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A B S T R A C T

In a recent review published in this journal, Coutts et al. (2019) compared nine different ways to estimate the
maximum depositional age (MDA) of siliclastic rocks by means of detrital geochronology. Their results show that
among these methods three are positively and six negatively biased. This paper investigates the cause of these
biases and proposes a solution to it. A simple toy example shows that it is theoretically impossible for the
reviewed methods to find the correct depositional age in even a best case scenario: the MDA estimates drift to ever
smaller values with increasing sample size. The issue can be solved using a maximum likelihood model that was
originally developed for fission track thermochronology by Galbraith and Laslett (1993). This approach param-
eterises the MDA estimation problem with a binary mixture of discrete and continuous distributions. The
‘Maximum Likelihood Age’ (MLA) algorithm converges to a unique MDA value, unlike the ad hoc methods
reviewed by Coutts et al. (2019). It successfully recovers the depositional age for the toy example, and produces
sensible results for realistic distributions. This is illustrated with an application to a published dataset of 13
sandstone samples that were analysed by both LA-ICPMS and CA-TIMS U–Pb geochronology. The ad hoc algo-
rithms produce unrealistic MDA estimates that are systematically younger for the LA-ICPMS data than for the
CA-TIMS data. The MLA algorithm does not suffer from this negative bias. The MLA method is a purely statistical
approach to MDA estimation. Like the ad hoc methods, it does not readily accommodate geological complications
such as post-depositional Pb-loss, or analytical issues causing erroneously young outliers. The best approach in
such complex cases is to re-analyse the youngest grains using more accurate dating techniques. The results of the
MLA method are best visualised on radial plots. Both the model and the plots have applications outside detrital
geochronology, for example to determine volcanic eruption ages.

1. Introduction

Detrital geochronology is often the only way to estimate the deposi-
tional age of siliclastic rocks in the absence of fossils or volcanic ash
layers. Detrital zircon U–Pb geochronology in particular has become a
popular technique to obtain maximum depositional ages (MDAs).
Numerous MDA estimation algorithms have been proposed over the
years (Nelson, 2001; Barbeau et al., 2009; Dickinson and Gehrels, 2009;
Tucker et al., 2013; Chen et al., 2016; Zhang et al., 2016; Ross et al.,
2017; Herriott et al., 2019; Copeland, 2020). In a detailed review paper
that was recently published in this journal, Coutts et al. (2019) compared
and contrasted the most popular among these methods, namely:

(1) The youngest single grain (YSG);
(1) The mode of the youngest graphical peak on a probability density

plot (YPP);
(3) The youngest grain cluster at 1σ (YGC1σ) or 2σ (YGC2σ);

(4) The youngest detrital zircon date estimated by Ludwig (2003)’s
Monte Carlo resampling algorithm (YDZ);

(5) The outcome of Ludwig and Mundil (2002)’s TuffZirc algorithm;
(6) The weighted mean of the youngest three (Y3Z) or four (Y4Z)

zircon dates;
(7) The weighted mean of the dates in the youngest peak of a prob-

ability density plot (τ); and
(8) The minimum age of grains selected by Gehrels (2003)’s AgePick

algorithm.
Additionally, they also introduced a new estimator:
(9) The ‘Youngest Statistical Population’ (YSP), which groups the

youngest sub-sample of more than two grains that pass a Chi-
square test for homogeneity.

Using numerical simulations and synthetic age distributions, Coutts
et al. (2019) found that all but three of these methods gradually drift to
younger ages with increasing sample size. The only exceptions were the
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YPP, τ and YSP methods, which converged to ages that were systemati-
cally too old. The failure of YPP and τ to retrieve the correct depositional
age reflects the underlying flaws of the probability density plots (PDPs)
on which they are based. The shortcomings of PDPs are explained in
detail by Vermeesch (2012, 2018a) and won’t be discussed further in this
paper. The positive bias of the YSP method will be briefly discussed in
Section 7. The remainder of the paper will focus on the undesirable drift
of the remaining six MDA estimation algorithms towards geologically
unreasonable young values.

Section 2 will prove that it is theoretically impossible for the YSG,
YGC1σ/2σ, YDZ and Y3Z/Y4Z methods to converge to the correct solu-
tion even in a best case scenario. Section 3 shows that the ‘minimum age
model’ of Galbraith and Laslett (1993) does not suffer from this problem.
This maximum likelihood based method was developed for detrital
fission track thermochronology but can be equally useful for zircon U–Pb
studies in a modified form developed by Galbraith (2005, p.107). We will
refer to the minimum age model as the ‘maximum likelihood age’ (MLA)
method to avoid confusion with minimum depositional age estimation,
which is an entirely different subject.

Section 4 applies the MLA algorithm to a detrital zircon U–Pb dataset
from the Colorado Plateau Coring Project. This case study tests the
different MDA methods by comparing measurements obtained by Laser
Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS)
with measurements obtained on the same samples by Chemical Abrasion
Thermal Ionisation Mass Spectrometry (CA-TIMS). The new MLA algo-
rithm is the only method that passes this stringent test.

Despite the advantages of the MLA method over all existing MDA
estimation algorithms, it is not a silver bullet for samples that have a fat
tail at the young end of the age spectrum, or that have been affected by
post-depositional Pb-loss. Section 6 discusses these limitations and pro-
vides suggestions to mitigate their effects.

2. On the failure of existing MDA algorithms to converge

The YSG, YGC1σ/2σ, YDZ and Y3Z/Y4Z methods essentially amount
to averaging the n youngest grains obtained by some selection criterion.
The selection criterion can be simple (e.g., YSG) or complex (YDZ). But
all these algorithms boil down to analysing the young tails of detrital age
spectra. This is a difficult thing to do with ad hoc methods.

Detrital age spectra are the convolution of two probability distribu-
tions: (1) the distribution of the true (but unknown) zircon U–Pb ages;
and (2) the distribution of their analytical errors. Analytical uncertainty
obscures the true ages andmust be accounted for duringMDA estimation.
Geochronologists generally make the reasonable assumption that the
analytical errors follow a normal distribution with mean μ ¼ 0 and
standard deviation σ. Under this condition it is well known that the actual
U–Pb age is approximately 95% likely to fall in a� 2σ interval around the
measured value. However this is only true when considering a single
analysis.

When multiple measurements are considered together, then the like-
lihood that themeasured value ismore than� 2σ away from the true value
increases. In statistics this is known as a ‘Type-1 error’. As the number of
analyses increases, so does the probability that at least one value falls
outside the � 2σ interval. Given a sufficiently large sample size, there
inevitably comes a point when the data contain values that differ from the
true value by 3σ or more. This is true for both tails of the normal distri-
bution. In the context of MDA estimation, it means that the youngest date
in a huge sample may be less than the actual depositional age.

To further explore this important point, let us consider the simplest
case of an MDA estimation exercise. Suppose that 100% of the grains in a
sample are concordant and syn-depositional at 10 Ma, with normally
distributed uncertainties of 1 Ma at 1σ. The solution to this toy example is
trivial. The depositional age is simply given by the mean of all the dates.
Yet six of the nine MDA estimation algorithms reviewed by Coutts et al.
(2019) fail to retrieve it (YPP, τ and YSP don’t, but will fail in nearly all
non-trivial examples).

Fig. 1 shows why existing MDA estimation methods fail the toy
example. It plots the expected age1 of the nth youngest grain among a
sample ofN grains drawn from our normal distribution with mean μ ¼ 10
and standard deviation σ ¼ 1. For example, consider a sample containing
N ¼ 5 grains, then the expected age of the youngest grain (n ¼ 1) is the
1/5th quantile of the normal distribution, which is 9.16 Ma. When the
sample size is increased to 20 grains, then the expected value for the
youngest age is given by the 1/20th quantile, which is 8.36 Ma.

Thus, the youngest single grain age monotonically decreases with
increasing sample size, and so does the second youngest grain (n ¼ 2),
the third youngest grain (n ¼ 3) and so forth. Also the average of the
youngest n grains decreases with increasing sample size, and all the other
grain selection criteria do so as well. The failure of existing MDA esti-
mation algorithms to solve the simplest toy example undermines their
credibility in more complex scenarios.

3. Galbraith and Laslett (1993)’s maximum likelihood model

The failure of existing MDA estimation algorithms to find the correct
solution for the toy example is diagnostic of the fact that they are ad hoc
algorithms that lack a formal statistical basis. It is desirable for statistical
estimation techniques to converge to the true solution with increasing
sample size. Unfortunately none of the existing method manage to do so.
The conventional way to solve this issue is to parameterise the problem
and determine the parameters by Maximum Likelihood Estimation
(MLE). Geological examples of this approach include isochron regression
(Titterington and Halliday, 1979; York et al., 2004), concordia age esti-
mation (Ludwig, 1998) and finite mixture modelling (Galbraith and
Green, 1990; Sambridge and Compston, 1994). The MLE approach can
also be used for MDA estimation. In fact, such an algorithm already
exists.

Galbraith and Laslett (1993) introduced a minimum age estimator for
fission track thermochronology that is equally applicable to U–Pb

(N)

Fig. 1. Exact quantiles of a normal distribution with 10 Ma mean and 1 Ma
standard deviation. The step functions show the expected age of the nth youngest
grain (for 1 � n � 10) in a sample of N grains (for 1 � N � 50). All these
functions monotonically decrease with increasing sample size. This means that
any MDA estimation algorithm that is based on the nth youngest grain(s), or
averages thereof, can never converge to the true depositional age.

1 The expected age is given by μþ σ
ffiffiffi
2

p
erf�1½2n =N � 1�, where erf�1 is the

inverse error function.
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geochronology. The model assumes that the data were drawn from a two
component mixture, in which a fraction πγ of the population is derived
from a discrete minimum age peak at tm ¼ exp½γ� and the remaining
fraction ð1�πγÞ of the grains were drawn from a (log)normal distribution
with location parameter μ and dispersion parameter σ, truncated at tm.
The four model parameters (γ, πγ , μ and σ) can be estimated by max-
imising the likelihood function using an appropriate error model for the
analytical uncertainties.

The original fission track implementation of Galbraith and Laslett
(1993)’s maximum likelihood model assumed binomial counting errors
(van der Touw et al., 1997). An alternative formulation using normal
errors was formulated by Galbraith (2005, p.107). This version of the
model is most appropriate for MDA estimation by detrital U–Pb
geochronology. The minimum age model will be referred to as the MLA
(Maximum Likelihood Age) method in the remainder of this paper, so as
to avoid any confusion with minimum depositional age estimation.

Standard MLE theory also provides a way to estimate the un-
certainties of the model parameters. This is done by inverting the nega-
tive matrix of second derivatives of the log-likelihood function with
respect to the parameters. Experience shows that the uncertainties of γ
and πγ are generally smaller than those of μ and σ. Because μ and σ are not
directly relevant to the MDA estimation problem anyway, there is little
harm in reducing the number of model parameters from four to three, by
requiring that γ ¼ μ. The resulting gain in numerical stability benefits
small datasets whilst having only a minor effect on the accuracy of the
MDA estimates.

It can be shown that among all statistical estimators, the MLE
approach is the most efficient, which means that it yields the most precise
estimates for any given sample size. MLE algorithms are also consistent,
which means that they are guaranteed to converge to the true solution
with increasing data size (assuming that the model assumptions are met).
Thus the MLA method fixes the key issue with existing MDA estimation
methods. Applying it to the toy example asymptotically yields parameter
values of πγ ¼ 1, σ ¼ 0 and γ ¼ 2:3, which corresponds to the correct
answer of tm ¼ 10 Ma.

4. Application to U–Pb data from the Colorado Plateau

Leaving the toy example behind andmoving on to a geologically more
realistic example, we will now apply the MLA model to a recently pub-
lished dataset of detrital zircon U–Pb ages obtained from the Colorado
Plateau Coring Project (CPCP). The dataset contains 13 detrital zircon
samples that were extracted from a e 520 m drill core in Petrified Forest
National Park (Arizona, USA).

The 13 samples belong to the Permo-Triassic Coconino, Moenkopi
and Chinle Formations. Between 221 and 308 randomly selected zircon
grains from each sample were dated by LA-ICPMS, yielding 13 U–Pb age
spectra ranging from 189 Ma to 3428 Ma (Gehrels et al., 2020). Subse-
quently, the youngest 2–19 grains from each sample were extracted from
the LA-ICPMS grain mount and re-analysed by high precision CA-TIMS
(Rasmussen et al., 2020). This paired LA-ICPMS þ CA-TIMS dataset al-
lows us to compare the performance of the different MDA estimators
across a range of sample sizes and analytical precision.

Fig. 3 shows the LA-ICPMS and CA-TIMS age estimates for sample 297
on so-called radial plots. These are a graphical device that was invented
by Rex Galbraith, the creator of the MLA model (Galbraith, 1988, 1990).
The radial plot is designed to visualise heteroscedastic datasets (i.e.,
datasets with unequal uncertainties). It is the most elegant way to visu-
alise the results of the MLA model, which explicitly takes into account
this heterescedasticity. See the Appendix for further details.

The LA-ICPMS data of sample 297 follow a bimodal age distribution.
This is evident in Fig. 3 as two linear arrays on the radial plot emanating
from the origin towards the radial scale at e 220 Ma and e 1800 Ma,
respectively. Unsurprisingly, the radial plot of the CA-TIMS data looks
very different. It exhibits a unimodal distribution with ages ranging from
220 Ma to 226 Ma.

From the radial plots it is evident that age dispersion exceeds
analytical uncertainty for both the LA-ICPMS and CA-TIMS datasets. In
fact none of the 13 samples pass a Chi-square test for age homogeneity,
indicating the presence of geological dispersion. The overdispersion of
the LA-ICPMS data is expected because these were meant to capture
multiple provenance components. However the excess scatter of the CA-

Fig. 2. Schematic illustration of the four parameter minimum age model (left)
and its three parameter special case (right). The minimum age is marked by tm.
Redrafted from fig. 6.3 of Galbraith (2005).

Fig. 3. Radial plots and MLA estimates for sample 297 of Gehrels et al. (2020,
LA-ICPMS data, left) and Rasmussen et al. (2020, CA-TIMS data, right), calcu-
lated with IsoplotR (Vermeesch, 2018a). Uncertainty estimates are reported as
studentised 95% confidence intervals. Both datasets are overdispersed with
respect to the analytical uncertainties. The MLA estimates agree to within 0.6%
despite the great differences in sample size and analytical precision between the
two datasets. Existing ad hoc MDA estimation algorithms do not fare so well,
resulting in differences of 2%–17% between the LA-ICPMS and CA-TIMS data.
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TIMS data merits further discussion.
The overdispersion of the CA-TIMS data could either reflect the

presence of multiple detrital components of similar age, or it could be
caused by protracted pre-eruptive residence of zircon in a volcanic
magma chamber. In either case, the CA-TIMS data present a similar
statistical challenge as the LA-ICPMS data in that it is not immediately
obvious how to estimate the MDA.

To meet this challenge, all the MDA estimate algorithms were applied
to both the LA-ICPMS and CA-TIMS datasets. Thus we can objectively
compare the effects of the different algorithms and of the different
analytical techniques (Section 5).

5. Empirical comparison of the different MDA algorithms

Both radial plots and MLA calculations were made with IsoplotR
(Vermeesch, 2018b). See Appendix B for further details.

Applying the MLA method to sample 297 yields MDA estimates of
219.68� 0.46 Ma and 221.09� 0.99 Ma for the LA-ICPMS and CA-TIMS
data, respectively. The small (�0.6%) age difference between the two
estimates contrasts starkly with existing methods such as YSG (�17.4%),
YGC1σ (�5.4%), YGC2σ (�4.5%), Y3Z (�7.8%), Y4Z (�5.2%), YDZ
(�17.5%) and YSP (�2.1%). Repeating the same exercise for the
remaining 12 samples confirms this picture.

Fig. 4 compares the MDA estimates of the LA-ICPMS and CA-TIMS
data for all the methods discussed in this paper. The results are shown
as bivariate scatter plots with 95% confidence intervals shown as error

bars. These plots can be divided into three zones.

(1) The 1:1 line marks samples whose LA-ICPMS and CA-TIMS based
MDA estimates agree within error. This is the expected scenario
for compositionally homogenous zircon crystals without common
Pb.

(2) The area below the 1:1 line groups LA-ICPMS based MDA esti-
mates that are older than their CA-TIMS based counterparts. This
may indicate complications such as common Pb or the presence of
small scale growth zones.

(3) The area above the 1:1 line is a ‘forbidden zone’. In general, one
would not expect CA-TIMS ages to exceed the corresponding LA-
ICPMS ages, unless the zircons have experienced post-
depositional Pb-loss. It is unlikely that such Pb-loss is a common
occurrence in nature, for reasons that will be discussed in Section 6.

All but two of the ten ad hoc MDA estimation methods shown on
Fig. 4 spill over into the ‘forbidden zone’. The YSG, YGC1σ, YGC2σ, Y3Z,
Y4Z and YDZmethods are the worst offenders because all their LA-ICPMS
based MDA estimates are younger than their CA-TIMS based MDA esti-
mates. This troubling result is likely caused by the sample-size effect
discussed in Section 2: because the LA-ICPMS datasets are two orders of
magnitude larger than the CA-TIMS datasets, they are much more likely
to drift towards unreasonably young values.

The MLA method does not suffer from this problem. All its MDA es-
timates either fall on or below the 1:1 line. The only two ad hoc methods

Fig. 4. Pairwise comparison of the 13 LA-ICPMS and CA-TIMS datasets using 12 different MDA estimators. Error bars are shown at 95% confidence. The area above
the 1:1 line represents a ‘forbidden zone’ where the CA-TIMS estimates exceed the LA-ICPMS estimates. The MLA algorithm is the only method that does not suffer
from this problem. It is the only algorithm that provides reasonable MDA values for all samples.
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concentrations, then this could be taken as evidence for radiation damage
induced Pb-loss. Such additional information can be visualised on the
radial plot as optional fill colours.

However, given the low diffusivity of Pb in zircon at the temperatures
found in most sedimentary basins, post-depositional Pb-loss is probably
unlikely to be a common problem in detrital geochronology (Cherniak
andWatson, 2001; Copeland, 2020). It is possible that many anomalously
young ages that have been attributed to common Pb-loss to are instead
just ordinary outliers violating assumption 2. The probability that a
dataset contains such anomalously young values increases with sample
size. In principle these values could be removed by outlier detection al-
gorithms. But all such algorithms are heuristic by nature and are not
guaranteed to produce sensible results.

A better albeit more onerous solution for fat tailed age distributions is
to re-analyse the youngest grains either by internal isochron analysis
(Nemchin and Cawood, 2005), or by CA-TIMS geochronology as shown
in this paper. After such validation, even a single isolated grain of zircon
can provide a robust MDA constraint.

7. Discussion

This paper has shown that the MLA model of Galbraith and Laslett
(1993) and Galbraith (2005) is superior to all the MDA estimation al-
gorithms reviewed by Coutts et al. (2019). It is the only method that is
built on solid statistical foundations, and the only method that can
converge to the correct solution with increasing sample size. In the
absence of complications with recent Pb-loss or young outliers, the MLA
method is entirely objective and completely hands off. It does not require
any arbitrary decision such as the number of grains to average (Y3Z,
Y4Z), or the probability cutoff to use (YGC1σ, YGC2σ).

Although this objectivity is appealing in several ways, it lacks any
geological context. Copeland (2020) argues that detrital zircon grains
cannot be grouped into discrete (maximum depositional) age compo-
nents without additional geochemical justification. However whilst it is
true that MLA estimates may not correspond to a particular geological
event, it should be emphasised that they do not need to do so. The
principal purpose of any MDA algorithm is to obtain an upper limit for
the depositional age. Whether this upper limit corresponds to a particular

geological event, or to a mixture of multiple overlapping events, is
irrelevant.

At first glance, the MLA model may seem similar to Coutts et al.
(2019)’s YSPmethod, because both algorithms assume that the minimum
age belongs to a discrete age component. However there is a crucial
difference between the two techniques. The YSP method assumes that it
is possible to make a clean separation between grains whose true ages
belong to the youngest age peak, and grains whose true ages belong to
older age components. In reality this distinction is blurred by the
analytical uncertainties. The rank order of single grain age estimatesmay
not necessarily be the same as that of the true U–Pb ages. This makes the
YSP method biased relative to the minimum age model. The latter does
not arbitrarily assign the grains to two groups, but jointly considers all
the age estimates when fitting the model parameters.

Besides its applications in fission track thermochronology and detrital
geochronology, the MLA model can be used in other Earth Science ap-
plications as well, such as the determination of eruption ages from col-
lections of volcanic zircon ages. Volcanic rocks often exhibit positively
skewed age distributions with a short tail of syn-eruptive U–Pb ages and a
long tail of pre-eruptive or xenocrystic ages. In this context the MLA
model would be a good alternative to ad hoc approaches such as YSG and
YSP that have previously been used, or to the more sophisticated
Bayesian approaches that have recently been proposed (Keller et al.,
2018). It would also be useful to visualise such volcanic datasets on radial
plots instead of the interval plots that are currently used.
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Appendix A. about radial plots

Like theMLAmodel itself, radial plots were originally developed by Galbraith (1988, 2005) for the purpose fission track geochronology. And like the
MLA model, radial plots can be equally useful for U–Pb and other geochronometers (Vermeesch, 2009, 2018b). Let zj and sj be the log-transformed
values of N single grain ages tj and their standard errors σj (for 1 � j � N):

zj ¼ log
�
tj
�

and sj ¼ σj

�
tj (1)

then a radial plot is a bivariate ðxj; yjÞ scatterplot with:

xj ¼ 1
�
sj and yj ¼

�
zj � z∘

� �
sj (2)

where z∘ is a reference value such as the weightedmean of the zj values. Radial plots allow the observer to simultaneously assess both the magnitude and
the precision of quantitative data. Each point on the diagram represents a single grain analysis. Old grains plot at high (positive) angles to the origin,
whereas young grains plot at low (negative) angles. The analytical uncertainty can be obtained by extrapolating lines from the origin to the radial scale
through the top and the bottom of an imaginary 2σ-error bar added to each sample point. Thus, precise measurements plot towards the right hand side of
the diagram, whereas imprecise measurements plot towards the left. Drawing two parallel lines at 2σ distances from either side of the origin allow the
analyst to visually assess whether all the single grain ages within a sample agree within the analytical uncertainties.
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