
1. Introduction
Multidimensional Scaling (MDS; Kruskal & Wish, 1978; Shepard, 1980; Vermeesch, 2013) is a multivariate 
ordination technique that has gained considerable popularity in recent years as a method to interpret large data 
sets in sedimentary provenance analysis (Vermeesch, 2013). Given a table of pairwise “dissimilarities” between 
samples, MDS produces a lower (typically two-) dimensional “map” in which similar samples plot close together 
and dissimilar samples plot far apart. MDS can be applied to a wide variety of different provenance proxies by 
choosing an appropriate dissimilarity measure. Vermeesch (2019) distinguishes between three different types of 
provenance data, each of which is associated with a specific database format (Figure 1):

1.  Distributional data such as detrital zircon U-Pb ages can be stored in lists of decimal numbers, where 
each list represents a sample and typically contains a different number of values (i.e., single grain ages). 
Two samples can be compared using the Kolmogorov-Smirnov distance or related nonparametric statistics 
(Vermeesch, 2018a). The resulting dissimilarity matrix fulfills the metric requirements and is therefore suita-
ble for both classical and nonmetric MDS (Vermeesch, 2013).

Abstract Varietal studies of sedimentary provenance use the properties of individual minerals or mineral 
groups. These are recorded as lists of numerical tables that can be difficult to interpret. Multidimensional 
Scaling (MDS) is a popular multivariate ordination technique for analyzing other types of provenance data 
based on, for example, detrital geochronology or petrography. Applying MDS to varietal data would allow 
them to be treated on an equal footing with those other provenance proxies. MDS requires a method to 
quantify the dissimilarity between two samples. This paper introduces three ways to do so. The first method 
(“treatment-by-row”) turns lists of (compositional) data tables into lists of vectors, using principal component 
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the varietal data. These multiple distributional data sets are subsequently subjected to Procrustes analysis or 
3-way MDS. The third method uses the Wasserstein-2 distance to jointly compare the rows and columns of 
varietal data. This arguably makes the best use of the data but acts more like a “black box” than the other two 
methods. Applying the three methods to a detrital titanite data set from Colombia yields similar results. After 
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Plain Language Summary The source of modern or ancient sediment can be determined by 
examining either the overall characteristics of the sediment or the chemical composition of individual sediment 
particles. With the help of recent analytical advancements, geologists can now analyze the complete chemical 
makeup of single grains of sand or silt. These types of data sets, known as “varietal” data sets, have the ability 
to uncover differences between sediments that are not visible through traditional methods. However, varietal 
data are incompatible with the statistical methods that geologists typically use to determine the origin of 
sediment. This paper addresses this issue by presenting three methods for quantifying the differences between 
varietal data sets, which is a crucial step in any further statistical analysis. Testing these methods on a varietal 
data set from Colombia shows similar outcomes. By using the techniques described in this paper, varietal data 
can now be combined with other conventional methods for determining sediment origin.
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2.  Compositional data such as the major and trace element compositions of bulk samples are stored in tables of 
decimal numbers, in which the rows represent samples and the columns represent components such as elements 
or isotopes. Pairwise comparison of the samples (rows) is best done using the Aitchison distance, which corre-
sponds to a Euclidean distance of centered log ratios (Aitchison, 1986). It can be shown that, in this case, 
(classical) MDS is mathematically equivalent to Principal Component Analysis (PCA; Vermeesch, 2013). The 
advantage of PCA over plain MDS is that it provides two sets of coordinates: one representing the rows and 
one representing the columns of the input data. This feature will be used in Section 3 of this paper.

3.  Count data such as the petrography or heavy mineral composition of sediment are stored in tables of integers, 
in which rows correspond to samples and columns to lithologies or minerals. Pairwise comparison of samples 
of count data can be done using the Chi-square distance, which can handle zero values, unlike the Aitchison 
distance (Vermeesch, 2018b). It can be shown that MDS of Chi-square distance tables is equivalent to Corre-
spondence Analysis (CA, Greenacre, 1984). Like PCA, CA also yields coordinates for the row and columns 
of the data tables, but these will not be discussed further here.
 This paper adds a fourth class of data to this list:

4.  Varietal data capture the variations in optical or chemical properties shown by an individual mineral or 
mineral group (Morton, 1985, 1991). This paper will focus on chemical properties, as measured by micro-
analytical techniques such as electron, laser, or ion microprobe analysis. These data can be stored in lists of 
compositional data tables. Each table in a varietal data set contains the same number of columns (representing 
elements or isotopes) and a different number of rows (representing individual analyses in a sample).

Unlike distributional, compositional and count data, varietal data have hitherto not been associated with a “natu-
ral” dissimilarity measure. It is therefore not clear how varietal data can be analyzed by MDS. This is unfortunate 
because the complex structure of varietal data makes the need for multivariate ordination all the more pressing. 
This paper addresses this issue by proposing three mechanisms to compare varietal data (Sections 2–4). With 
these mechanisms in place, varietal data can be treated on an equal footing with other types of provenance data. 
Section 5 shows how varietal data can be combined with distributional, compositional, and count data using 
3-way MDS and Procrustes analysis.

The methods discussed in this paper are illustrated with a data set from Colombia's Sierra Nevada de Santa Marta 
(SNSM). This data set comprises 17 samples of modern river sediment, characterized by 12 different provenance 
proxies, including three distributional data sets (detrital zircon, apatite, and titanite U-Pb ages); four compo-
sitional data sets (major and trace element composition of the sand and clay fraction); two data sets of counts 
(petrography and heavy minerals); and three varietal data sets (trace element compositions of detrital zircon, 
apatite, and titanite). The geological details of the data set are not relevant to the present discussion and are only 

Figure 1. Schematic representation of the four classes of provenance data. Gray boxes represent labels and black boxes 
numbers. Distributional data can be stored as lists of vectors, compositional data as tables of positive decimal numbers, count 
data as tables of nonnegative integers, and varietal data as lists of tables with positive decimal numbers.
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briefly mentioned in this paper. The reader is referred to a separate paper for 
further details about the field setting (Hatzenbühler et al., 2022).

2. Method 1: Treatment by Row
As explained in Section  1, varietal data are, in essence, lists of composi-
tional data tables. Compositional data can be compared using the Aitchison 
distance and subjected to PCA. The dimension-reducing properties of PCA 
can be used to turn a varietal data set into a distributional data set:

1.  Pool all the samples together to create one large compositional data set, 
that is, a single table in which each row represents an analysis and each 
column represents an element or isotope.

2.  Subject this data table to compositional PCA (Aitchison,  1983). 
Return the first principal component, which accounts for the largest 
proportion of the overall variance, and discard the other principal 
components.

3.  Parse the first principal component vector into different samples. This 
results in a list of vectors or, in other words, a distributional data set. 
This can then be analyzed by MDS with the usual Kolmogorov-Smirnov 
statistic.

Figure 2 applies the treatment-by-row strategy to the titanite chemistry data 
from the SNSM. Figure 2a shows the first two principal components of the 
pooled titanite compositions on a biplot. Only the first of these components 
(PC1) is used for subsequent distributional analysis. It is dominated by Pb, 
Fe, W, Sr, and Al, which are associated with negative loadings (red arrows 
in Figure 2a), and the light lanthanides (La, Ce, Pr, and Nd) and actinides 
(U and Th), which are associated with positive loadings. PC1 accounts for 
51% of the total variance among the 25 components. This means that 49% 
of the variance is discarded, including the 19% that is associated with PC2. 
It is a sacrifice that is needed to turn the varietal data set into a distribu-
tional one.

The distributions of PC1 are shown as kernel density estimates (KDEs) in 
Figure 2b. It is the shapes of these distributions that are used as a secondary 
provenance proxy. Inspecting the KDEs by eye shows some clear group-
ings. Samples TAP, MAR, RAN, and AGI are all characterized by sharp 
unimodal PC1 distributions that are dominated by positive values, which 
suggest that these samples are enriched in rare earth elements relative to 
Pb, Fe, W, and Al. In contrast, samples such as SEV, GUC, COR, and FRI 
are characterized by broader PC1 distributions that are shifted toward more 
negative values. This suggests that these samples are enriched in Pb, Fe, W, 
and Al relative to the rare earths in comparison with samples SEV, GUC, 
COR, and FRI.

A more objective comparison of the PC1 distributions is achieved by MDS 
analysis, using the KS-statistic (Figure 2c). As expected, samples SEV, GUC, 
COR, and FRI cluster closely together on the MDS map, opposite to samples 
MAR, TAP, AGI, and RAN. This grouping makes geological sense, as SEV, 
GUC, COR, and FRI were collected from river catchments that drain meta-
morphic lithologies (migmatite, gneiss, and metadiorite), whereas samples 
MAR, TAP, AGI, and RAN were collected from catchments that drain igne-
ous lithologies (Hatzenbühler et al., 2022).

Figure 2. (a) Principal Component Analysis biplot of the pooled titanite 
geochemistry data. The blue dots mark 1,571 titanite analyses, which 
belong to 17 samples. (b) Kernel density estimates (bandwidth = 0.8) 
of the first principal component (PC1) of the 17 samples; (c) Nonmetric 
Multidimensional Scaling (MDS) configuration of the 17 PC1 distributions, 
using the Kolmogorov-Smirnov statistic as a dissimilarity measure. MDS 
coordinates are located in the middle of the plot labels. The Kruskal Stress 
value suggests a “good” fit.
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3. Method 2: Treatment by Column
The treatment-by-row approach turns the varietal data into a single distri-
butional data set. An alternative approach is to turn it into multiple distribu-
tional data sets:

1.  Break the compositional data table of each sample up into its components 
(columns) and treat each of these components as a distributional data set. 
In other words, a varietal data set comprising n samples and m compo-
nents (e.g., elements) can be turned into m distributional data sets contain-
ing n samples (each in turn containing a variable number of analyses).

2.  Compute the dissimilarity matrices of all the distributional data sets and 
stack them together to form a multidimensional array of size n × m × m.

3.  Subject the stack of dissimilarity matrices to Procrustes analysis or 
3-way MDS (Carroll & Chang,  1970; Gower,  1975; Vermeesch & 
Garzanti, 2015). For Procrustes analysis, this produces a similar set of 
coordinates as Method 1. For 3-way MDS, it produces two sets of coordi-
nates: one for the rows (samples) and one for the columns (components). 
In this respect, 3-way MDS is somewhat similar to PCA.

Applying the treatment-by-column approach to the SNSM data, Figure 3a 
shows the output of a Generalized Procrustes Analysis GPA (Gower, 1975). 
It uses affine transformations to obtain a single set of coordinates from the 
25 compositional MDS configurations. The results in Figure 3a look remark-
ably similar to the MDS configuration of Figure 2c despite the completely 
different mechanism behind it. In both cases, samples SEV, GUC, COR, and 
FRI cluster closely together in an opposite corner from samples MAR, TAP, 
AGI, and RAN. The only major difference between the MDS (Figure 2c) and 
GPA (Figure 3a) configurations is the 45° clockwise rotation of the latter 
with respect to the former. This is expected since GPA is rotation invariant.

One limitation of GPA is the fact that all compositional information is lost 
in the visualization. This issue is addressed by 3-way MDS, as shown in 
Figures  3b and 3c. Together, these two pieces of graphical output display 
both the row names and the column names of the varietal data set. The “group 
configuration” of the samples (Figure 3b) is similar to the output of the GPA 
and (2-way) MDS configurations of Figures 2c and 3a: once again, samples 
SEV, GUC, COR, and FRI plot separately from samples MAR, TAP, AGI, 
and RAN. However, the 3-way MDS configuration (Figure 3b) is less similar 
to the GPA configuration (Figure 3a) than the GPA configuration is to the 
2-way MDS analysis (Figure 2c).

The great appeal of 3-way MDS lies in the combination of the group configu-
ration with the source weights, which are shown in Figure 3c. These weights 
show the relative importance that the two dimensions of the group configu-
ration attach to the 25 compositional variables. Pb, Fe, W, and Al plot at the 
upper left end of the subject weights. They are associated with light horizontal 
weights (x-coordinates of 0.7–0.8) and heavy vertical weights (y-coordinates 
of 1.7–2.0). The rare earth elements (except Eu) plot at the opposite end of 
the subject weights and are associated with comparatively heavy horizontal 
weights (x-coordinates of 1.0–1.1) and light vertical weights (y-coordinates 
of 0.7–1.0). Note that the grouping of the elements is in good agreement with 
the loadings of the first principal component (Figure 2a).

The weights tells us that the horizontal dimension (Dim 1) of the group 
configuration (Figure 3b) is controlled by variability in the rare earth compo-
sition, whereas the vertical direction (Dim 2) is controlled by variability in 
the Pb, Fe, W, and Al concentrations.

Figure 3. (a) Procrustes analysis of the 25 Multidimensional Scaling (MDS) 
configurations that are obtained by breaking the titanite chemistry data up into 
25 distributional data sets; (b) Group configuration of a 3-way MDS analysis 
of the 25 dissimilarity matrices extracted from the same titanite geochemistry 
data set; (c) Source weights of the 3-way MDS analysis, showing the stretching 
factors that are associated with each of the 25 components. These can be 
combined with the group configuration to yield 25 “private spaces” (Arabie 
et al., 1987; Vermeesch & Garzanti, 2015).
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4. Method 3: Wasserstein-2 Distance
Thus far we have seen how varietal data can be turned into distributional 
data, either by treating the compositions of each sample by row (method 1, 
Section  2) or by column (method 2, Section  3). In this Section, rows and 
columns will be treated jointly, using the principles of optimal transport (OT). 
OT is a burgeoning field of mathematics that is concerned with the constrained 
allocation of limited resources to achieve the greatest effect (Villani, 2021).

The “Wasserstein-p” distance (Wp) is a key concept in the field of OT. A 
classical metaphor for the Wp-distance is the minimum amount of work that 
needs to be done to transform a pile of earth into a different pile of earth with 
the same volume but different location and shape. Based on this analogy, the 
Wp-distance is also known as the “earth mover's distance.” Distributional data 
can be treated as 1-dimensional “piles of earth.” In this case, the W1-distance 
between two samples simply equates to the area between their respective 
empirical cumulative distribution functions (ECDFs):

𝑊𝑊𝑝𝑝(𝐴𝐴𝐴𝐴𝐴) =

⎛
⎜
⎜
⎝

1

∫
0

||𝐹𝐹
−1

𝐴𝐴
(𝑥𝑥) − 𝐹𝐹 −1

𝐴𝐴
(𝑥𝑥)||

𝑝𝑝
𝑑𝑑𝑥𝑥

⎞
⎟
⎟
⎠

1

𝑝𝑝

 (1)

where A and B are two distributional data sets, FA and FB are their respec-
tive ECDFs, and 𝐴𝐴 𝐴𝐴 −1

𝐴𝐴
 and 𝐴𝐴 𝐴𝐴 −1

𝐵𝐵
 are the corresponding quantile functions. The 

W2-distance is slightly less intuitive than the W1-distance but is neverthe-
less preferred because it mathematically behaves like a Euclidean distance. 
The W1 and W2 distances fulfill the metric requirements and can therefore be 
subjected to both classical and nonmetric MDS.

Lipp and Vermeesch  (2022) show that the W2-distance produces results 
that are often equivalent and sometimes better than those obtained by the 
KS-statistic. Thus, we could substitute the KS-statistic for the W2-distance 
in Sections 2 and 3. Alternatively, it is also possible to apply the W2-distance 
directly to the varietal data, without conversion to distributional data, by 
generalizing Equation 1 from one to two dimensions:

𝑊𝑊𝑝𝑝(𝐴𝐴𝐴𝐴𝐴) =

(
min
𝜋𝜋∈Π ∫ 𝑐𝑐(𝑥𝑥𝐴 𝑥𝑥)

𝑝𝑝
𝑑𝑑𝜋𝜋(𝑥𝑥𝐴 𝑥𝑥)

) 1

𝑝𝑝 (2)

where π is the “transport plan,” that is, a probability distribution (a member 
of the function space Π) in which dπ(x, y) is the amount of material that is 
transported from location x to y; and c(x, y) is the “cost” associated with this 
transport. Given two compositional tables (XA and XB, say) of size nA × m and 
nB × m, respectively the “cost matrix” is obtained by computing the Aitchison 
distance between each row of table XA and each row of table XB. This results 
in a matrix of size nA × nB. The OT plan is obtained from this cost matrix by 
linear programming (Villani, 2021), the principles of which go beyond the 
scope of this paper.

Computing the W2-distance for all sample pairs in a varietal data set yields 
a square dissimilarity matrix that can be analyzed by MDS. For the SNSM 
titanite data set, this yields a configuration that looks broadly similar to 
the results obtained by methods 1 and 2 (Figure 4). Notable exceptions are 
samples PRO and JER, which are significantly further removed from the bulk 
of the data set than they are in Figures 2c, 3a, and 3b. This behavior is likely 
a consequence of the small number of analyses in these two samples (20 for 
JER and 15 for PRO, see Figure 2b), as confirmed by the uncertainty regions 

Figure 4. (a) Nonmetric Multidimensional Scaling (MDS) configuration of 
the titanite data using the Wasserstein-2 distance (method 3). Although the 
Kruskal Stress value is higher than for Figure 2a, this does not necessarily 
mean that the configuration is less informative than that of method 1. The 
higher stress values just means that it was more difficult for the MDS 
algorithm to fit the dissimilarity matrix to a 2-dimensional configuration of 
points. The fit still qualifies as “good.” (b) Uncertainty regions of the MDS 
configuration, obtained by constructing the convex hull of 20 bootstrapped 
replicates of each sample. (c) Bootstrapped uncertainty regions for the 
treatment-by-row results of Figure 2c.
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of Figure 4b, which correspond to the convex hull of 20 bootstrapped repli-
cates for each sample. Repeating the same procedure for method 1 produces 
uncertainty regions that are, on average, larger than for method 3 but more 
uniform in size. This suggests that the “treatment-by-row” approach is less 
precise than the Wasserstein approach, but also less “heteroscedastic”.

The advantage of method 3 over the other two methods is that it makes full 
use of the entire data set, including any covariance structure that may be 
embedded therein. The disadvantage is that the compositional information 
is lost in the process of calculating the cost matrix. Therefore, method 3 acts 
more like a “black box” than method 1 and certainly more than method 2.

5. Combining Varietal Data With Other Provenance 
Proxies
Section 3 showed how Procrustes analysis and 3-way MDS can be used to 
combine multiple dissimilarity matrices together and extract a single config-
uration of samples from them. The same techniques can also be used to 
combine varietal data with other provenance proxies. In principle, this can be 
done using any of the three methods. However, in practice, methods 1 and 3 
are the most sensible choices for the following reason.

There are 12 provenance proxies in the SNSM data set, including three varie-
tal data sets, where the titanite, apatite, and zircon compositions comprise 25, 
22, and 8 compositional variables, respectively. Using methods 1 or 3, each 
varietal data set yields its own dissimilarity matrix so that the entire multi-
proxy data set involves 12 dissimilarity matrices. In contrast, using method 
2 would yield 14 + 25 + 22 + 8 = 69 dissimilarity matrices. This would 
cause several problems. First, fitting 69 matrices would be computationally 
difficult. Second, any 3-way MDS results would be difficult to interpret as 
the map of source weights would be overcrowded. Third, model 2 would give 
excessive weight to the varietal data compared to the other provenance prox-
ies, with the titanite compositions being represented 25 times.

Although both methods 1 and 3 are viable ways to combine varietal data 
with other types of provenance data, method 3 is arguably the most sensible 
option. This is because its main disadvantage (namely the limited interpret-
ability of the resulting MDS configurations) is nullified by the fact that the 
MDS configurations are not actually presented in the Procrustes map or the 
3-way MDS configuration.

Figure 5a presents the results of Procrustes analysis for the combined SNSM 
data set, in which each varietal data set was subjected to method 3. It repre-
sents 12 multivariate data sets in a single scatterplot that shares many charac-
teristics with the MDS plots of the titanite data set alone. Once again, samples 
SEV, COR, and FRI plot in close vicinity to each other and separately from 
samples MAR, TAP, AGI, and RAN. Note that sample GUC is missing from 
the Procrustes configuration. That is because this sample is missing from the 
data set of major element concentrations in clay.

Although the Procrustes map effectively summarizes the salient similari-
ties and differences between the samples in the full SNSM data set, it does 
not provide any clues as to what causes these differences. The output of the 
3-way MDS analysis addresses this issue. Figure 5b shows the group config-
uration. It fulfills a similar role to the Procrustes map of Figure 5a and has a 
similar appearance. However, the clustering of the different samples is less 
distinct in the group configuration than it is in the Procrustes map.

Figure 5. (a) Procrustes analysis and (b) group configuration of a 3-way 
Multidimensional Scaling (MDS) analysis of the 12 provenance proxies from 
the Sierra Nevada de Santa Marta, using method 3; (c) the source weights of 
the 3-way MDS analysis. DA, DT, and DZ stand for U-Pb age distributions 
of detrital apatite, titanite, and zircon, respectively; Ap, Ttn, and Zirc for the 
varietal apatite, titanite, and zircon data; PT and HM for petrography and 
heavy minerals; and major and trace for the chemical composition of the bulk 
sediment and clay fractions.
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Figure 5c shows the source weights of the 12 provenance proxies. It reveals that samples that are separated along 
the horizontal dimension (such as FRI and RAN) have different bulk compositions and similar distributional 
and varietal characteristics. In contrast, samples that are separated along the vertical dimension have compara-
tively similar bulk compositions but differ in their distributional and varietal provenance proxies. One possible 
interpretation of these trends is that the horizontal dimension is controlled by lithology, whereas the vertical 
dimension is controlled by the geological evolution of the source terrane(s).

6. Implementation in ‘provenance’
All the algorithms described in this paper have been implemented in a free and open R package called prove-
nance (Vermeesch et al., 2016). Provenance comes with a query-based user interface that does not require 
any knowledge of R. The following paragraphs, however, will focus on the command line interface. Version 4.1 of 
the package adds a new varietal data class, which can be populated from a .csv input file using the read.
varietal function:

library(provenance)

Ttn <- read.varietal(fname="Ttn_chem.csv",snames=3)

where Ttn_chem.csv is a compositional data table containing the concatenated compositions of all the 
samples. The column names of this table specify its components, whereas the row names consist of an alphanu-
meric prefix corresponding to the sample name, followed by a unique identifier for each analysis. The sname 
argument either specifies a vector of prefixes or the length of the prefix. The output of the read.varietal 
function consists of a list containing the input table, a vector of sample names (in this case the prefixes extracted 
from the row names), the name of the data set, and the dissimilarity measure (KS for Kolmogorov-Smirnov by 
default). The varietal data object can be passed on to several other functions of the provenance package. To 
subject the varietal data to (2-way) MDS using method 1 (treatment-by-row):

plot(MDS(Ttn,method="KS"))

where the output of the MDS function is nested as input in the overloaded plot function. To analyze the titanite 
chemistry data by method 2 (treatment-by-column), using Procrustes analysis:

plot(procrustes(Ttn))

and using 3-way MDS (Carroll & Chang, 1970, a.k.a. “Individual Differences Scaling” or INDSCAL):

plot(indscal(Ttn))

Method 3 requires linear programming, which is currently delegated to either the transport or approxOT 
package (Dunipace, 2021; Schuhmacher et al., 2022). Using the former:

plot(MDS(Ttn,method="W2",package="transport"))

To combine multiple provenance proxies by Procrustes analysis, for example, using titanite, apatite, and zircon 
chemistry (using method 3); titanite, apatite, and zircon U-Pb ages; heavy minerals and petrography; and the 
major and trace element compositions of the bulk sediment and clay fractions:

Ttn <- read.varietal(fname="Ttn_chem.csv",snames=3,method="W2")

Ap <- read.varietal(fname="Ap_chem.csv",snames=3,method="W2")

Zr <- read.varietal(fname="Zr_chem.csv",snames=3,method="W2")

DA <- read.distributional("DA.csv")

DT <- read.distributional("DT.csv")

DZ <- read.distributional("DZ.csv")

HM <- read.counts("HM.csv")

PT <- read.counts("PT.csv")
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major_bulk <- read.compositional("Major_BULK.csv")

major_clay <- read.compositional("Major_CLAY.csv")

trace_bulk <- read.compositional("Trace_BULK.csv")

trace_clay <- read.compositional("Trace_CLAY.csv")

proc <- procrustes(Ttn,Ap,Zr,DA,DT,DZ,HM,PT,

           major_bulk,major_clay,trace_bulk,trace_clay)

plot(proc)

Note that the dissimilarity measure (i.e., W2) is added to the data by the read.varietal function, unlike the 
earlier example, which used the default KS method. Analyzing the same holistic data set by 3-way MDS:

plot(indscal(Ttn,Ap,Zr,DA,DT,DZ,HM,PT,

        major_bulk,major_clay,trace_bulk,trace_clay))

7. Conclusions
This paper introduced three different approaches to quantify the dissimilarity between different samples in vari-
etal data sets. These approaches can be used to populate dissimilarity matrices, which can be analyzed by MDS.

Methods 1–3 produce reassuringly similar results for the titanite chemistry data of the SNSM. This suggests that 
even though the three methods each consider different parts of the data set, they all retain the key intersample 
similarities and differences. Comparable results are obtained for the other provenance proxies, which confirms 
that varietal data do carry a robust and reproducible provenance signature. The consistency of the results obtained 
from a single data set with the combined data set of all the provenance proxies further lends credence to the 
conclusions drawn from the multivariate ordination analyses.

In principle, method 3 is the most powerful of the three approaches because it directly converts varietal data to 
dissimilarity matrices and jointly considers all the compositional information that is stored in the varietal data. 
In contrast, methods 1 and 2 require the conversion of the varietal data to distributional data. Some information 
is lost in this additional step. For method 1, only the information contained in the first principal component is 
retained. For method 2, the connection between the various columns of the compositional data members of the 
varietal data structure is lost, including any constant sum constraint.

Despite these limitations, methods 1 and 2 also offer some advantages over method 3. Whereas the connection 
between the MDS configuration and the compositional data variables is lost in the process of calculating the 
Wasserstein-2 distance, this connection is partially retained in method 1 and nearly completely in method 2. Thus, 
the results of methods 1 and 2 are easier to verify and interpret than those of method 3.

For example, in the case of the titanite chemistry data from the SNSM, samples MAR and COR plot on opposite 
sides of the MDS configuration (Figure 4), and it is not immediately clear which compositional variables cause 
these differences. However, inspection of PC1 in method 1 (Figure 2a) or, more directly, the subject weights in 
method 2 (Figure 3c) reveals that these trends reflect differences in the W-Al-Pb-Fe versus actinides and light 
rare earth abundances.

At first glance, the Procrustes analysis (Figure  3a) does not seem to offer any advantage over 3-way MDS. 
However, it is useful to repeat the caveat that was previously raised by Borg and Groenen (2005), which is that 
the source weights of a 3-way MDS analysis are sensitive to noise and are not as stable as the user might wish. 
Thus it is important not to overinterpret the results of 3-way MDS.

Inspection of Figures 4b and 4c also suggests that the W2 distance is more sensitive to small sample fluctuations 
than the KS-distance. This is clearest for samples PRO and JER, which contain only 15 and 20 titanite analy-
ses, respectively. Although the W2 results are, on average, more precise than the corresponding KS results, the 
difference in precision between small and large samples is greater for the W2-distance than the KS-distance. This 
explains the distant location of PRO and JER on the MDS configuration of Figure 4a.
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The limitations of method 3 become less important when it is used to combine varietal data with other prove-
nance proxies (Section 5). The full SNSM data set contains no fewer than 126,408 measurements, spanning 12 
dimensions worth of information. It is impossible to capture the full richness of data sets like this in a few simple 
scatterplots such as Figure 5. However, the internal consistency of the SNSM results and their sensible geological 
interpretation suggest that the approaches described in this paper are capable of separating geologically meaning-
ful signals from noise. Further applications will be needed to confirm if this applies in other geological settings 
as well.

Data Availability Statement
All the data and software introduced in this paper are publicly available on the Comprehensive R Archive 
Network (CRAN, https://CRAN.R-project.org/package=provenance) and on GitHub (https://github.com/pver-
mees/provenance/, https://doi.org/10.5281/zenodo.7699060). The raw data files can be found at https://github.
com/pvermees/provenance/tree/master/inst/SNSM/.
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