et al.,
1988). Finally, if, we are interested in collecting all fractions of a sample
(Vermeesch, 2004), then the likelihoodofmissing anyof them is givenby:

p ¼
XN
i¼1

−1ð Þi−1 N
i

� �
1−ifð Þn ð1Þ

where
�
N
i

�
is the Binomial coefficient. To calculate the probability that at

least one 10% fraction is missing from a 60-grain sample in provenance:

p b‐ get:p n ¼ 60; f ¼ 0:1ð Þ

Conversely, to estimate the largest fraction (f) which one can be 95%
confident not to have missed in the same 60-grain sample:

f b‐ get:f n ¼ 60;p ¼ 0:05ð Þ

Finally, to compute the number of grains needed to be 95% certain
that no fraction greater than 5% of the total population is missed:

n b‐ get:n p ¼ 0:05; f ¼ 0:05ð Þ
which is 117 (Vermeesch, 2004).
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3.2. Plotting individual samples

The geologically meaningful information carried by distributional
data does not so much lie in their values as, like their name suggests,
in their distribution. A first step towards interpreting such data in
provenance is to plot them as either cumulative or density plots. To il-
lustrate this, consider an infinite population characterised by a uniform
distribution between 100 and 110 Ma. Plotting an infinite number of
values collected from this population on a histogramwith infinitessimal
binwidth yields a simple step function (red line in Fig. 2a). This is the
probability density function of the population. The corresponding cumu-
lative distribution (red line in Fig. 2b) is a straight line rising from 0 at
100 Ma (0% of the population falls below 100 Ma) to 1 at 110 Ma (100%
of the population falls below 110 Ma). Of course, in real life geologists
never have the luxury of exhaustively collecting an entire population. In-
stead, theymustworkwith a representative subset of that population, the
sample. Suppose that we have collected a random sample of 100 values
from our uniform population (black ticks on Fig. 2a). Further, suppose
that these values are analysed with infinite analytical precision. From
this sample of random values, we cannot reconstruct the step function.
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cumulative measurement distribution, black—the CAD of the 100 randomly selected measurem
Instead, the density must be estimated using histograms or kernel
density estimates (KDEs). For a sample of limited size, these esti-
mates never exactly agree with the true age distribution, but are
smooth approximation thereof (black line in Fig. 2a). In contrast,
the Empirical Cumulative Distribution Function [ECDF, a.k.a. ‘Cumu-
lative Age Distribution’ or CAD in a geochronological context]
(Vermeesch, 2007) is a method to visualise distributional datasets
without the need for any smoothing. Let x={x1,x2, ... ,xn} be a sample
of distributional data, then the cumulative distribution Fx is defined
as follows:

Fx tð Þ ¼ 1
n

#xi ≤ tð Þ ð2Þ

where ‘#x≤ t’ stands for “the number of items in x that are smaller than
or equal to t”. In contrast with density estimates, CADs do not suffer from
oversmoothing (Fig. 2b). Despite this significant advantage of CADs over
KDEs, the latter are still preferred by many practitioners of detrital geo-
chronology because they are more intuitive to interpret.
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In real life, analytical precision is never infinite, but measured ages
are offset from their true values by some experimental error. Suppose
that this error is characterised by a Normal distribution with standard
deviation σ= 2Ma. Convolution of the error distribution with the uni-
form distribution of the true ages yields a smooth probability density
function which spreads into values beyond the 100–110 Ma interval
(red line in Fig. 2c). The corresponding cumulative distribution rises
gently from 0 at ~95 Ma (0% of the distribution falls below 95 Ma) to
1 at ~115Ma (100% of the distribution falls below115Ma),with a linear
section in between (red line in Fig. 2d). Like before, the KDE of themea-
surements (black line in Fig. 2c) oversmooths the theoretical probability
density function (red line). And like before, the correponding CAD
(black line in Fig. 2d) does not suffer from this problem. Note that
Probability Density Plots (PDPs), which are a popular way to account
for the variable precision of detrital data by using the analytical
uncertainty as a bandwidth estimator (Ludwig, 2003; Sircombe, 2004)
unfortunately suffer from significant levels of undersmoothing for
small datasets and oversmoothing for large datasets (Vermeesch,
2012). For this reason, PDPs are not implemented in provenance.
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Fig. 3. Graphical output generated by provenance for distributional and composition

bandwidth algorithm outlined in Section 3.2, plotted on a linear scale; c. a KDE using a fixed
Namib samples on Dickinson et al., (1983)'s QFL diagram.
In provenance, CADs are obtained using an overloaded plot func-
tion. For example, for detrital zircon U–Pb sample N1 (Fig. 3a):

plot DZ;snames ¼ Ń1 ;́CAD ¼ TRUE
� �

Both histograms and KDEs are implemented in standardR as the hist
and density functions, respectively. These built-in functions work very
well for relatively simple, unimodal distributions (Silverman, 1986).
However, the distributions occurring in detrital geochronology
tend to be more complex than that, causing the density function
to overestimate the kernel bandwidth and oversmooth the resulting
distribution. For this reason, the provenance package includes a
separate function for kernel density estimation using a hybrid adap-
tive kernel density algorithm, adopted from DensityPlotter [ver-
sion 3.0 and above](Vermeesch, 2012). This algorithm consists of
two steps. First, the fixed bandwidth algorithm by Botev et al.
(2010) is used to calculate a ‘pilot’ density. Then, the bandwidth is
adjusted at each sample point to scale with the square root of the
local density, normalised by the geometric mean of the entire
.
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distribution (Abramson, 1982). Thus, the fixed bandwidth estimate
is converted into an adaptive density estimate, which assigns a
narrower bandwidth to densely sampled segments of the age distri-
bution and a wider bandwidth to those segments which are sparsely
sampled. This increases the resolution of the density estimates
where sufficient data are available, whilst smoothing out those
parts with insufficient data. As an example, the following code
plots the U-Pb age distribution of sample N1 from the Namibian
dataset with the default settings (Fig. 3b):

N1 b� DZ$x$N1 # extract the ages of sample N1
dens b� KDE N1ð Þ # create the density estimate
plot densð Þ # plot the density estimate

The appearance of the plot can be changed bymodifying the optional
arguments. The following example plots the data on a logarithmic scale
from 10 to 3000 Ma with a fixed bandwidth of 50 Ma and turns off the
sample point indicators on the x-axis (Fig. 3c):

dens b‐ KDEðN1;bw ¼ 50;from ¼ 100;to ¼ 4000;
adaptive ¼ FALSE;log ¼ TRUEÞ

plot dens;pch ¼ NAð Þ

provenance also includes some basic functionality to plot composi-
tional data on ternary diagrams. For example, to plot the petrography of
the Namib dataset on Dickinson et al. (1983)’s QFL diagram (Fig. 3d):

plot QFL:tern;type ¼ QFL:dickinsonð Þ

where QFL.tern was produced by the ternary() function
(Section 2.2). The graphical output can be saved as a vector-editable
PDF for further processing in software such as Adobe Illustrator©,
CorelDraw© or Inkscape:

dev:copy2pdf file ¼ Q́FL:tern:pdf ΄
� �

3.3. The SRD correction: a simple way to correct for environmental bias

To facilitate the comparison of detrital modes for provenance analy-
sis or stratigraphic correlation, we need to first remove the often signif-
icant compositional differences among sediment samples that are
caused by hydrodynamic processes in the depositional environment.
Intersamplemodal variability can be corrected for by a simple principle.
In the absence of provenance changes and environmental bias, the
weighted average Source Rock Density (SRD) of terrigenous grains
should be equal, for each sample and each grain-size class of each
sample, to the weighted average density of source rocks. By correcting
relative abundances of detrital minerals in proportion to their densities,
we can restore the appropriate SRD index for any provenance and
subprovenance type in each sample or grain-size class (Garzanti et al.,
2009). Modal variability is effectively reduced by this procedure,
which can be applied confidently to modern sediments deposited by
tractive currents in any environment. Good results are obtained even
for placer sands and finest grain-size fractions where heavy-mineral
concentration is strongest. Such ‘SRD correction’ also successfully com-
pensates for biased narrow-windowmodes, thus providing a numerical
solution of general validity to the problem of environmental bias in
sedimentary petrology.

The SRD index, used to assess average density of source rocks in the
absence of hydrodynamic effects or to detect hydraulic-controlled con-
centration of denserminerals, is defined as theweighted average densi-
ty of terrigenous grains [spurious and intrabasinal particles such as
bioclasts are neglected in the calculation] (Garzanti and Andò, 2007):

SRD ¼
Xn

i¼1
%miρmi

� �
¼ 1=∑n

i¼1 %Mi=ρmi

� �
ð3Þ

where %m and %M are the volume andweight percentages ofmineral m,
and ρm its density. In order to compensate for selective-entrainment
effects, we must recalculate detrital modes for each sample until the
same SRD index is restored for each. Themathematical procedure is sim-
ilar to that used to convert volume percentages to weight percentages,
and vice-versa:

%M ¼ %mρm=SRD ¼ %mρm=∑
n
i¼1 %miρmi

� �
ð4Þ

%m ¼ %MSRD=ρm ¼ %M= ρm∑
n
i¼1 %Mi=ρmi

� �h i
: ð5Þ

The ‘SRD correction’ assumes the form of Eq. (4) for heavy-mineral-
poor samples:

%m� ¼ %mρm=∑
n
i¼1 %miρmi

� �
ð6Þ

and the form of Eq. (5) for heavy-mineral-rich samples:

%m� ¼ %m= ρm∑
n
i¼1 %mi=ρmi

� �h i
: ð7Þ

To remove environmental bias by the SRD correction we need to as-
sume an appropriate common SRD value for all samples. Such a value
may be determined empirically, by averaging SRD indices of ‘normal’
samples with the same provenance. Or we may proceed in reverse,
and find through successive approximations the SRD value which min-
imises the residual variance in the data set. In any case, we need criteria
to tell us which SRD value is appropriate and which should be consid-
ered anomalous. In the absence of hydrodynamic effects, the SRD
index faithfully reflects the average density of source rocks (Garzanti
et al., 2006). With the exception of less dense glass-rich volcanic and
porous sedimentary rocks, and of denser mafic and ultramafic rocks,
rocks densities typically lie in the 2.6–2.8 g/cm 3 range (Daly et al.,
1966). Therefore, besidesmonogenic detritus supplied locally by specific
rock types (e.g., ignimbrite, gypsum, gabbro, peridotite, granulite,
eclogite), SRD indices of homogenised detritus derived long-distance
from diverse crustal sources must lie in a narrow range (2.70 ± 0.05).
Given the regional geology and geomorphology of southern Africa, we
can confidently rule out exotic compositions and safely assume an SRD
of ~ 2.71. Restoring all samples from the Namib dataset to this reference
value:

rescomp b‐ restore PTHM;dens ¼ densities;target ¼ 2:71ð Þ
HMcomp b‐c źr ;́ t́m ;́ ŕt ;́ śph ;́ áp ;́ ép ;́ ǵt ;́ śt ;́ ámp ;́ ćpx ;́ ópx ΄

� �
PHO b‐amalgamate rescomp;Plag ¼ Ṕ ;́HM ¼ HMcomp;Opq ¼ ópaques ΄

� �
plot ternary PHOð Þ;showpath ¼ trueð Þ

where HMcomp is a list of heavy minerals and amalgamate partitions
the restored PTHM composition into three groups for plotting. Setting
showpath = TRUE in the overloaded plot function displays the inter-
mediate steps of the iterative SRD correction algorithm on the ternary
diagram. In the above example, plagioclase, the amalgamated transpar-
ent heavy minerals and the opaque minerals are plotted together be-
cause they cover a wide range of densities (2.67, ~3.5 and 5 g/cm 3,
respectively), offering a good opportunity to visualise the effectiveness
of the SRD correction. For the Namib dataset, the correction path clearly
shows that samples N8 and N9 are most strongly affected by the SRD
correction and, hence, hydraulic sorting effects (Fig. 4). This is entirely
consistent with the interpretations of Garzanti et al. (2012),
Vermeesch and Garzanti (2015), and Section 5. Finally, to illustrate the



20 P. Vermeesch et al. / Sedimentary Geology 336 (2016) 14–25
combined use of provenance with the compositions package, the
following code adds an ellipse from the mean and the variance to the
SRD-corrected data, using the compositions package's ellipses
function:

PHO:acomp b‐ as:comp PHOð Þ # convert to class 0acomp0

ellipses mean PHO:acompð Þ; var PHO:acompð Þ ;r ¼ 2ð Þ

3.4. Size-density sorting of detrital grains and intrasample variability

The settling velocity of a detrital particle represents the balance
between gravitational forces and drag resistance due to both turbulence
and viscosity. Settling of clay and silt particles in water is resisted by
viscosity, whereas turbulence is the dominant drag component during
settling of pebbles or in air. Different empirical formulas have been
proposed to model settling of particles by tractive currents, accounting
for the wide range of grain sizes displayed by sedimentary deposits
and their diverse depositional facies (aeolian vs. fluvial vs. marine).
The settling velocity of clay and silt particles can be calculated by Stokes'
Law:

v ¼ gRxD
2
x=18η ð8Þ

where g is the gravitational constant, Rx is the submerged density
(ρgrain-ρfluid), Dx is the diameter of the particle, and η is the fluid
viscosity. The settling velocity of sand-sized particles in water must be
calculated by empirical formulas, such as the relatively simple one
proposed by Cheng (1997):

v ¼ η=Dxð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 1:2 gRxD

3
x=η2

� �2=3

r
−5

" #3=2

: ð9Þ

The settling velocity of granules and pebbles can be described by
Newton's Impact Law:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gRxDx= 3ρ f

� �r
ð10Þ

where ρf is the fluid density. The same formula has been shown
empirically to be sufficiently accurate also to calculate the settling of
particles of any grain size in air (Garzanti et al., 2008). These three
formulas allow us to calculate the difference in nominal diameter (the
‘size shift’, SS) between two settling-equivalent particles for any size,
in any transporting medium, and usually referred to quartz. For clay
and silt particles, size shifts between any mineral x and a reference
mineral or the bulk sediment are calculated as:

SSx ¼ log2 Rx=Rref
� �

=2: ð11Þ

For sand sized particles:

SSx ¼ log2 Rx=Rref
� �

− 3=2ð Þlog2 Ξm=Ξref
� � ð12Þ

whereΞ ¼ v=ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv=ηÞ2 þ 48ðgRx=η2Þ2=3

q
. For granules and pebbles or

any sediment settling in air, size shifts are twice those predicted by
Stokes' Law:

SSx ¼ log2 Rx=Rref
� �

: ð13Þ

The average settling velocity for each given sediment sample can be
calculated with formulas (8), (9) or (10) according to its mean grain
size, grain density (SRD index of the bulk sediment, see Section 3.3)
and depositional environment (air, freshwater or seawater). For each
detrital mineral or rock fragment, the size shift referred to the bulk-
sediment (SRD index) is calculated with formulas (11), (12) or (13).
To account for shape effects (Komar et al., 1984), the density of micas
is lowered by 0.5 g/cm 3 (Garzanti et al., 2008). Finally, a Gaussian
size-frequency distribution is calculated for each detrital component
by combining its size shift referred to themean size of the bulk sediment
and the sorting value of the latter.

In provenance, all these calculations are performed by the
minsorting function, so named after the spreadsheet application of
Resentini et al. (2013) on which it is based. To illustrate the use of the
minsorting function, the following code snippet applies it to one of
the end-member compositions included with the package, assuming a
mean grain size of (Krumbein) Φ=2 and standard deviationΦ = 1:

data endmembers;densitiesð Þ
distribution b−minsortingðendmembers;densities;

sname ¼ óphiolite ΄;phi ¼ 2;sigmaphi ¼ 1;

medium ¼ śeawater ;́by ¼ 0:05Þ
plot distribution;components ¼ c F́ ;́ ṕx ;́ ópaques ΄

� �� �

which yields the grain size distribution of feldspar, pyroxene and
opaque minerals (in 0.05 Φ intervals), so chosen because of the great
contrast in density between them (Fig. 5). When—as is commonly
done in geochronological analysis—one specific mineral is targeted
(e.g., apatite or zircon), we can use such information to choose the
most suitable size window for laboratory treatment and analysis,
and thus obtain a most faithful characterisation of the sediment
sample.

4. Jointly considering multiple samples

provenance allows multiple samples to be plotted together. For
example, to plot all 16 detrital age distributions from the Namibian
dataset on a scale from 0 to 3000 Ma in four columns:

UPbb‐ KDEs DZ;from ¼ 0;to ¼ 3000;normalise ¼ TRUEð Þ
summaryplot UPb;ncol ¼ 4ð Þ

where the normalise flag sets the area under each of the KDEs to the
same value. The resulting plot contains 16 kernel density estimates,
resulting in 16 × 15/2 = 120 pairwise comparisons (Fig. 6). The first
step towards simplifying this multi-sample comparison problem is to
convert the raw data into a table of pairwise distances. This can be
achieved using a number of different dissimilarity measures.

4.1. Dissimilarity measures

A crucial first step towards simplifying the interpretation of multi-
sample datasets is to replace the visual comparison of age distributions,
histograms and pie charts with numerical values expressing the
‘dissimilarity’ between samples. For distributional data, the default
method is the Kolmogorov–Smirnov (K–S) statistic (δABks ), which uses
the maximum absolute difference between two cumulative distribu-
tions (Feller, 1948). Given two samples A and B, the K–S distance is de-
fined as

δksAB ¼ max
t

jFA tð Þ‐FB tð Þj ð14Þ

where F A and F B are defined by Eq. (2) and | ⋅ | stands for the absolute
value. One nice feature of the K–S distance is that it obeys the triangle
inequality, which states that, for any three samples A, B and C, the
distance between A and C is less than or equal to the distance between
A and B plus the distance between B and C. The triangle inequality
makes the K–S distance behave like the physical distances which we are
familiar with in the real world. On the other hand, the K–S statistic also
has limitations, such as its inability to take into account the effect of
unequal analytical uncertainties. This makes it difficult to objectively
compare samples acquired on differentmass spectrometers characterised
by differing analytical precision. This problemwas addressed by Sircombe
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and Hazelton (2004) using the squared overlap between so-called Kernel
Functional Estimates (KFEs):

δshAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ f A tð Þ− f B tð Þð Þ2dt

q
ð15Þ

where fA and fB are the KFEs of samples A and B. KFEs are a special type of
KDEs, inwhich a variable degree of deliberate oversmoothing is applied to
the different samples to account for the differing analytical uncertainties
between them (Sircombe and Hazelton, 2004). Although KFEs are useful
as a point of comparison between different samples, they have limited
value as a data visualisation tool due to the oversmoothing. To use the
S–H dissimilarity, the user needs to supply the analytical uncertainties
in a separate .csv file. The following code demonstrates the calculation
of K–S and S–H dissimilarities in provenance:

KS:diss b‐ diss DZ;method ¼ ḰS ΄
� �

SH:diss b‐ diss DZ;method ¼ ŚH ΄
� �

For compositional proxies such as petrographic, heavy mineral or
chemical data, provenance provides a further two dissimilarity
measures. If the dataset is free of zero values, Aitchison's central logratio
distance is used by default:

δaitAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ln
Ai

g Að Þ
� �

− ln
Bi

g Bð Þ
� �	 
2s

ð16Þ

where ‘g(x)’ stands for ‘the geometric mean of x’ (Aitchison, 1986;
Vermeesch, 2013). Note that the same distance is obtained irrespective
of whether the input data are expressed as fractions or percentages. The
Aitchison distance breaks down for datasets comprising ‘zero counts’
(Ai = 0 or Bi = 0 for any i). This problem can be solved by pooling
several categories together (see Section 2.2), or by using a different
dissimilarity measure such as the Bray–Curtis distance:

δbcAB ¼ ∑n
i¼1jAi−Bij=∑n

i¼1 Ai þ Bið Þ: ð17Þ

The following example yields the dissimilarity matrices of the heavy
mineral and major element compositions using the Bray–Curtis and
Aitchison measures, respectively:

HM:diss b‐ diss HM;method ¼ b́ray ΄
� �

Major:diss b‐ dissðMajor;method ¼ áitchison Þ́

4.2. Principal component analysis and multidimensional scaling

Although the dissimilarity matrices introduced in the previous
section make the comparison of two samples more objective, it remains
difficult to discern any meaningful patterns in large numbers of such
pairwise comparisons. Multidimensional scaling (MDS) is a dimension-
reducing techniquewhich canmake the comparison ofmultiple samples
more objective (Borg and Groenen, 2005). MDS is widely used in other
scientific disciplines and can easily be adapted for provenance studies
(Vermeesch, 2013). Given a table of pairwise distances between samples,
MDS produces a configuration of points in which similar samples plot
close together and dissimilar samples plot far apart. provenance
implements both classicalMDS, in which the physical distances between
the different points in theMDS configuration are directly proportional to
the dissimilarities between the corresponding samples; and nonmetric
MDS, which merely aims to reproduce the relative ranks of the dissimi-
larities (Borg and Groenen, 2005). In the latter case, provenance allows
the user to graphically assess the goodness of fit by plotting the dissimi-
larities against the fitted distances on a so-called ‘Shepard Plot’ (Kruskal
andWish, 1978).provenanceuses nonmetricMDS by default because it
produces better fits than classical MDS and accepts a wider range of
dissimilarity measures (Borg and Groenen, 2005; Kruskal and Wish,
1978). The MDS function accepts as input either data of class composi-
tional or distributional, or a dissimilary matrix (class diss). The
following two lines of code are therefore equivalent to each other:

MDS:DZ:1 b‐ MDS DZð Þ
MDS:DZ:2 b‐ MDS diss DZð Þð Þ

In contrast with nonmetric MDS, classical MDS can only be used for
dissimilarity measures that are proper distances and therefore fulfil the
triangle inequality (Borg and Groenen, 2005), which is the case for
the Kolmogorov–Smirnov and Aitchison distances. For example, using
the latter dissimilarity measure, the major element composition can
be plotted as a classical MDS configuration:

Major:diss b‐ diss Major;method ¼ áitchison ΄
� �

MDS:Major b‐ MDSðMajor:diss;classical ¼ TRUEÞ
plot MDS:Major;xaxt ¼ ś ;́yaxt ¼ ś ΄

� �
Where the xaxt and yaxt flags add tickmarks and labels to the x and y
axes (these are turned off by default). By definition, the Aitchison dis-
tance does not only fulfil the triangle inequality but is a Euclidean dis-
tance as well. In this case, MDS is equivalent to principal component
analysis (PCA, Aitchison, 1983; Cox and Cox, 2000). This equivalence
can be demonstrated by the fact that:

PCA:Major b‐ PCA Majorð Þ
plot PCA:Majorð Þ

produces identical output as the previous code snippet (Fig. 7). The
main advantage of PCA overMDS is that it can be visualised as a ‘biplot’,
in which the configuration is accompanied by a set of vector ‘loadings’
showing the relationship between the categorical input variables
(Fig. 7b). Thus, the PCA biplot facilitates the interpretation of the config-
uration in terms of underlying processes (Aitchison and Greenacre,
2002). In this respect, compositional biplots are similar to a 3-way
extension of the MDS method called INDSCAL, which is discussed in
the next section. One limitation of compositional PCA is its inability to
handle datasets containing zero values, which is due to its dependence
on logratios (see Section 4.1). Various ways have been proposed to
deal with this problem (e.g., Martin-Fernández et al., 2003), but none
of these are implemented in provenance (yet). Instead, the user is
presented with two options. The zero-value problem can either be
circumvented by employing non-metric MDS using the Bray–Curtis
dissimilarity; or by resorting to the PCA functionality implemented in
the compositions and robCompositions packages.

5. 5 Combining multiple methods in multiple samples

The 5-proxy Namib dataset can be visualised together with the
summaryplot command, producing a diagram with 16 KDEs and 64
pie charts:

PT$colmap b‐ ćm:colors ΄
Trace$colmap b‐ ŕainbow ΄
UPb b‐ KDEsðDZ;from ¼ 0;to ¼ 3000;normalise ¼ TRUEÞ
summaryplot UPb;HM;PT;Major;Trace;ncol ¼ 2ð Þ

which assigns a different colourmap to the pie charts of the petrographic
and trace element data from the default heat.colors. The summary
plot manages to squeeze 16,125 numerical values into a single
diagram, which provides a good visual illustration of the term
‘Big Data’, but is next to impossible to interpret geologically.
Using the methods introduced in Section 4, we can produce five
MDS maps and thereby facilitate the multi-sample comparison
for each dataset (Vermeesch and Garzanti, 2015). Unfortunately,
the subtle differences between these maps present a second



−2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

phi

%

−
−
−

F
px
opaques

Fig. 5. Graphical output of the minsorting routine applied to an ophiolitic end-member
composition. Different colours show the inferred grain-size distribution of feldspars
(‘F’, red), pyroxene (‘px’, blue) and opaque minerals (green) in Krumbein's Φ units,
assuming a mean grain size for the bulk sediment of Φ = 2 with standard deviation
Φ = 1. It can be seen that relatively coarse grains of the comparatively light minerals
are hydraulically equivalent with finer grains of the dense minerals.

22 P. Vermeesch et al. / Sedimentary Geology 336 (2016) 14–25
type of multiple comparison problem, which calls for second
layer of statistical simplification. The provenance package pro-
vides two alternative solutions for this: Procrustes analysis and
3-way MDS.

Procrustes analysis is the process by which a combination of shape-
preserving transformations is used to match the shape of one object
with that of another. Generalised Procrustes Analysis (GPA) is a generali-
sation of this procedure tomultiple objects. In a provenance context, GPA
extracts a single ‘consensus’ view froma collection ofMDS configurations,
by rotating, reflecting and scaling them to minimise a least squares crite-
rion (Gower, 1975; Vermeesch and Garzanti, 2015). The following code
applies this method to the Namib dataset:

proc b‐ procrustesðDZ;HM;PT;Major;TraceÞ
plot procð Þ

GPA is a two step process, in which the individual datasets are first sub-
jected to anMDS analysis, and the resulting configurations are then trans-
formed into a group configuration. Alternatively, the same type of
graphical output can be generated in a single step, using the final tech-
nique discussed in this paper, 3-way MDS.

As the name suggests, 3-wayMDS is a generalisation of themethods
discussed in Section 4.2 from two- to three-dimensional dissimilarity
matrices. For the Namib dataset, the combination of 16 samples and 5
methods results in a dissimilarity matrix of size 15 × 15 × 5. There
exist many types of 3-way MDS algorithms, the oldest and most widely
used of which is called INdividual Differences SCALing (INDSCAL,
(Carroll and Chang, 1970). In contrast with 2-way MDS and GPA,
INDSCAL produces not one but two pieces of graphical output: the
‘group configuration’ and the ‘source weights’. For the Namib dataset,
the former reproduces the relative dissimilarities between the samples,
whereas the latter displays the relationship between the provenance
proxies (Vermeesch and Garzanti, 2015). This is similar in a way to
the compositional biplots produced by PCA (Section 4.2), which simul-
taneously display the configuration of the samples and the relationship
between the variables (e.g. minerals or chemical elements). In the case
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Fig. 4. The effect of the Source RockDensity (SRD) correction on the Namibdataset, shown
on a ternary diagramwith P= plagioclase (ρ=2.67 g/cm 3), HM=heavyminerals (ρ=
3.5 g/cm 3), and Opq = opaque minerals (ρ = 5 g/cm 3). Circles mark the restored
compositions, lines connect the intermediate values of the SRD correction algorithm.
It is evident that samples N8 and N9 are most strongly affected by hydraulic sorting
and benefit the most from the SRD correction. The contour was drawn using the
compositions package's ellipses function.
of INDSCAL, the ‘source weights’ quantify the relative importance
attached by each of the data sources (i.e. provenance proxies) to the
horizontal and vertical axis of the ‘group configuration’ (Carroll and
Chang, 1970; De Leeuw and Mair, 2011; Vermeesch and Garzanti,
2015). In provenance:

IND b‐ indscal DZ;HM;PT;Trace;Majorð Þ
plot INDð Þ

Note that the resulting group configuration (Fig. 8a) looks signifi-
cantly different from that presented by Vermeesch and Garzanti
(2015). This is due to a normalisation error in the original petrographic
data table, which has been fixed in the present paper. The ‘source’
weights (Fig. 8b) show that the major and trace element compositions
attach much greater weight to the horizontal axis of the group configu-
ration than the other proxies. This is attributed to hydraulic sorting,
which affects bulk compositions more than it does mineral separates
(Vermeesch and Garzanti, 2015). This is entirely consistent with Fig. 4,
which showed that samples N8 and N9 are particularly affected by
winnowing effects.

Although, in principle, 3-way MDS yields more insightful output
than GPA, in practice things do not always work out so well. The
problem is that the output of INDSCAL is often very sensitive to subtle
changes in the input data. For example, running INDSCAL on the same
data as before, but using the S–H dissimilarity instead of the K–S
distance for the DZ data and the Bray-Curtis distance instead of the
Aitchison distance for the bulk chemistry results in a similar looking
group configuration (Fig. 8c), but significantly different subject weights
(Fig. 8d).

DZ$method b‐ ΄́SH ΄́
Major$method b‐ ΄́bray ΄́
Trace$method b‐ ΄́bray ΄́
IND:SH b‐ indscalðDZ;HM;PT;Trace;MajorÞ
plot IND:SHð Þ
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It is therefore advisable not to overinterpret these weights, and
thus in practice INDSCAL often does not outperform GPA as might
be hoped.

6. Conclusions

It is increasingly being recognised that, in order to truly understand
sediment routing systems, the combination of multiple proxies teaches
more than the sum of its parts (Garzanti, 2016). This paper introduced
an R package named provenance to facilitate the joint interpretation
of large datasets comprising many samples and several provenance
proxies. Technological advances such as fast scanning electron micro-
scopes (e.g, QEMSCAN, Allen et al., 2012) and high-throughput
LA-ICP-MS (e.g., Frei and Gerdes, 2009) promise to fully unlock the
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the major element composition of the Namib samples as an example. The two configurations a
power of multi-method provenance analysis and further increase the
need for the ‘Big Data’ analysis tools provided by provenance. Much
work remains to be done to extend the methods presented in this
paper. One example is the incorporation of dissimilarity measures to
compare distributional data of higher dimensionality, such as paired
U–Pb ages and Hf- or O-isotopic compositions (e.g., Owen, 1987).
Another example is the introduction of weighted MDS (de Leeuw and
Mair, 2009) to handle, say, datasets containing samples of widely differ-
ent sizes.

We would like to conclude this paper with the advice not to rely
exclusively on statistics for the interpretation of provenance data.
It is our opinion that statistical provenance analysis should be used
as a complement to rather than a substitute for expert geological
knowledge. It is sometimes found that petrographic information, es-
pecially the composition of the lithic fragments, allows an experi-
enced analyst to unequivocally constrain provenance with much
greater confidence than any machine or computer algorithm
(Garzanti, 2016). Like any ‘black box’ technique, statistical methods
such as MDS or INDSCAL can easily be abused. By exhaustively going
through all the options provided by provenance, it may be possible
to ‘cherry pick’ a configuration that supports a pre-conceived model.
Paraphrasing Andrew Lang, we would like to urge the user to resist
the temptation of using provenance in the same way that a drunk
uses lamp-posts – for support rather than illumination. It is important
to keep in mind that good scientific practise involves testing and
rejecting rather than ‘proving’ hypotheses (Popper, 1959). We hope
that provenance will be used according to this philosophy, along
with all the other techniques at the disposal of sedimentary geologists
today.
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