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[1] Two types of quantitative information can be distinguished in the Earth sciences:
categorical data (e.g., mineral type, fossil name) and continuous data (e.g., apparent age,
strike, dip). Many branches of the Earth sciences study populations of such data by
collecting a random sample and binning it into a histogram. Histograms of categorical data
follow multinomial distributions. All possible outcomes of a multinomial distribution
with M categories must plot on a (M � 1) simplex DM�1 because they are subject to a
constant sum constraint. Confidence regions for such multinomial distributions can be
computed using Bayesian statistics. The conjugate prior/posterior to the multinomial
distribution is the Dirichlet distribution. A 100(1-a)% confidence interval for the
unknown multinomial population given an observed sample histogram is a polygon on
DM�1 containing 100(1-a)% of its Dirichlet posterior. The projection of this polygon onto
the sides of the simplex yields M confidence intervals for the M bin counts. These
confidence intervals are ‘‘simultaneous’’ in the sense that they form a band completely
containing the 100(1-a)% most likely multinomial populations. As opposed to categorical
variables, adjacent bins of histograms containing continuous variables are not mutually
independent. If this ‘‘smoothness’’ of the unknown population is not taken into account,
the Bayesian confidence bands described above will be overly conservative. This problem
can be solved by introducing an ad hoc prior of ‘‘smoothing weights’’ w = e�sr, where r is
the integrated squared second derivative of the histogram and s is a ‘‘smoothing
parameter.’’
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1. Introduction

[2] Consider a jar filled with infinitely many balls of M
different colors. Suppose that we want to estimate the
proportions of the colors in the jar by drawing a sample
of N balls from it and counting the number of times each
of the colors occurs in this sample: n = {n1, n2,
. . .nMj

PM
j¼1nj = N}. Then our best guess (the so-called

‘‘maximum likelihood estimate’’) for the M proportions is

p = {p1 = n1/N, p2 = n2/N, . . ., pM = nM/Nj
PM

j¼1pj = 1}.
Now we ask ourselves the question: how confident are
we about p? In other words: Are there any other sets
of proportions p0 = {p01, p02, . . ., p0Mj

PM
j¼1p

0
j = 1} that

could have yielded the observations n with reasonable
probability?
[3] This simple statistical problem frequently occurs in

geological applications. Of course, geologists are not count-
ing ‘‘balls’’ but things like sediment grains or faults. Neither
are they interested in ‘‘color’’ (although sometimes they do)
but in mineral type, age, or angle. In such studies, the
information that is interpreted is not represented by the
measurements themselves but by estimates of their proba-
bility distribution, which are most often represented by

some sort of histogram. When reporting analytical data, it
is considered good scientific practice to provide an estimate
of the associated statistical uncertainties. This paper
presents a method to extend this practice to the kind of
point-counting studies described above. In section 2, we
will introduce a number of examples of histograms in the
Earth sciences, as a further motivation of the present study.
We will distinguish between two types of histograms. A first
type is used to represent categorical variables, such as color
or mineral type. Here, we will also discuss the ternary
diagram, which is a different way of visualizing histograms
with only three bins, that is quite popular in sedimentary
petrography. A second type of histogram which we will
discuss contains continuous, or time series data. The prime
examples of this kind of histograms are detrital thermo-
chronological grain age histograms, which tally the number
of times a range of apparent grain ages occur in a detrital
sample. However, continuous histograms need not neces-
sarily contain age data, and we will see an alternative
example for which they do not. The fundamental difference
between the aforementioned two types of histograms is that
the bins of categorical histograms are mutually independent,
while adjacent bins of continuous histograms are correlated
to some degree. As a consequence, the method for con-
structing their respective confidence bands will be some-
what different.
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[4] After section 2 has set the stage, we can begin
developing the statistics of the actual method itself. The
simultaneous confidence bands discussed in this paper will
be derived according to the so-called ‘‘Bayesian’’ paradigm,
as opposed to the more traditional ‘‘frequentist’’ paradigm.
In section 3, these terms will be explained using a simple
binomial example, which is a degenerate case of the
problem this paper addresses. So by the end of section 3,
we should be in a good shape to compute simultaneous
confidence bands for multinomial proportions, which is the
subject of section 4. Section 4.1 will explain why frequentist
confidence intervals do not easily generalize to histograms
with more than three bins. As an alternative, a Bayesian
method to construct confidence bands for categorical histo-
grams will be developed in section 4.2. Finally, section 4.3
gives an ad hoc way to modify the method of section 4.2 so
that it takes into account the autocorrelation of continuous
histograms. Section 5 revisits the examples of section 2 and
answers the questions that were raised in it. Section 6 wraps
up the paper with some summarizing conclusions.

2. Setting the Stage: Examples of Histograms in
the Earth Sciences

2.1. Categorical Histograms

[5] The framework composition of sandstones contains
useful information about their provenance, transport history
and postdepositional evolution, and is used to reconstruct
the plate tectonic setting of sedimentary basins [e.g.,
Dickinson et al., 1983; Dickinson, 1985]. Framework
compositions are measured by petrographic point count-
ing of thin sections. The results are often plotted on
ternary diagrams, the most popular of which is the QFL
diagram, which depicts quartz, feldspar, and lithic frag-
ments (Figure 1). As discussed in section 1, one of the
questions this paper will answer is how to estimate the
statistical uncertainties for such point-counting measure-
ments. Van der Plas and Tobi [1965] discuss the construction

of confidence intervals for individual point-counting pro-
portions, for example the percentage of quartz in a thin
section. However, we are rarely interested in just a single
proportion. This paper develops a Bayesian method to
compute simultaneous confidence bands for categorical
histograms. This method will allow an estimation of the
likelihood that a specific sample falls into one particular field
of tectonic affinity on the QFL plot (Figure 1). To avoid
confusion, we should remark that while this paper will
discuss the statistical uncertainties of individual point-
counting measurements (one sample), it will not talk about
the uncertainties on populations of several measurements.
Whereas the former follows a multinomial distribution, the
latter can take many forms, such as the logistic normal
distribution. Many interesting issues are associated with
ternary populations, but the reader is referred to Weltje
[2002] for a discussion of them. Figure 1 shows a petro-
graphic QFL diagram with tectonic discrimination fields by
Dickinson et al. [1983]. The ‘‘cloud’’ of points and the
associated hand-drawn contour mark a detrital population.
For the discussion of how to compute this contour in a
statistically more rigorous way, we again refer to Weltje
[2002]. The present paper will address the following ques-
tions: (1) How different are samples A and B? (2) Is it
possible that samples A and B belong to the contoured
population? (3) How certain are we that sample C falls into
the ‘‘transitional arc’’ field? Could it be that it actually
belongs to one of the neighboring fields? (4) How does the
number of grains affect the precision of our point-counting
results? Since the ternary diagram plots ratios, we lose
information on the actual number of grains counted. For
example, sample A represents 200 counts, while sample B
represents 400 and there is no way to tell this from Figure 1.
[6] The ternary diagram is very popular in sedimentary

petrography, but when more than three components need to
be plotted, we must use another device: the histogram. This
is the case in heavy mineral analysis [e.g., Faupl et al.,
2002], and in clast counting, which is a scaled-up version of
petrographic point counting [e.g., Yue et al., 2001]. Figure 2
shows two heavy mineral analyses by Faupl et al. [2002].
For each sample, 200 grains were counted. The basic
questions that arise when doing this sort of analysis are

Figure 1. Petrographic QFL diagram with tectonic
discrimination fields by Dickinson et al. [1983]. All samples
except A represent 400 synthetic point counts. Sample A is
based on only 200 counts.

Figure 2. Heavy mineral analysis of two samples from the
Peloponnese (Greece) by Faupl et al. [2002]. Zr, zircon; Tr,
tourmaline; Rt, rutile; Ap, apatite; Gt, garnet; St, staurolite;
Cl, chloritoid; Cs, chrome spinel.
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the same as for the ternary example: (1) What is the
precision of the estimated mineral fractions? (2) How would
the precision be affected by increasing N, the total number
of grains counted? (3) Are samples ga-229/1 and io-234/1
compatible with each other? Regarding the last question, it
is useful to remark that when a very large number of grains
are counted, it is almost certain that a statistically significant
difference between two samples of the same rock will be
found. No two samples collected on the field have an
exactly identical composition. As the number of counts
increases, our power to resolve even the smallest differences
will increase. It is when this point is reached that the
petrographic composition of the sample has been properly
characterized and we can begin to study populations of
samples. As a comforting note, we can already tell here that
the guidelines of Van der Plas and Tobi [1965] fulfill this
requirement most of the time.

2.2. Continuous Histograms (Time Series)

[7] Alternatively, histograms can also be used for contin-
uous data. Detrital thermochronology tries to find the
provenance area of sedimentary rocks and unravel its
geologic history, by dating individual mineral grains in
the sample [e.g., Avigad et al., 2003; DeGraaff-Surpless
et al., 2003]. Figure 3 shows three detrital zircon U-Pb grain
age distributions from the Methow Basin, in the southern
Canadian cordillera [DeGraaff-Surpless et al., 2003]. For
each sample, Figure 3 not only shows the grain age
histogram, but also the continuous ‘‘kernel density esti-
mate.’’ Unlike categorical point-counting data, the grain
ages that are used in detrital thermochronology can have
significant analytical uncertainties. This is a second source
of error (the first one being counting statistics) that is not
taken into account by the histogram. The kernel density
estimator is an alternative estimator of probability density
that does take into account measurement uncertainties.
However, it is not easy to estimate the effect of counting

statistics on kernel density estimates. In this paper, we will
ignore measurement uncertainties, and just focus on the
effect of counting statistics. We will later see that in order to
get a better idea of the importance of both factors, it is good
practice to use histograms in conjunction with kernel
density estimates. The reader is referred to Silverman
[1986] and Sircombe and Hazelton [2004] for a discussion
of the kernel density estimator and some issues that are
associated with it. This paper will answer the following
questions concerning detrital grain age histograms: (1) What
is the uncertainty on the bin counts? (2) How certain are we
that empty bins actually correspond to missing age frac-
tions? (3) Are grain age histograms such as the three shown
in Figure 3 compatible with or significantly different from
each other?
[8] It is easy to see that detrital grain age histograms

represent time series. However, continuous histograms are
not restricted to the time dimension. Figure 4 shows a
histogram of dip estimates for 33 reverse faults reported by
Collettini and Sibson [2001]. Although the units of this
histogram are not time, but angle (in degrees), it still
represents a continuous function, or ‘‘time series’’. One of
the observations made by Collettini and Sibson about this
histogram is that it is bimodal, with one peak at 30� and a
second at 50�. The simultaneous Bayesian confidence
intervals described in this paper will tell us if this
bimodality is statistically significant on for example a
95% confidence level. Whereas categorical data follow
multinomial distributions, where the bins are mutually
independent apart from the fact that they must sum to a
fixed number (the sample size), time series are autocorre-
lated to some degree, and this must be taken into account
when computing confidence intervals. This paper will
assess the importance of this problem and propose a
Bayesian solution to it in the form of an ad hoc smoothing
prior.

3. Definition of a Confidence Interval

[9] In this section, we will introduce some fundamental
statistical principles and nomenclature which will be needed
in section 4. Surprisingly enough, there is no general
agreement in the statistics community on the definition of

Figure 3. Three U-Pb grain age histograms and corre-
sponding kernel density estimates for samples of detrital
zircon from the Cretaceous Methow basin [DeGraaff-
Surpless et al., 2003].

Figure 4. Histogram of 33 reverse fault dip estimates.
Although the measurements are in degrees, the histogram
can still be considered a ‘‘time series’’ because it is expected
to fit a more or less smooth, autocorrelated function.
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a confidence interval. There are two points of view: the
frequentist and the Bayesian point of view. To explain the
difference between these two paradigms, we will consider a
degenerate case of the problem at hand. Revisiting the
metaphor from section 1, we now consider a jar with balls
of only two colors, say black and white. Drawing N balls
from this jar as before, we count the number n of black
balls. For this binomial experiment, the maximum likeli-
hood estimate for the proportion of black balls in the jar is
p = n/N. How do we construct a 100(1-a)% confidence
interval for this estimate? An approximate solution to this
problem is given by Van der Plas and Tobi [1965], but
both the frequentist and the Bayesian methods which will
be discussed next are exact.

3.1. Frequentist Approach

[10] According to the ‘‘frequentist’’, a confidence inter-
val for a parameter q ‘‘consists precisely of all those values
of q0 for which the null hypothesis H0: q = q0 is accepted’’
[Rice, 1995]. For example, we saw earlier that histograms
represent the outcome of a multinomial experiment. The
probability distribution of each of the bin counts of a
histogram is the marginal of a multinomial distribution,
which is the binomial distribution. Consider a bin contain-
ing n out of N measurements. The maximum likelihood
estimate for the binomial parameter p then is p̂MLE = n/N.
Now consider the null hypothesis H0: p = po versus the
alternative Ha: p 6¼ po. H0 is accepted on a 100(1-a)%
confidence level if:

XN
i¼n

N

i

� �
piop

N�i
o <

a
2
<
Xn
i¼0

N

i

� �
piop

N�i
o ð1Þ

Now, according to the definition, a two-sided confidence
interval contains all those values for po which pass the test
given by equation (1). The solution can be found by
numerical iteration and/or interpolation [Clopper and
Pearson, 1934]. An example for N = 50, n = 20 and a =
0.1 is given in Figure 5.

[11] It can be shown [e.g., Blyth, 1986] that equation (1)
is mathematically equivalent to

p ¼ B 1� a
2
; nþ 1;N � n

� �
< p < B

a
2
; n;N � nþ 1

� �
¼ �p

ð2Þ

Where B(a, a, b) is the 100a percentile of the b distribution
with parameters a and b:

b a; bð Þ ¼ G aþ bð Þ
G að ÞG bð Þ p

a�1 1� pð Þb�1 ð3Þ

where G(x) is the gamma function, which can be considered
the continuous version of the factorial operator. For
example, if x is an integer, then G(x + 1) = x!. Likewise,
the b distribution can be thought of as being a continuous
version of the binomial distribution. Notice that for n = 0
and n = N, equation (2) breaks down. Instead, the following
expressions should be used:

p ¼ 0 < p < 1� a1=N ¼ �p if n ¼ 0; or ð4Þ

p ¼ 1� að Þ1=N< p < 1 ¼ �p if n ¼ N ð5Þ

3.2. Bayesian Approach

[12] For a ‘‘Bayesian’’, a 100(1-a)% confidence (or
‘‘credibility’’) interval for a parameter q given some data
x is an interval for q that covers 100(1-a)% of its posterior
distribution P(qjx), where the latter is given by

P q xjð Þ / P xjqð ÞP qð Þ ð6Þ

with P(q) a ‘‘prior distribution’’ on q and P(xjq) the
‘‘likelihood function’’ of the data given the parameter.
The subjectivity of the Bayesian approach lies in the choice
of the prior distribution. A uniform distribution (‘‘flat
prior’’) is often taken if no prior information exists as to
what the value of q should be. However, whether or not this
is a good ‘‘noninformative’’ prior has been challenged. The
uniform distribution does not yield posterior distributions
that are invariant under reparameterization [Jeffreys, 1946].
We will soon see an example of an alternative prior
distribution that does have this invariance.
[13] We now return to the problem of independent cred-

ibility intervals for multinomial proportions. Again, we
consider a bin with n counts out of N and want to construct
a 100(1-a)% credibility interval for p = n/N. The likelihood

function is binomial: P(njp) = N

n

� �
pnpN�n. If we take a

flat prior for P(p), then the posterior is a b(n + 1, N � n + 1)
distribution [Bayes, 1763]:

P q < p < rjnð Þ ¼ G N þ 2ð Þ
G nþ 1ð ÞG N � nþ 1ð Þ

Z r

q

pn 1� pð ÞN�n
dp

ð7Þ

Therefore

p ¼ B 1� a
2
; nþ 1;N � nþ 1

� �
< p

< B
a
2
; nþ 1;N � nþ 1

� �
¼ �p ð8Þ

Figure 5. The 90% frequentist confidence bounds on p for
n = 20, N = 50. The step functions represent the cumulative
binomial distribution with parameters (N, p ) and (N, �p),
respectively; p is the lowest value for p for which 20 out of
50 counts would occur more than 5% of the time. Likewise,
�p is the highest value for p that would yield the observed
ratio of 20/50 with more than 5% probability.
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Notice the similarities between equations (2) and (8).
However, as opposed to the frequentist equation (2), the
Bayesian equation (7) does not require a special case for
n = 0 and n = N. The b distribution is an example of a
‘‘conjugate prior.’’ This means that if we take a b-distributed
prior, and a binomial sampling distribution, then the
posterior will also have a b distribution. The uniform
distribution is a special case of the b distribution for a = b = 1
(i.e., b(1, 1)). b(1

2
, 1
2
) is a noninformative prior (‘‘Jeffreys’

prior’’) for the binomial distribution that is invariant
under reparameterization [e.g., Gill, 2002, p. 124]. The
posterior distribution then becomes b(n + 1

2
, N � n + 1

2
).

Taking the same example as for section 3.1 (i.e., n = 20,
N = 50, a = 0.1), Figure 6 shows a two-sided Bayesian
credibility interval for p.

4. Simultaneous Confidence Intervals for
Multinomial Proportions

[14] As shown in section 3, it is relatively easy to
construct independent confidence intervals for each of the
M bin counts nm (1 
 m 
 M) that make up a histogram,
both under the frequentist and the Bayesian paradigm.
However, we need to be more ambitious than that. In order
to be able to compare two samples and test if they are
significantly different, we would like to construct simulta-
neous confidence intervals for all of the M histogram bins.
Like we did for the binomial case in section 3, we will again
discuss first the frequentist and then the Bayesian solution
to this problem. It will soon become clear why the Bayesian
method is more appropriate for our purposes.

4.1. Frequentist Confidence Regions

[15] As discussed before, histograms are representations
of multinomial distributions. Suppose we have N numbers
(‘‘balls’’), distributed over M bins (‘‘colors’’), corre-
sponding to M multinomial proportions. The bin counts
(n1, .., nM) must fulfill the condition

PM
m¼1nm = N.

Therefore all possible multinomial distributions must fall
on an ‘‘M simplex’’ DM�1. An example of a three simplex

(which just is another word for ‘‘ternary diagram’’) is
shown on Figure 7. Consider a histogram with M bins,
representing a sample of N numbers: XN = {x1, .., xN}.
This histogram corresponds to one point on DM�1, the
‘‘maximum likelihood estimate’’ (MLE) of the bin counts.
Under the frequentist paradigm, outlined in section 3.1, a
100(1-a)% confidence region on DM�1 consists of all
those probability vectors p = (p1, .., pMj

PM
m¼1pm = 1)

which are capable of yielding observations as extreme as
n = (n1, .., nMj

PM
m¼1nm = N) with at least 100(1-a)%

probability.
[16] In order to find this region, a grid of possible pkl =

(p1
kl, .., pM

kl j
PM

m¼1pm
kl = 1) is evaluated. For each of these

‘‘test populations’’ (e.g., the black dot on Figure 8) a large
number of synthetic ‘‘samples’’ (the white dots on Figure 8)
of N numbers were generated, following an algorithm given
in Appendix A. Next, we construct the 100a% ‘‘convex
hull’’ of these synthetic samples. This is a polygon con-
taining 100a% (the so-called ‘‘hull percentile’’) of them.
We test to see if pMLE (the black square on Figure 8) falls
within the convex hull of pkl. If this is not the case, then pkl

falls outside the 100a% confidence region of pMLE. This
procedure is repeated for the entire grid (k = 1..K, l = 1..L).
On Figure 9, the contour lines contain all those grid points
for which the MLEs fall within their 95 percentile hull.
[17] Figures 8 and 9 just serve as an illustration of the

frequentist paradigm on D2. A more efficient way to

Figure 6. The 90% Bayesian credibility bounds on p for
n = 20, N = 50. The curve represents the cumulative b
distribution function with parameters n + 1 and N � n + 1,
using a flat prior. The credibility interval [p < p < �p] is a
(symmetric) interval for p that covers 90% of the area under
this posterior distribution.

Figure 7. All possible outcomes of a trinomial experi-
ment, for example, a three-bin histogram of N measure-
ments xi plot on a three simplex. The maximum likelihood
estimate for the multinomial proportions is given by
pm

MLE = (number of xi in mth bin)/N(m = 1, 2, or 3). The
maximum likelihood estimate (MLE) is represented by a
solid circle. The posterior distribution of the unknown
parameters p1, p2, and p3 is given by a Dirichlet
distribution. To find simultaneous 100(1-a)% confidence
bounds for these parameters, we need to find a polygon on
the simplex that contains 100(1-a)% of the posterior
distribution.
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compute approximate frequentist confidence regions on the
ternary diagram is described by Weltje [2002, p. 246].
Projecting the frequentist confidence region onto the axes
of the simplex would not represent that region, but the
smallest polygon circumscribing it. Therefore it is not
possible to accurately ‘‘translate’’ a frequentist contour
plot to error bars on a histogram, which makes it impos-
sible to easily visualize the frequentist uncertainties of
histograms with more than three bins. The Bayesian
credibility regions discussed next solve this problem.

4.2. Bayesian Credibility Regions

[18] It is relatively easy to generalize the methodology
outlined in section 3.2 from a binomial to a multinomial
situation. Recall that the conjugate prior to a binomial
distribution is the b distribution. The conjugate prior to a
multinomial distribution is the ‘‘Dirichlet distribution’’:

Da p1; ::; pMð Þ ¼
G
Xi¼M

i¼1
ai

� �
Yi¼M

i¼1
G aið Þ

Yi¼M

i¼1

pai�1
i ð9Þ

[19] The multinomial uniform distribution is a special case
of the Dirichlet distribution with all ai = 1. If n is a vector of
M bin counts, then the posterior distribution under such a flat
prior is Dn+1(p1, .., pM). The choice of a prior that is truly
noninformative and invariant under reparameterization is
more controversial for the Dirichlet than it was for the b
distribution. Jeffreys suggested taking ai = 1/2, while Perks
recommended using ai = 1/M (8i = 1..M) [Good, 1965].
Similar to the binomial case (section 3.2), simultaneous
Bayesian credibility bands for the multinomial distribution
are intervals that cover 100(1-a)% of the area under the

posterior distribution. A few examples of Dirichlet poste-
riors are shown on Figure 10. As opposed to the b
distribution, there are no tables of the percentiles of the
Dirichlet distribution. In order to integrate this multidi-
mensional function ourselves, we have to numerically
sample from it, as described by Devroye [1986] and in
Appendix B.
[20] Thus a collection of B ‘‘sample histograms’’ can be

constructed, representing B samples from the posterior
Dirichlet distribution (Figure 11). All these histograms
correspond to points on DM�1. Asymptotically, independent
100(a/2) and 100(1 � a/2) percentiles for the replicates of
each of the histogram bin counts will converge to the
independent credibility intervals of equation (8). However,
it is also possible to obtain simultaneous credibility
bands. The Bayesian way of doing this is to find M
credibility intervals that define a polygon on DM�1 con-
taining 100(1-a)% of the posterior distribution (Figures 7
and 11). The algorithm for finding this polygon is given in
Appendix B. Figures 12 and 13 show the effect of different
priors on the posterior distribution and its corresponding
credibility polygon.
[21] This Bayesian method yields nonzero credibility

intervals, even for empty bins. It works for histograms but
not for kernel density estimates, which are continuous
functions that cannot be easily represented on a simplex.
As histograms traditionally do not take into account mea-
surement uncertainties, the Bayesian credibility bands only
reflect the uncertainties induced by the counting statistics,
and not those caused by analytical imprecision. A final
remark to be made is that, strictly speaking, the way we
have defined simultaneous Bayesian credibility regions is
only exact for ‘‘categorical histograms’’, such as those

Figure 8. Test if the trinomial distribution marked by the
black dot (p1 = 1/2, p2 = 1/6, p3 = 1/3) belongs to the 95%
confidence region of the trinomial experiment marked by
the black square (n1 = 5, n2 = 10, n3 = 15). A large number
(1000) of trinomial samples of N = 30 numbers were
generated from this distribution. They are represented by the
open circles. The black contour line represents the 95%
convex hull. Since the solid square does not fall within this
hull, the solid circle falls outside the 95% confidence region
of the trinomial experiment.

Figure 9. Maximum likelihood estimates (MLE) (solid
circles) for two trinomial experiments ({n1 = 5, n2 = 10,
n3 = 15} and {n1 = 15, n2 = 15, n3 = 0}). The black
contours represent the frequentist confidence regions,
obtained by repeating the experiment shown in Figure 7
on a 1250 point grid. For each of the grid points, B = 200
trinomial samples were generated. The gray lines outline
the Bayesian credibility regions (using a flat prior). The
agreement between the two methods is surprisingly good.
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obtained by point-counting mineral assemblages. However,
if the histogram represents a time series, which is the case in
detrital thermochronology, it will have some ‘‘smoothness’’
to it. This effect will not be captured by the Bayesian
credibility regions discussed before. The categorical Bayes-
ian credibility bands can be overly conservative if applied to
such ‘‘autocorrelated’’ data. Section 4.3 discusses this issue.

4.3. Bayesian Credibility Bands for Smooth
Histograms

[22] Strictly speaking, Bayesian credibility bands are only
applicable to nonsmooth or categorical data (section 4.2). In

this section, we will discuss the importance of this problem
and a way to solve it. We can express the ‘‘roughness’’ r of
a time series g(t) as a function f of its second derivative:

r g tð Þð Þ ¼ f

Z
d2g tð Þ
dt2

� �2

dt

 !
ð10Þ

For example, for the discrete case of a histogram with three
bins n = (n1, n2, n3), we could write

r nð Þ ¼ n1 � 2n2 þ n3ð Þ2 ð11Þ

Figure 11. Numerical integration of the area under
posterior distributions such as those in Figure 10. The open
circle shows the maximum likelihood trinomial distribution
for a particular sample (n1 = 5, n2 = 10, n3 = 15). The solid
circles represent 1000 random samples from the Dirichlet
posterior distribution D6,11,16 on the three simplex. The
polygon contains 95% of these points. The projection of this
polygon onto the three parameter axes yields the simulta-
neous Bayesian credibility intervals.

Figure 12. Three simplex with sample bin counts (5, 10,
15) and (15, 15, 0) (solid circles). The solid polygons
represent their respective simultaneous 95% Bayesian
credibility polygons with uniform prior D1,1,1, while for
the dashed polygons, Perks’ prior D1

3
; 1
3
; 1
3
was used.

Figure 10. Analytical contours for different posterior
Dirichlet distributions. The parameters are (a) (1, 2, 3),
(b) (5, 10, 15), and (c) (0, 0, 5). Comparison of Figures 10a
and 10b shows how the posterior Dirichlet distribution is
more tightly constrained when more data are used.
Figure 10c shows how, even when two bins are empty,
meaningful confidence intervals can be computed.
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We now define the ‘‘smoothness weight’’ w as

w ¼ e�sr ð12Þ

where s is the ‘‘smoothing parameter’’. Figure 14 shows the
trinomial smoothing weights for different values of s (for
fixed N = n1 + n2 + n3). The distribution of the weights can
be used to ‘‘filter’’ the posterior distribution, thereby in
effect serving as a ‘‘prior distribution’’ (a ‘‘smoothing
prior’’). The algorithmic details for this procedure are given
in Appendix C.
[23] Figure 15 shows the results of this kind of posterior

filtering for a trinomial distribution on D2. A logical
extension of this method from three to M bins would be
to replace equation (11) by

r nð Þ ¼
XM�1

m¼2

nm�1 � 2nm þ nmþ1ð Þ2 ð13Þ

By generating samples from the posterior distribution and
accepting or rejecting them based on the smoothing weights
given by equations (12) and (13), B samples from the
smoothed posterior could be obtained. However, the amount
of computation time that would be required for this process
increases exponentially with M. The ‘‘sliding window’’
approach explained next does a similar job in linear time.
The roughness penalty embodied by equation (12) depends
on the second derivative only. This means that we only
consider the influence of immediately adjacent bins on each
other. For example, the mth bin is directly correlated with

the (m � 1)th bin and the (m + 1)th bin, but not with the
(m � 2)th bin and the (m + 2)th bin. This warrants the use
of a three bin wide ‘‘sliding window,’’ that recursively
smooths the posterior distribution from the left to the right
(or vice versa) one bin at a time. The details of this
method are given in Appendix C.
[24] Figures 16 and 17 illustrate the results of the sliding

window procedure on a synthetic data set. Figures 16 and
17 demonstrate how using a smoothing prior filters out the
roughest ‘‘spikes’’ from the posterior sample set. It is such
often small minority of outliers that makes the unsmoothed,
categorical confidence bands of section 4.3 too wide,
meaning too conservative, for continuous histograms. An
example of the sliding window approach on real data is

Figure 14. Contoured smoothing priors for different
smoothing parameters, with N = n1 + n2 + n3 = 10 for
(a) s = 0 (no smoothing), (b) s = 0.1 (weak smoothing),
and (c) s = 1 (strong smoothing). The strongest weights
are located along the p2 = n2/N = 1/3 line, which connects
all possible histograms with zero second derivative.

Figure 13. White histograms representing a synthetic
population of categorical variables and black histogram
representing a sample of 50 items from it. Note that the
sample completely missed the fifth population bin. The gray
band covers 95% of the posterior distribution for (a) a flat
(uniform) prior and (b) Perks’ prior. Both credibility bands
correctly contain the original population.
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deferred to section 5.2, where we will also discuss which
values for the smoothing parameter s to choose, and why the
rather ad hoc nature of the smoothing method discussed in
this section is probably not a big issue after all.

5. Case Studies

5.1. Categorical Histograms

[25] We first return to the example previously discussed
in section 2.1 and illustrated by Figure 1. Figure 18 shows
the simultaneous 95% Bayesian credibility regions for
samples A–D on the ternary QFL diagram in their now
familiar polygonal form. The difference between the cred-
ibility regions of samples A and B clearly stands out. Recall
that 400 points were counted for sample B, as opposed to
only 200 for sample A. As a result, the uncertainty polygon
of A is substantially larger than that of B. It is quite possible
that A and B were sampled from the same distribution.
Whereas it very unlikely that sample B could have been
derived from the population outlined by the contour, this
conclusion cannot be made for sample A. A similar situa-
tion exists for sample C. This sample plots into the
‘‘transitional arc’’ field of the QFL diagram, but its 95%
uncertainty region partly falls inside the ‘‘undissected arc’’
and ‘‘recycled orogen’’ fields. Although we have not done
so, it would even be possible to compute the respective
probabilities for the three fields, by counting the number of
numerical Bayesian replicates that fall into them. Finally,
sample D contains only one percent (4/400) of quartz. Its
uncertainty hexagon is highly asymmetric but falls entirely
inside the simplex, as it should.
[26] We now proceed to the multinomial example of

heavy mineral analysis by Faupl et al. [2002]. Figure 19
shows the 95% credibility intervals for the eight heavy
mineral proportions, using Jeffreys’ prior. When 200 grains
are counted, the percentage error is between 2 (staurolite in
ga-229/1) and 20% (garnet in io-234/1) (Figure 19a). There
is less than 5% probability that the heavy mineral distribu-
tion of sample io-234/1 is compatible with that of sample
ga-229/1 because the observed apatite and garnet fractions
of io-234/1 fall outside the simultaneous 95% credibility
band of ga-229/1. Likewise, it is less than 5% likely that

sample ga-229/1 is compatible with io-234/1 because the
apatite and garnet fractions of the former fall outside the
confidence bands of the latter. The statement that ga-229/1
and io-234/1 are mutually compatible is true with less than
2.5%, and not 5% probability, because it involves two
simultaneous tests. This is a consequence of the so-called
Bonferroni inequality [Rice, 1995]. The Bonferroni rule is
on the conservative side, especially considering the fact that
the two tests are not entirely independent from each other.
Figure 19b shows that if the percentages reported by Faupl
et al. had been the result of counting 1000 instead of
200 grains, the percentage errors would have been between
0.5 and 9%.

5.2. Continuous Histograms

[27] We first consider a data set of 157 concordant U-Pb
SHRIMP ages on detrital zircon from the Cambrian Nubian
Sandstone of southern Israel [Avigad et al., 2003]. The
vast majority of these grains are of Pan-African age (900–
540 Ma), and likely derived from the Arabian-Nubian
shield but there are some older grains as well, which
could have come from as far as central Africa [Avigad et
al., 2003]. Figure 20 shows the kernel density plot of this
data set and its grain age histogram with 95% credibility
band. Figure 20 contains an optimal amount of informa-
tion: the kernel density estimate shows the sample taking
into account measurement uncertainties, while the histo-
gram represents the estimated population and the uncer-
tainties caused by counting statistics. The credibility band
also allows a better assessment of the likelihood that
empty bins actually correspond to missing age fractions,

Figure 15. Smoothed version of Figure 11, using s = 0.1.

Figure 16. Smooth population (sine function). Dashed
white lines show the histograms, or rather ‘‘frequency
polygons’’ [Scott, 1992] of a smooth population (sine
function). The solid white lines show the frequency
polygons of a sample of 57 numbers that were randomly
drawn from this population. The gray areas mark
the simultaneous 95% credibility bands, obtained by the
Bayesian method and based on 500 samples from the
posterior distribution. Ten of these samples are shown in
black to illustrate the effect of the smoothing prior. (a) The
nonsmoothed Bayesian credibility band is about twice as
wide as (b) the smoothed credibility band.

B02211 VERMEESCH: HISTOGRAMS IN THE EARTH SCIENCES

9 of 15

B02211



and of the statistical significance of some of the minor pre
Pan-African peaks. The Nubian Sandstone example does
not follow a very smooth distribution. Therefore it might
not be necessary to apply any smoothing to it at all.
[28] This is certainly not the case for another data set,

containing the ages of 155 lunar spherules, dated with the
40Ar/39Ar method, and published by Culler et al. [2000].
Figure 21a shows the simultaneous 95% credibility band of
this age histogram without smoothing (s = 0), whereas for
Figure 21b, a smoothing prior with s = 0.25 was used. The
resulting credibility band is significantly narrower. To study
the effect of the smoothing parameter s on the credibility
band, the experiment of Figure 21 was repeated for a range
of s values and the average width of the credibility band was
calculated for each of them. Figure 22 shows how a
moderate amount of smoothing can reduce the width of
the credibility band by a factor of two, but that smoothing
even more does not have much effect. This is because
the exaggerated width of the unsmoothed credibility
bands is mostly caused by just a few anomalous spikes
(see Figure 16a). The sharpest of these excursions have the
greatest effect on the width of the credibility bands, and will
be filtered out the easiest. Smoothing out posterior samples
that are less rough takes a lot more effort while having a
much smaller effect. The fact that the magnitude of the
smoothing parameter is not all that important reassures us
that the rather arbitrary nature of the smoothing prior as
defined by equations (10) and (12) is not a problem.
[29] DeGraaff-Surpless et al. [2003] presented a statisti-

cal analysis of the detrital U-Pb zircon age data sets shown
in Figure 3. Using the Kolmogorov-Smirnov (K-S) test,
they compared the different samples to see if these could
have been derived from the same population. The conclu-
sion was that samples KD3 and KD7 were compatible with
each other on the 95% confidence level, but that sample
KD26 was not. The same test can be done using Bayesian
credibility bands, as shown on Figure 23. No smoothing
prior was used for the construction of Figure 23 because it is
not our goal to constrain the distribution of the underlying
population, but only to see if the different observations are
compatible with each other. As soon as any part of one
histogram falls outside the 95% credibility band of the
other, the former is not compatible with the latter. However,
as discussed in section 5.1, in order to test if two samples
are mutually compatible, we must construct two 97.5%
credibility bands. If each of the two histograms completely

falls inside the 97.5% credibility band of the other, there is
at least 5% chance that they are compatible with each other.
In addition to the K-S test and the Bayesian credibility
bands, the c2 test is a third statistical method that was used
to test the compatibility of the three samples. Its results are
also shown on Figure 23. The three methods yield the same
conclusions: samples KD3 and KD7 are compatible with
each other, while KD26 is not. As a word of caution, we
should repeat the remark made in section 2.1. Provided the
number of measurements is large enough, eventually any
test will fail, no matter how small the difference between the
distributions. Instead of blindly looking whether or not a
test has failed, it is better to consider the relative variation of
the p values, ensuring that samples of roughly the same size
are compared, or to use a different measure of ‘‘distance’’
between distributions [e.g., Sircombe and Hazelton, 2004].
[30] Finally, we return to the histogram of dip angles of

33 reverse faults from Collettini and Sibson [2001].
Figure 24 shows the simultaneous 95% credibility band

Figure 17. Trinomial ‘‘slices’’ through the (top) unsmoothed and (bottom) smoothed posteriors of
Figure 16.

Figure 18. QFL diagram of Figure 1, with 95% credibility
regions for samples A–D. The hexagon of sample A (200
point counts) is markedly larger than that of sample B (400
point counts). Sample C most likely falls inside the
‘‘transitional arc’’ field, but there is more than 5%
likelihood that it belongs to either the ‘‘undissected arc’’
or ‘‘recycled orogen’’ field.
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for this histogram. For Figure 24a, no smoothing prior was
used (s = 0), while for Figure 24b, the smoothing parameter
was s = 1. In either case, it is easy to find a monomodal
histogram that integrates to 33, while completely fitting
within the credibility band. This means that the apparent
bimodality is not statistically significant on a 95% confi-
dence level. Since the author is not a structural geologist, he
cannot assess if such bimodality is an expected feature. If so,
a bimodal prior distribution could be used instead of a
uniform one. In that case, it is possible that the bimodality
is statistically significant. However, without such prior
information, it is not.

6. Conclusions

[31] In the Earth sciences, it is often not the data itself, but
an estimate of its probability distribution (density) that is
interpreted. This paper addressed the problem of how to

Figure 19. Heavy mineral analyses of Figure 2, with their
95% credibility intervals, using Jeffreys’ prior (a) for the
200 counts of Faupl et al. [2002] and (b) if the same
proportions had been obtained by counting 1000 grains. See
Figure 2 for the key to the mineral abbreviations.

Figure 20. Detrital grain age histogram and kernel density
function for 157 SHRIMP U-Pb zircon ages from the
Cambrian Nubian Sandstone of southern Israel from Avigad
et al. [2003]. The 95% credibility band for the histogram
was calculated using Jeffreys’ prior. We are more than 95%
certain that each of the empty histogram bins contains less
than roughly 5% of the population.

Figure 21. Histograms showing the ages of 155 lunar
spherules, droplets of molten rock that result from meteorite
impacts, measured with the 40Ar/39Ar method [Culler et al.,
2000]. These spherules record a time series of impact
activity on the Moon’s surface, which should be a more or
less smooth function. (a) The 95% credibility band of
histogram was calculated without a smoothing prior (s = 0).
(b) Histogram calculated with a moderately strong smooth-
ing prior (s = 0.25), resulting in a much narrower credibility
band.
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quantify the statistical uncertainty on such interpretations.
The histogram is one of the most convenient ways to
represent data like petrographic point counts. We showed
how to construct simultaneous Bayesian credibility bands

for such categorical histograms. When only three categor-
ical variables are studied, the ternary diagram is an
alternative method of visualization, to which the method
developed in this paper is equally applicable. Credibility
bands allow an assessment of the precision of point-
counting results and a way to intercompare multiple
samples. Histograms can also be used to estimate proba-
bility densities of continuous variables, such as radiometric
ages in detrital thermochronology. The main alternative to
the histogram for this purpose is the kernel density
estimator. The advantages of the latter to the former are
that (1) kernel density estimates yield continuous, rather
than stepwise functions and (2) they explicitly take into
account measurement uncertainties, whereas histograms do
not. On the other hand, histograms have the substantial
advantage that it is possible to compute confidence bands
for them, as described in this paper. This is far less
obvious for kernel density estimates. When analytical
uncertainties exist, it is good practice to use kernel density
estimates in conjunction with histograms, including their
credibility bands.
[32] Credibility bands provide a measure of the influence

of counting statistics on density estimates. They also allow a
better judgment of the possible similarities between differ-
ent populations. If measurement uncertainties are small, the
histogram is a good estimator of probability density, for
which exact Bayesian credibility bands can be calculated.
These have nonzero width even over intervals that were not

Figure 22. Exercise shown in Figure 21 repeated for a
range of s values. This graph shows the evolution of the
average credibility band width with s, suggesting that it is
not necessary to use very strong smoothing.

Figure 23. Intercomparison of three samples of DeGraaff-Surpless et al. [2003]. Since the histograms
of samples KD3 and KD7 fall completely within each other’s 97.5% credibility bands (using Jeffreys’
prior), the two histograms are statistically ‘‘compatible’’ on the 95% confidence level. Parts of sample
KD26 fall outside the 97.5% credibility bands of samples KD3 and KD7, and vice versa. Therefore a
statistically significant difference exists between sample KD26 and the other two samples. The same
conclusions were reached by doing a Kolmogorov-Smirnov test [DeGraaff-Surpless et al., 2003] and a
c2 test. The p values of the latter are also shown.
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sampled. This is important in disciplines such as detrital
thermochronology, where not just the presence, but also the
absence of certain (age) components is important. The
degree of confidence that certain age intervals are absent
in a detrital population can be calculated analytically
[Vermeesch, 2004]. For example, if 100 sediment grains
are counted, there is up to 11% chance that at least one
fraction �0.05 of the population was missed by that sample.
(Bayesian) credibility bands such as those on Figure 20 are
an alternative way to express this kind of uncertainty.
Continuous histograms often represent time series, which
are autocorrelated to some degree. In such cases, adjacent
bins are not independent from each other, as was the case
for categorical histograms. The Bayesian way to deal with
this problem is to use an ad hoc smoothing prior, which can
be completely determined by a single smoothing parameter.
Smoothing helps to better constrain the probability distri-
bution that underlies the data. Smoothing is not necessary if
we merely want to see which other experimental outcomes
are compatible with the observations.
[33] This paper describes a computer program named

EPDU (an estimator of probability density and its uncer-
tainties) that runs on both PC and Macintosh computers.

This program is available online at http://pangea.stanford.
edu/research/noble/epdu.

Appendix A

[34] To generate a large number B of synthetic samples
from a multinomial distribution p = (p1, .., pMj

PM
m¼1pm = 1),

we use a ‘‘bars and stars’’ procedure:
[35] 1. Generate the following vector of M + 1 numbers:

A = (0, (p1), (p1 + p2), .., (
PM

m¼1pm = 1)). This represents
the edges (‘‘bars’’) of a histogram. The gaps between
subsequent entries in this array represent the multinomial
probabilities (p1, .., pM).
[36] 2. Create a matrix B of size B � N with random

numbers between 0 and 1, drawn from a uniform distribu-
tion. This represents B synthetic ‘‘samples’’ of N values
(‘‘stars’’).
[37] 3. For each row of B, count the number of ‘‘stars’’

that fall in between the ‘‘bars’’ of A. This procedure yields a
matrix H of size B � M with multinomial replications of p.

Appendix B

[38] The following procedure produces a random sample
from a Dirichlet distribution Da: generate a vector x = (x1, ..,
xm, .., xM) by drawing each of the xms from a gamma
distribution with shape parameter am. Then Q = (q1, .., qm, ..,
qM) with qm = xm/

PM
m¼1xm has the desired Dirichlet distri-

bution [Devroye, 1986]. Alternatively, it is also possible to
obtain a sample of the posterior distribution using a proce-
dure named the ‘‘Bayesian bootstrap’’ [Rubin, 1981].
[39] To numerically integrate the Dirichlet distribution,

we use either the ‘‘traditional method’’ of Devroye [1986],
or the Bayesian bootstrap. Both methods give the same
results. Thus we generate a B � M matrix H containing B
random samples from the Dirichlet posterior of interest,
each representing a histogram of M bins. The following
procedure finds a polygon on DM�1, containing 100(1-a)%
of the posterior distribution:
[40] 1. Construct a two-sided 100(1-g)% credibility

interval for each of the columns (‘‘bins’’) of this matrix.
This can be done either analytically with equation (8), or
numerically by computing the 100(a/2) and 100(1-a/2)
percentiles. This yields M independent credibility intervals.
[41] 2. For each column, accept those values (rows) that

fall within its respective credibility interval and reject those
rows that fall outside of it. Divide the number of rejected
rows by B (the total number of rows), and call this fraction
r. If d = r � a > 0, repeat steps 1 and 2 for a larger g. If d <
0, repeat them for a smaller g.
[42] 3. Stop the iteration if d is small enough (e.g.,

<0.001). The independent 100(1-g)% credibility intervals
for each of the bins then correspond to simultaneous
100(1-a)% credibility bands for the entire histogram.

Appendix C

[43] First, we will explain how to smooth a Dirichlet
posterior on D2:
[44] 1. Generate a random Bayesian replicate nb = (n1

b,
n2
b, n3

b) from the unsmoothed Dirichlet posterior as in the
work by Devroye [1986] or Appendix B.

Figure 24. Data set of Figure 4 (dashed gray line) and
simultaneous 95% credibility bands (gray shaded area)
computed (a) without smoothing and (b) using a smoothing
prior with smoothing parameter s = 1. In either case, the
apparent bimodality observed in Figure 4 turns out not to be
statistically significant because it is easy to fit a monomodal
histogram (black line) inside the credibility band. Prior
information or more data are needed to prove bimodality.
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[45] 2. Calculate the roughness r of this sample with
equation (11) and the smoothness weight w with equa-
tion (12). The latter is a number between zero (infinite
roughness) and one (zero roughness).
[46] 3. Generate a random number between zero and one.

If this number is greater than w, reject nb. If it is less than w,
accept nb.
[47] 4. Repeat steps 1–3 for b = 1. . .B until a large

number B (e.g., 500) of samples from the posterior distri-
bution have been accepted.
[48] Next, we describe the method for extending this

method to histograms of more than three bins, using a
‘‘sliding window’’ approach. Figure C1a shows B Bayesian
replicates from an unsmoothed posterior distribution.
On Figure C1a, the gray line shows the observed bin counts
n = (n1, . . ., nM) in the form of a ‘‘frequency polygon’’
[Scott, 1992]. The solid lines show B multinomial replicates
from the Dirichlet posterior: nb = (n1

b, . . ., nM
b ), with 1 
 b 


B. In this example B = 7, but in real applications a more
typical value would be B > 500. Assume that the first m � 1
bins have already been smoothed (Figure C1b). Figures C1c
and C1d then show how to find the bth replicate for the next
bin. We generate an array nb = (n1

b, .., nM
b ), where (n1

b, ..,
nm�1
b ) are ‘‘inherited’’ from the previous smoothing steps
and (nm

b , .., nM
b ) are generated at random from M � m +

1 gamma distributions with parameters (nm, . . ., nM),
respectively. Dividing nb by

PM
j¼1nj

b yields a sample pb

from the Dirichlet posterior (
PM

j¼1pj
b = 1) [Devroye, 1986].

Multiplying pb by N =
PM

j¼1nj gives a Bayesian replication
of the original histogram n. We now only consider one
‘‘trinomial frame’’ of this Bayesian replicate (nm�1

b , nm
b ,

nm+1
b ) and calculate its roughness and the corresponding
smoothness weight with equation (12). Using the same
decision rule as before, we either accept or reject the mth
bin. Two examples of such ‘‘multinomial extensions’’ to
the bth Bayesian replicate are shown on Figure C1c,
labeled I and II. The latter candidate will have a much
greater chance of being accepted than the former.
[49] After repeating this procedure B times, we obtain a

set of B multinomial extensions to the previously smoothed
set of samples from the Dirichlet posterior (Figure C1e). We
discard the replicates from the (m + 1)th bin onward and just

Figure C1. Illustration of the ‘‘sliding window’’ approach
to smoothing the posterior distribution. (a) The solid black
lines represent B = 7 Bayesian replicates generated without
smoothing (s = 0). The dashed line marks the frequency
polygon of the true population. (b) Suppose that the first
(m � 1) bins have already been smoothed, then B
smoothed replicates for the mth step can be generated as
follows: (c) to get the first replicate, first try the
multinomial extension I and randomly accept or reject it
based on its smoothness weight (equation (12)). Since
replicate I is quite rough at the mth bin, it is very likely to
be rejected. If this is the case, generate a new replicate.
(d) Replicate II happens to be much smoother at the mth bin,
giving it a greater chance of being accepted. If accepted,
discard the replicates from (m + 1) onward. (e) Repeat steps
in Figures C1c and C1d until B values for the mth value have
been accepted. (f) Repeat steps in Figures C1c–C1e until all
M bins have been filled.
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keep the values for the mth bin. The procedure then recur-
sively smooths the remaining bins one by one, in exactly the
same way as described before. However, at the (M � 1)th
frame, we have to accept not only the (m � 1)th but also the
mth bin in order to end the recursive process. Likewise, to
start the recursive process, we must accept both the first
and the second bin of the first trinomial ‘‘frame’’ during
the first step of the smoothing procedure. To avoid any
‘‘edge effects’’, we ‘‘pad’’ the vector n of observed bin
counts with zeros. This is more than just a trick, because it
is an implicit assumption of the histogram that the number
of observations outside its support is zero.
[50] At the end of the smoothing procedure, the set of

posterior samples looks like Figure C1f. The smoothed
replicates are ‘‘more parallel’’ than the unsmoothed ones
shown in Figure C1a. Thus it becomes clear why the width
of the smoothed credibility band is smaller than that of its
unsmoothed counterpart, as illustrated by an example of the
stepwise smoothing procedure on synthetic data shown in
Figures 16 and 17.
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