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[1] The decision boundaries of most tectonic discrimination diagrams are drawn by eye. Discriminant
analysis is a statistically more rigorous way to determine the tectonic affinity of oceanic basalts based on
their bulk-rock chemistry. This method was applied to a database of 756 oceanic basalts of known tectonic
affinity (ocean island, mid-ocean ridge, or island arc). For each of these training data, up to 45 major,
minor, and trace elements were measured. Discriminant analysis assumes multivariate normality. If the
same covariance structure is shared by all the classes (i.e., tectonic affinities), the decision boundaries are
linear, hence the term linear discriminant analysis (LDA). In contrast with this, quadratic discriminant
analysis (QDA) allows the classes to have different covariance structures. To solve the statistical problems
associated with the constant-sum constraint of geochemical data, the training data must be transformed to
log-ratio space before performing a discriminant analysis. The results can be mapped back to the
compositional data space using the inverse log-ratio transformation. An exhaustive exploration of 14,190
possible ternary discrimination diagrams yields the Ti-Si-Sr system as the best linear discrimination
diagram and the Na-Nb-Sr system as the best quadratic discrimination diagram. The best linear and
quadratic discrimination diagrams using only immobile elements are Ti-V-Sc and Ti-V-Sm, respectively.
As little as 5% of the training data are misclassified by these discrimination diagrams. Testing them on a
second database of 182 samples that were not part of the training data yields a more reliable estimate of
future performance. Although QDA misclassifies fewer training data than LDA, the opposite is generally
true for the test data. Therefore LDA is a cruder but more robust classifier than QDA. Another advantage
of LDA is that it provides a powerful way to reduce the dimensionality of the multivariate geochemical
data in a similar way to principal component analysis. This procedure yields a small number of
‘‘discriminant functions,’’ which are linear combinations of the original variables that maximize the
between-class variance relative to the within-class variance.
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1. Introduction

[2] Recovering the tectonic affinity of ancient
ophiolites is a problem of great scientific interest.
In addition to field data, basalt geochemistry is
another way to address this problem. Tectonic
discrimination diagrams have been a popular
technique for doing this since the publication of
landmark papers by Pearce and Cann [1971,
1973]. This paper revisits some of the popular
discrimination diagrams that have been in use
since then. Nearly all discrimination diagrams that
are currently in use were drawn by eye. The
present paper revisits these diagrams in a statisti-
cally more rigorous way.

[3] First, a short introduction will be given to the
discriminant analysis method. The fundamental
difference between the reduction in dimensionality
achieved by principal components and by linear
discriminant analysis will be explained. Then, the
consequences of the constant-sum constraint of
geochemical data for discriminant analysis will
be discussed. In section 4, Aitchison’s [1982,
1986] solution to this problem will be briefly
explained. Section 5 revisits some of the histori-
cally most important and popular discrimination
diagrams, based on a new database of oceanic
basalts of known tectonic affinity. The effect of
data-closure will be taken into account and a
statistically rigorous reevaluation of these diagrams
will be made in both the linear and the quadratic
case.

[4] This paper does not restrict itself to only those
geochemical features that have already been used
by previous workers. Section 6 gives an exhaustive
exploration of all possible bivariate and ternary
discrimination diagrams using a set of 45 major,
minor, and trace elements. This will result in a list
of the 100 best linear and quadratic ternary dis-
criminators, ranked according to their success in
classifying the training data. Finally, section 7 tests
the most important discrimination diagrams dis-
cussed elsewhere in the paper on a second database
of oceanic basalts that were not part of the training
data. This provides a more objective estimator of
misclassification risk on future data than the mis-
classification rate of the training data. Section 7
also contains a formal comparison of the new
decision boundaries with the old ones of Pearce
and Cann [1973], Shervais [1982], Meschede
[1986], and Wood [1980]. It will be shown that

the new decision boundaries perform at least as
well as the old ones.

2. Discriminant Analysis

[5] Consider a data set of a large number of N-
dimensional data X, which belong to one of K
classes. For example, X might be a set of geo-
chemical data (e.g., SiO2, Al2O3, etc.) from basaltic
rocks of K tectonic affinities (e.g., mid-ocean
ridge, ocean island, island arc). We might ask
ourselves which of these classes an unknown
sample x belongs to. This question is answered
by Bayes’ Rule: the decision d is the class G (1 �
G � K) that has the highest posterior probability
given the data x:

d ¼ argmax
k¼1;...;K

Pr G ¼ kjX ¼ xð Þ ð1Þ

where argmax stands for ‘‘argument of the
maximum,’’ i.e., when f(k) reaches a maximum
when k = d, then argmax

k¼1;...;K f(k) = d. This posterior
distribution can be calculated according to Bayes’
Theorem:

Pr GjXð Þ / Pr X jGð ÞPr Gð Þ ð2Þ

where Pr(XjG) is the probability density of the data
in a given class, and Pr(G) the prior probability of
the class, which we will consider uniformly
distributed (i.e., Pr(G = 1) = Pr(G = 2) = . . . =
Pr(G = K) = 1/K) in this paper. Therefore plugging
equation (2) into equation (1) reduces Bayes’ Rule
to a comparison of probability density estimates.
We now make the simplifying assumption of
multivariate normality:

Pr X ¼ xjG ¼ kð Þ ¼
exp � 1

2
x� mkð ÞTS�1

k x� mkð Þ
� �

2pð ÞN=2
ffiffiffiffiffiffiffiffi
jSk j

p ð3Þ

where mk and Sk are the mean and covariance of the
kth class and (x � mk)

T indicates the transpose of
the matrix (x � mk). Using equation (3), and taking
logarithms, equation (1) becomes

d ¼ argmax
k¼1;...;K

� 1

2
log jSk j �

1

2
x� mkð ÞTS�1

k x� mkð Þ ð4Þ

[6] Equation (4) is the basis for quadratic discrim-
inant analysis (QDA). Usually, mk and Sk are not
known, and must be estimated from the training
data. If we make the additional assumption that all
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the classes share the same covariance structure
(i.e., Sk = S 8 k), then equation (1) simplifies to

d ¼ argmax
k¼1;...;K

xTS�1mk �
1

2
mTkS

�1mk ð5Þ

[7] This is the basis of linear discriminant analysis
(LDA), which has some desirable properties. For
example, because equation (5) is linear in x, the
decision boundaries between the different classes
are straight lines (Figure 1). Furthermore, LDA can
lead to a significant reduction in dimensionality, in
a similar way to principal component analysis

(PCA). PCA finds an orthogonal transformation
B (i.e., a rotation) that transforms the centered data
(X) to orthogonality, so that the elements of the
vector BX are uncorrelated. B can be calculated by
an eigenvalue decomposition of the covariance
matrix S. The eigenvectors are orthogonal linear
combinations of the original variables, and the
eigenvalues give their variances. The first few
principal components generally account for most
of the variability of the data, constituting a signif-
icant reduction of dimensionality (Figure 2).

[8] Like PCA, LDA also finds linear combinations
of the original variables. However, this time, we do
not want to maximize the overall variability, but
find the orthogonal transformation Z = BX that
maximizes the between class variance Sb relative to
the within class variance Sw, where Sb is the
variance of the class means of Z, and Sw is the
pooled variance about the means (Figure 2).

3. The Compositional Data Problem

[9] One of the assumptions of discriminant analy-
sis is that the elements of X are statistically
independent from each other, apart from the co-
variance structure contained in their multivariate
normality. However, geochemical data are gener-
ally expressed as parts of a whole (percent or ppm)
and therefore are not free to vary independently
from each other. For example, in a three-compo-
nent system (A + B + C = 100%), increasing one

Figure 1. Discriminant analysis of three classes with
equal covariance matrices leads to linear discriminant
boundaries. The ellipses mark arbitrary (e.g., 95%)
confidence levels for the underlying populations.

Figure 2. Similarities and differences between linear discriminant and principal component analysis. x1 and x2 are
the original variables, pc1 and pc2 are the principal components, and ld1 and ld2 are the linear discriminant functions.
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component (e.g., A) causes a decrease in the two
other components (B and C). The constant-sum
constraint has several consequences, besides intro-
ducing a negative bias into correlations between
components. One of these consequences is that the

arithmetic mean of compositional data has no
physical meaning (Figure 3). This is very unfortu-
nate because some popular discrimination dia-
grams [e.g., Pearce and Cann, 1973] are based
on the arithmetic means of multiple samples, and it
is these averages that are published in the literature.
Therefore the discriminant analyses discussed in
this paper will not be based on these historic data
sets, but will use a newly compiled database of
individual analyses.

[10] Another statistical issue that deserves to be
mentioned is spurious correlation. Bivariate plots
of the form X vs. X/Y, X vs. Y/X or X/Z vs. Y/Z
can show some degree of correlation, even when
X, Y and Z are completely independent from each
other (Figure 4). This effect was first discussed
more than a century ago by Pearson [1897], and
was brought to the attention of geologists more
than half a century ago by Chayes [1949]. Spurious
correlation is an effect that should be borne in mind
when interpreting discrimination diagrams like the
Zr/Y-Ti/Y diagram [Pearce and Gale, 1977], the Zr/
Y-Zr diagram [Pearce and Norry, 1979], or the
Ti/Y-Nb/Y and K2O/Yb-Ta/Yb diagrams [Pearce,
1982]. Note that whereas in Figure 4, X, Y and
Z are completely independent, this is never the
case for compositional data, due to the constant-

Figure 3. One of the consequences of the constant-
sum constraint of compositional data is that the
arithmetic mean (marked by the open square) of
populations (black dots) has no physical meaning.
Instead, the geometric mean should be used (open
circle).

Figure 4. X, Y, and Z are uncorrelated, uniform random numbers. The strong spurious correlation of the ratios Y/Z
and X/Z is an artifact of the relatively large variance of Z relative to X, Y, and Z.
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sum constraint described before. This only aggra-
vates the problem of spurious correlation.

4. Aitchison’s Solution to the
Compositional Data Problem

[11] Although Chayes [1949, 1960, 1971] made
significant contributions to the compositional data
problem, the real breakthrough was made by
Aitchison [1982, 1986]. Aitchison argues that N-
variate data constrained to a constant sum form an

N � 1 dimensional sample space or simplex. An
example of a simplex for N = 3 is the ternary
diagram [e.g., Weltje, 2002]. The very fact that it is
possible to plot ternary data on a two-dimensional
sheet of paper tells us that the sample space really
has only two, and not three dimensions. The
‘‘traditional’’ statistics of real space (RN) do no
longer work on the simplex (DN�1). Figure 5 shows
the breakdown of the calculation of 100(1 � a)%
confidence intervals on D2. Treating D2 the same
way as R

3 yields 95% confidence polygons that
partly fall outside the ternary diagram, cor-
responding to meaningless negative values of x, y
and z.

[12] As a solution to this problem, Aitchison sug-
gested to transform the data from DN�1 to R

N�1

using the log-ratio transformation (Figure 6). After
performing the desired (‘‘traditional’’) statistical
analysis on the transformed data in R

N�1, the
results can then be transformed back to DN�1 using
the inverse log-ratio transformation. For example,
in the ternary system (X + Y + Z = 1), we could use
the transformed values V = log(X/Z) and W =
log(Y/Z). Alternatively, we could also use V =
log(X/Y) and W = log(Z/Y), or V = log(Y/X) and
W = log(Z/X). The inverse log-ratio transformation
is given by

X ¼ eV

eV þ eW þ 1
; Y ¼ eW

eV þ eW þ 1
; Z ¼ 1

eV þ eW þ 1
ð6Þ

[13] The back-transformed confidence regions of
Figure 6 are no longer elliptical, but completely

Figure 5. The 95% normal confidence regions [e.g.,
Weltje, 2002] for synthetic trivariate compositional data
partly fall outside the ternary diagram, a nonsense result
illustrating the dangers of performing ‘‘traditional’’
statistics on the simplex.

Figure 6. Following Aitchison [1986], the statistical problems of Figure 5 can be avoided by mapping the data from
the simplex D2 to IR2 using the logratio transformation.
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Figure 7. Linear discriminant analysis using the crude covariance approach of Figure 5. The red-shaded contours of
the first three ternary diagrams represent the posterior probabilities for the three classes. The last diagram shows the
linear decision boundaries. Ten percent of the training data are misclassified.
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Figure 8. The same data of Figure 7, mapped to logratio space using the approach illustrated by Figure 6. Linear
discriminant analysis of these bivariate data misclassifies only 3% of the training data.
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Figure 9. Mapping the results of Figure 8 back to the ternary diagram with the inverse logratio transformation
shown in Figure 6 yields curved posterior densities and decision boundaries.
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Figure 10. Locations of the training data: 756 island arc (IAB), mid-ocean ridge (MORB), and ocean island (OIB)
basalts.

Figure 11. Linear discriminant analysis (LDA) of the Ti-V system of Shervais [1982]. The red-shaded contours on
the first three subplots show the posterior probability of a particular ‘‘class’’ (IAB, MORB, or OIB) given the training
set of 756 basalt samples and a uniform prior. The last subplot (lower right) shows the new decision boundaries. The
number of training data used and a resubstitution error estimate are given for each of the tectonic affinities. The
overall resubstitution error is shown above the lower right subplot.
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Figure 12. Quadratic discriminant analysis (QDA) of the Ti-V system. In contrast with the LDA of Figure 11, each
tectonic ‘‘class’’ was allowed to have a different covariance matrix, resulting in slightly different decision boundaries.
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Figure 13. Linear discriminant analysis of the Ti-Zr system of Pearce and Cann [1973].
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Figure 14. Quadratic discriminant analysis of the Ti-Zr system.
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Figure 15. Linear discriminant analysis of the Ti-Zr-Y system of Pearce and Cann [1973]. The posterior probabilities
of nearly all the IAB and MORB training data are low (<0.4), resulting in large misclassification rates for these
affinities. As noted by Pearce and Cann [1973], the Ti-Zr-Y diagram can be used to separate OIBs from IAB/MORBs
but cannot be used to distinguish between IAB andMORB. For this purpose, the Ti-Zr diagram (Figure 13) can be used.
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Figure 16. Quadratic discriminant analysis of the Ti-Zr-Y system. The OIB/IAB decision boundary (at low Y) is
nearly identical to that of Figure 15, whereas there is a lot more (unstable) structure at higher Y concentrations.

Geochemistry
Geophysics
Geosystems G3G3

vermeesch: tectonic discrimination diagrams revisited 10.1029/2005GC001092

14 of 55



Figure 17. Linear discriminant analysis of the Zr-Y-Nb system of Meschede [1986]. Like in Figure 15, posterior
IAB and MORB probabilities are low, resulting in high misclassification rates.
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Figure 18. Quadratic discriminant analysis of the Zr-Y-Nb system.
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Figure 19. Linear discriminant analysis of the Th-Ta-Hf system of Wood [1980].
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Figure 20. Quadratic discriminant analysis of the Th-Ta-Hf system.
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Figure 21. Linear discriminant analysis of the Ti-Zr-Y-Sr system. ld1 and ld2 are the two linear discriminant
functions, given by equation (7). They represent two projection planes that optimally separate the three tectonic
affinities (IAB, MORB, and OIB) (see also Figure 2). The encircled numbers on the lower right subplot are ‘‘anchor
points’’ that can be used by the user to reconstruct the decision boundaries in logratio space. The ld1/ld2 coordinates
of these anchor points are given in Table 6.
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Figure 22. Linear discriminant analysis of major element data (SiO2, Al2O3, TiO2, CaO, MgO, MnO, K2O, Na2O),
mapped to R2 using the logratio transformation. ld1 and ld2 are given by equation (8). Anchor points are given
in Table 6.
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Figure 23. Visual representation of the performance of all possible bivariate linear discriminant analyses using the
major element data of the training set of 756 oceanic basalts. The upper right triangular section of each matrix shows
the number of samples that contained both variables. The lower left sections color-code the fraction of successfully
classified training data.
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Figure 24. Same as Figure 23, but for quadratic discriminant analysis.
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Figure 25. Matrices showing the performance of all possible bivariate linear discriminant analyses using
combinations of 45 elements.
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Figure 26. Same as Figure 25, but for quadratic discriminant analysis.
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Figure 27. Performance analysis of all possible ternary linear discriminant analyses using TiO2 and other major
element oxides.
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Figure 28. Same as Figure 27, but using quadratic discriminant analysis.
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Figure 29. Performance analysis of all possible ternary linear discriminant analyses using Ti and two of 45 other
elements.
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Figure 30. Same as Figure 29, but using quadratic discriminant analysis.
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Table 1. The 100 Best Ternary Linear Discrimination Diagrams

Rank

Elements Resubstitution Error, % # IAB # MORB # OIB

1 2 3 Overall IAB MORB OIB (/256) (/241) (/259)

1 Si Sr Ti 6.2 10.0 6.6 2.1 221 211 192
2 Ti Sr Al 6.5 10.0 7.6 2.1 220 211 194
3 Eu Sr Lu 6.6 10.5 6.0 3.3 124 117 120
4 Sr Nb Y 6.6 13.4 3.9 2.5 157 127 160
5 Ca Nb Sr 7.6 16.6 4.8 1.4 157 126 142
6 Ti Sr V 7.7 9.5 7.2 6.4 158 180 156
7 Eu Y Sr 7.8 16.1 4.7 2.5 124 106 121
8 Ti Sr Ca 7.8 12.3 9.0 2.1 220 211 194
9 Ti Sr Sc 7.9 12.6 7.1 3.9 119 155 128
10 Al Nb Sr 8.1 20.4 3.2 0.7 157 126 142
11 Ti Sr Mn 8.1 11.9 8.3 4.2 219 204 191
12 Ti Y Sr 8.4 12.9 3.9 8.5 202 153 177
13 Eu Sr Yb 8.4 15.2 5.1 5.0 138 157 141
14 Si Nb Sr 8.8 19.5 4.8 2.1 159 126 142
15 Ti Sr Na 8.8 13.6 6.1 6.7 220 213 194
16 Na Nb Sr 9.0 22.3 4.0 0.7 157 126 142
17 Tb Sr Lu 9.2 11.0 9.8 6.7 100 102 105
18 Ti Nb Sr 9.3 10.1 14.3 3.4 158 126 149
19 Mn Nb Sr 9.4 19.7 6.3 2.1 157 126 140
20 Nd Y Sr 9.5 19.6 6.7 2.4 138 135 127
21 Ti Ba Al 9.5 11.1 16.0 1.6 217 144 192
22 Na Zr Sr 9.6 18.8 5.5 4.5 208 165 177
23 Ti Sr Lu 9.6 11.5 6.2 11.1 113 113 108
24 Al Sr Nd 10.1 20.9 4.5 4.8 139 177 125
25 Al Zr Sr 10.1 20.2 5.5 4.5 208 163 177
26 V Nb Sr 10.2 18.9 9.4 2.4 122 117 124
27 Tb Sr Yb 10.3 14.7 6.4 9.9 102 125 111
28 Ti V Sc 10.4 15.2 10.1 5.8 105 148 121
29 Ti Ba Na 10.4 9.7 15.8 5.7 217 146 192
30 V Nb Rb 10.4 10.7 14.2 6.5 122 113 123
31 K Nb V 10.6 10.7 14.0 7.0 121 129 114
32 Ti V Sm 10.6 17.3 6.8 7.6 104 162 105
33 Sr Zr Y 10.6 21.6 3.9 6.4 204 155 203
34 Ti Sr Yb 10.6 13.4 6.7 11.8 127 150 127
35 Na Sr Nd 10.7 22.3 7.3 2.4 139 179 125
36 Si Ba Ti 10.8 12.0 17.4 3.2 217 144 190
37 Ca Sr Nd 10.9 20.9 6.2 5.6 139 177 125
38 Nd Sr Yb 10.9 19.4 9.7 3.8 134 145 133
39 Sm Y Sr 11.0 21.9 5.1 5.9 128 137 119
40 Al Sr Eu 11.0 20.9 7.1 5.0 129 154 120
41 Yb Zr Sr 11.0 19.8 6.5 6.7 126 107 134
42 Ti Ba Sc 11.2 13.1 16.5 3.9 122 115 129
43 Sc Zr Sr 11.2 21.0 6.8 5.7 119 118 122
44 Si Sr Nd 11.3 21.9 6.2 5.6 146 177 124
45 Si Sr Eu 11.3 18.5 7.8 7.6 135 154 118
46 Sm Sr Lu 11.3 23.0 6.0 5.0 122 116 119
47 Ti Ba Mn 11.4 11.1 18.2 4.8 216 137 189
48 Mn Zr Sr 11.4 21.7 5.0 7.5 207 160 174
49 Si Zr Sr 11.4 21.8 6.1 6.3 211 163 175
50 Ti K Al 11.5 13.6 15.4 5.4 228 228 203
51 Nd Sr Lu 11.5 20.7 9.5 4.5 121 105 112
52 Ti Y V 11.6 19.6 8.4 6.8 153 155 147
53 Ti Sc K 11.6 10.7 15.4 8.7 122 162 126
54 Ti Rb Al 11.6 12.4 18.2 4.2 209 187 189
55 Ti Ba Ca 11.6 12.0 20.8 2.1 217 144 192
56 Si K Ti 11.7 14.0 14.0 7.0 229 228 201
57 Ti Ba V 11.7 10.8 16.0 8.4 158 125 155
58 Ti Sr Zn 11.7 12.8 11.9 10.6 149 109 142
59 Ti V Nd 11.9 16.8 9.0 9.7 113 155 113
60 Na Sr Ce 11.9 26.1 6.7 2.9 165 119 140
61 Ca Zr Sr 11.9 24.0 6.1 5.6 208 163 177
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Table 1. (continued)

Rank

Elements Resubstitution Error, % # IAB # MORB # OIB

1 2 3 Overall IAB MORB OIB (/256) (/241) (/259)

62 Eu Sr V 12.0 18.8 7.6 9.4 101 131 106
63 Ca Nb K 12.0 14.6 14.5 7.0 157 138 143
64 Mn Sr Nd 12.1 21.6 10.6 4.1 139 170 123
65 K Nb Y 12.2 14.2 16.2 6.1 155 136 147
66 Al Sr Ce 12.3 24.2 6.8 5.7 165 117 140
67 Ti V K 12.3 9.4 14.2 13.2 159 197 151
68 Si Rb Ti 12.3 12.4 19.3 5.3 210 187 189
69 Ti V Na 12.3 14.5 15.2 7.3 159 197 151
70 Al Nb K 12.4 16.6 13.8 7.0 157 138 143
71 Al Nb Rb 12.5 14.7 16.4 6.3 156 122 142
72 Ti K Mn 12.5 12.3 17.6 7.5 227 221 200
73 Mg Nb Sr 12.6 19.0 7.1 11.6 158 126 147
74 Sr Nb Zr 12.7 15.6 20.5 1.9 160 132 157
75 Ca Sr Ce 12.7 23.0 8.5 6.4 165 117 140
76 Nd Sr V 12.7 22.8 9.8 5.4 114 153 111
77 K Nb Na 12.7 16.6 15.2 6.3 157 138 143
78 Mn Sr Eu 12.8 18.6 9.5 10.2 129 147 118
79 Eu Sr Tb 12.8 23.6 7.6 7.1 106 131 113
80 Si Sr Ce 12.8 24.7 8.5 5.1 170 117 138
81 Na Sr P 12.8 27.3 6.4 4.7 220 202 192
82 K Zr Yb 12.8 18.4 11.3 8.7 125 106 115
83 Al Sr P 12.8 27.3 5.4 5.7 220 202 192
84 K Lu Eu 12.8 16.8 17.2 4.5 119 116 112
85 Ce Sr Lu 12.8 24.2 6.0 8.3 124 100 120
86 Ti Y Al 12.9 12.9 18.3 7.4 201 164 175
87 Si Nb K 12.9 15.7 15.9 7.0 159 138 143
88 Ti V Eu 13.0 21.0 9.6 8.3 100 146 108
89 Ca Nb Rb 13.0 14.7 17.2 7.0 156 122 142
90 Ce Sr Yb 13.0 23.2 8.7 7.1 138 126 141
91 Zn Zr Sr 13.1 21.8 8.3 9.2 147 109 152
92 P Sr Sc 13.1 26.1 6.6 6.7 119 151 120
93 Ti V Ce 13.1 13.5 14.4 11.5 126 104 122
94 Ti Nd Mn 13.2 21.1 13.8 4.6 142 174 131
95 Sm Sr Yb 13.3 25.0 7.7 7.3 136 156 137
96 Ca Sr Eu 13.3 23.3 8.4 8.3 129 154 120
97 V Zr Sr 13.4 21.7 8.2 10.3 157 147 156
98 Ti Ce Mn 13.4 19.9 14.9 5.5 171 114 145
99 Mn Nb K 13.5 15.3 17.4 7.8 157 138 141
100 Ti Cu V 13.5 13.1 15.7 11.7 107 108 120
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Figure 31. The best ternary linear discriminant analysis, using Si, Ti, and Sr.
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Figure 32. Linear discriminant analysis using Eu, Lu, and Sr.
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Figure 33. The best performing linear discriminant analysis using only incompatible elements (Ti, V, and Sc).

Geochemistry
Geophysics
Geosystems G3G3

vermeesch: tectonic discrimination diagrams revisited 10.1029/2005GC001092

33 of 55



Table 2. The Best Ternary Linear Discrimination Diagrams Using Only Incompatible Elements

Rank

Elements Resubstitution Error, % # IAB # MORB # OIB

1 2 3 Overall IAB MORB OIB (/256) (/241) (/259)

28 Ti V Sc 10.4 15.2 10.1 5.8 105 148 121
32 Ti V Sm 10.6 17.3 6.8 7.6 104 162 105
52 Ti Y V 11.6 19.6 8.4 6.8 153 155 147
59 Ti V Nd 11.9 16.8 9.0 9.7 113 155 113
93 Ti V Ce 13.1 13.5 14.4 11.5 126 104 122
101 Ti V La 13.5 13.6 17.5 9.5 125 143 116
108 Ti Zr V 13.9 19.2 11.7 10.8 156 162 148
159 V Zr Y 15.3 26.8 9.7 9.4 153 155 149
182 Ti Nb V 15.9 23.1 17.1 7.4 121 129 121
189 Ti Cr Sc 15.9 26.4 16.7 4.7 121 162 127
208 Ti Cr V 16.2 23.4 14.3 11.0 158 182 154
249 La Nb Zr 17.1 21.4 19.8 9.9 140 101 131
251 Nd Nb Y 17.1 35.7 11.5 4.1 129 113 123
252 Ti Zr Sc 17.1 22.9 22.5 5.9 118 120 119
267 V Nb Y 17.3 30.8 18.6 2.4 120 129 124
277 Nd Y V 17.5 38.1 9.6 4.9 113 125 103
324 Sm Nb Y 18.2 35.2 15.0 4.3 122 113 115
380 La Y V 19.1 31.5 16.0 9.8 124 106 112
385 La Zr V 19.2 32.0 17.3 8.2 125 110 110
393 Ti Y Sc 19.3 28.6 25.9 3.4 112 112 118
423 Ti Sc La 19.8 28.3 26.5 4.5 113 117 112
426 Nd Zr V 19.8 35.4 15.2 8.7 113 125 103
538 Sc Zr V 21.5 32.4 23.5 8.7 105 115 115
543 Ti Y Nd 21.6 42.6 16.4 5.7 136 134 122
551 Ti Y Sm 21.7 42.9 16.2 6.1 126 136 114
584 Ce V Yb 22.2 43.0 19.0 4.6 100 105 108
587 Sm Zr Y 22.3 50.4 8.7 7.8 127 138 116
591 Sc Zr Y 22.3 33.0 27.0 7.0 112 115 115
612 La Zr Yb 22.6 38.9 21.0 7.9 126 105 127
624 Ti Y La 22.7 38.6 25.0 4.5 153 116 134
633 Nd Zr Yb 22.8 48.0 13.9 6.6 123 101 122
639 Ti Nb Nd 22.9 34.1 25.9 8.7 129 112 115
646 Sc Zr Cr 23.0 35.5 23.4 10.1 121 124 119
658 Nd Zr Y 23.1 48.9 14.0 6.5 137 136 124
659 Sc Y V 23.1 28.2 19.8 21.4 103 111 117
679 Nd Cr Sc 23.4 43.0 22.2 4.9 100 135 103
766 La Zr Y 24.3 41.9 23.7 7.3 155 118 150
777 La V Yb 24.5 44.0 22.6 6.8 100 124 103
787 Ti Cr Lu 24.6 40.9 25.2 7.7 110 115 104
791 Ce Cr V 24.7 37.3 21.9 14.8 126 105 122
806 Nd Nb Zr 24.9 37.4 29.7 7.6 131 118 119
817 V Zr Cr 25.0 32.7 24.2 18.2 156 149 154
836 La Cr V 25.3 41.6 21.4 12.8 125 131 117
861 Ti Nb Sm 25.5 35.0 33.0 8.4 123 112 107
869 Ti Cr Yb 25.6 42.5 26.0 8.3 120 131 121
894 Ti Yb Ce 25.8 47.4 26.2 3.8 133 122 130
899 La Cr Sc 25.9 42.1 23.8 11.7 121 122 111
900 V Nb Zr 25.9 39.3 33.3 5.0 122 129 120
908 Sm Zr Yb 26.0 64.6 5.6 7.9 127 108 126
957 Sc Y Cr 26.6 27.7 24.1 28.0 112 116 118
966 Ti Yb Nd 26.6 53.2 22.7 4.1 126 141 123
976 Ti Yb La 26.8 44.6 30.2 5.6 130 149 126
977 Nd Cr V 26.8 41.6 25.4 13.5 113 142 111
984 Sm Cr Lu 26.9 56.6 20.2 3.8 113 114 104

Geochemistry
Geophysics
Geosystems G3G3

vermeesch: tectonic discrimination diagrams revisited 10.1029/2005GC001092

34 of 55



Table 3. The 100 Best Ternary Quadratic Discrimination Diagrams

Rank

Elements Resubstitution Error, % # IAB # MORB # OIB

1 2 3 Overall IAB MORB OIB (/256) (/241) (/259)

1 Na Nb Sr 5.0 8.3 4.0 2.8 157 126 142
2 Al Nb Sr 5.7 10.2 4.0 2.8 157 126 142
3 Si Nb Sr 5.9 10.1 4.0 3.5 159 126 142
4 Ca Nb Sr 6.0 9.6 5.6 2.8 157 126 142
5 Sr Nb Y 6.1 7.0 3.9 7.5 157 127 160
6 Eu Sr Lu 6.3 9.7 7.7 1.7 124 117 120
7 Ti Sr Al 6.7 10.0 8.1 2.1 220 211 194
8 Si Sr Ti 6.7 9.5 8.1 2.6 221 211 192
9 Mn Nb Sr 6.9 10.2 6.3 4.3 157 126 140
10 Ti Sr V 7.0 7.6 8.9 4.5 158 180 156
11 Ti Sr Na 7.9 10.9 6.6 6.2 220 213 194
12 Eu Sr Yb 7.9 13.0 5.7 5.0 138 157 141
13 Ti Sr Lu 8.0 11.5 8.0 4.6 113 113 108
14 Ti Sr Sc 8.0 12.6 8.4 3.1 119 155 128
15 Na Zr Sr 8.1 14.4 4.8 5.1 208 165 177
16 Ti Sr Ca 8.1 11.8 9.5 3.1 220 211 194
17 Ti Sr Mn 8.2 10.5 10.3 3.7 219 204 191
18 Eu Y Sr 8.4 16.9 5.7 2.5 124 106 121
19 Al Sr Eu 8.6 14.7 8.4 2.5 129 154 120
20 K Nb V 8.6 9.1 12.4 4.4 121 129 114
21 V Nb Rb 8.8 9.0 13.3 4.1 122 113 123
22 Ti Y Sr 8.9 11.9 5.2 9.6 202 153 177
23 Na Sr Eu 9.0 16.3 5.8 5.0 129 156 120
24 Al Zr Sr 9.1 14.9 6.7 5.6 208 163 177
25 V Nb Sr 9.2 12.3 12.0 3.2 122 117 124
26 Tb Sr Lu 9.2 13.0 9.8 4.8 100 102 105
27 Ti Nb Sr 9.2 5.7 15.9 6.0 158 126 149
28 Ti Sr Yb 9.2 13.4 8.0 6.3 127 150 127
29 Nd Y Sr 9.3 17.4 5.9 4.7 138 135 127
30 Al Nb K 10.0 12.7 10.9 6.3 157 138 143
31 K Nb Na 10.0 12.7 13.0 4.2 157 138 143
32 Ti Ba Al 10.0 10.6 13.2 6.3 217 144 192
33 Ti V Sm 10.0 12.5 6.2 11.4 104 162 105
34 Ti V Nd 10.1 12.4 9.0 8.8 113 155 113
35 Ti Ba Na 10.1 12.4 13.7 4.2 217 146 192
36 Mg Nb Sr 10.3 11.4 7.1 12.2 158 126 147
37 Si Zr Sr 10.4 17.5 6.7 6.9 211 163 175
38 Nd Sr Yb 10.4 19.4 9.7 2.3 134 145 133
39 Ca Zr Sr 10.5 20.2 6.1 5.1 208 163 177
40 Yb Zr Sr 10.5 18.3 6.5 6.7 126 107 134
41 Sr Zr Y 10.5 19.1 4.5 7.9 204 155 203
42 Si Sr Eu 10.5 15.6 8.4 7.6 135 154 118
43 Ca Sr Nd 10.5 20.9 6.8 4.0 139 177 125
44 Mn Zr Sr 10.6 19.3 6.3 6.3 207 160 174
45 Al Sr Nd 10.7 22.3 5.6 4.0 139 177 125
46 Ca Sr Eu 10.7 17.1 8.4 6.7 129 154 120
47 Ti V Sc 10.8 17.1 9.5 5.8 105 148 121
48 Al Nb Rb 10.8 11.5 13.9 7.0 156 122 142
49 Ca Nb K 10.9 12.1 13.0 7.7 157 138 143
50 Sm Y Sr 11.0 23.4 4.4 5.0 128 137 119
51 Na Nb Rb 11.0 11.5 16.4 4.9 156 122 142
52 V Zr Sr 11.0 17.2 7.5 8.3 157 147 156
53 Si Sr Nd 11.1 21.9 7.3 4.0 146 177 124
54 Si Nb K 11.1 12.6 13.8 7.0 159 138 143
55 Sc Zr Sr 11.2 19.3 6.8 7.4 119 118 122
56 Ti Cu Al 11.2 10.7 16.8 6.0 121 107 134
57 Nd Sr Lu 11.3 19.8 11.4 2.7 121 105 112
58 Ti Sc K 11.4 11.5 15.4 7.1 122 162 126
59 Sm Sr Lu 11.4 20.5 7.8 5.9 122 116 119
60 Ti K Al 11.4 13.2 13.6 7.4 228 228 203
61 Eu Sr V 11.4 18.8 6.9 8.5 101 131 106
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Table 3. (continued)

Rank

Elements Resubstitution Error, % # IAB # MORB # OIB

1 2 3 Overall IAB MORB OIB (/256) (/241) (/259)

62 Ti V Na 11.4 12.6 13.7 7.9 159 197 151
63 Rb Nb Y 11.4 11.5 14.6 8.1 156 123 160
64 Si Ba Ti 11.4 11.5 16.0 6.8 217 144 190
65 Ti Sr Zn 11.5 11.4 11.0 12.0 149 109 142
66 K Nb Y 11.5 11.6 16.2 6.8 155 136 147
67 Ti Ba Sc 11.7 14.8 15.7 4.7 122 115 129
68 Mn Nb K 11.7 12.7 18.1 4.3 157 138 141
69 Zn Zr Sr 11.7 17.7 8.3 9.2 147 109 152
70 Ti Lu Mn 11.7 20.3 13.9 1.0 118 115 105
71 Tb Sr Yb 11.8 16.7 9.6 9.0 102 125 111
72 Ti V K 11.8 8.2 15.2 11.9 159 197 151
73 Na Sr Nd 11.8 24.5 7.8 3.2 139 179 125
74 Si Nb Rb 11.8 11.4 16.4 7.7 158 122 142
75 Na Sr Ce 11.9 23.0 7.6 5.0 165 119 140
76 Mn Sr Nd 11.9 21.6 10.0 4.1 139 170 123
77 Sr Nb Zr 11.9 8.1 21.2 6.4 160 132 157
78 Ti K Mn 11.9 11.5 16.3 8.0 227 221 200
79 Ti Rb Na 12.0 15.3 14.8 5.8 209 189 189
80 Ti Y V 12.0 19.6 12.3 4.1 153 155 147
81 Si K Ti 12.0 12.7 14.9 8.5 229 228 201
82 Si Ni Ti 12.0 24.2 10.2 1.7 211 205 180
83 P Y Sr 12.1 23.3 4.7 8.2 202 149 170
84 Ca Nb Rb 12.1 11.5 16.4 8.5 156 122 142
85 Ti Ba V 12.1 12.0 16.0 8.4 158 125 155
86 Ti Rb Al 12.1 12.4 17.6 6.3 209 187 189
87 Ti Ba Mn 12.2 12.0 19.7 4.8 216 137 189
88 K Yb Nd 12.2 22.8 11.3 2.5 127 141 121
89 Al Sr Ce 12.3 24.2 6.8 5.7 165 117 140
90 K Lu Nd 12.3 19.5 13.6 3.8 113 103 104
91 Ti Ba Ca 12.3 12.0 18.8 6.3 217 144 192
92 Mn Sr Eu 12.3 16.3 8.8 11.9 129 147 118
93 Ti V P 12.3 13.2 11.1 12.8 159 190 149
94 Mn Nb Rb 12.3 11.5 20.5 5.0 156 122 140
95 Sm Sr V 12.4 19.0 7.5 10.7 105 160 103
96 Ca Sr Ce 12.4 23.0 8.5 5.7 165 117 140
97 Ti V La 12.5 13.6 16.1 7.8 125 143 116
98 Ti Sr Cu 12.6 10.8 9.8 17.0 120 102 141
99 Nd Sr V 12.6 21.9 10.5 5.4 114 153 111
100 Ti Rb V 12.6 10.5 16.8 10.7 153 161 150
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Figure 34. The best performing quadratic discriminant analysis, using Na, Nb, and Sr.
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Figure 35. The best performing quadratic discriminant analysis using only incompatible elements (Ti, V, and Sm).
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Table 4. The Best Ternary Quadratic Discrimination Diagrams Using Only Incompatible Elements

Rank

Elements Resubstitution Error, % # IAB # MORB # OIB

1 2 3 Overall IAB MORB OIB (/256) (/241) (/259)

33 Ti V Sm 10.0 12.5 6.2 11.4 104 162 105
34 Ti V Nd 10.1 12.4 9.0 8.8 113 155 113
47 Ti V Sc 10.8 17.1 9.5 5.8 105 148 121
80 Ti Y V 12.0 19.6 12.3 4.1 153 155 147
97 Ti V La 12.5 13.6 16.1 7.8 125 143 116
118 Ti V Ce 13.1 14.3 14.4 10.7 126 104 122
123 Nd Nb Y 13.3 28.7 7.1 4.1 129 113 123
163 Ti Zr V 14.4 18.6 11.7 12.8 156 162 148
182 Ti Nb V 14.8 23.1 16.3 5.0 121 129 121
202 V Zr Y 15.1 23.5 12.9 8.7 153 155 149
232 Ti Cr Sc 15.5 31.4 13.6 1.6 121 162 127
252 La Nb Zr 15.9 15.7 19.8 12.2 140 101 131
283 Ti Cr V 16.3 25.3 12.6 11.0 158 182 154
310 Ti Nb Nd 16.8 19.4 17.0 13.9 129 112 115
340 V Nb Y 17.3 29.2 17.8 4.8 120 129 124
353 Nd Zr V 17.5 31.9 12.8 7.8 113 125 103
365 Nd Y V 17.6 37.2 8.8 6.8 113 125 103
405 La Zr V 18.2 27.2 17.3 10.0 125 110 110
407 Sm Nb Y 18.2 36.1 9.7 8.7 122 113 115
408 Ti Lu Sm 18.2 44.8 7.0 2.7 116 114 113
443 Ti Y Nd 18.6 37.5 12.7 5.7 136 134 122
448 La Y V 18.7 32.3 14.2 9.8 124 106 112
461 Nd Zr Y 18.9 40.1 11.8 4.8 137 136 124
485 Ti Sc La 19.3 38.1 15.4 4.5 113 117 112
494 Sc Zr Y 19.4 36.6 19.1 2.6 112 115 115
506 Nd Zr Yb 19.6 43.9 10.9 4.1 123 101 122
536 Ti Zr Sc 20.0 39.0 14.2 6.7 118 120 119
548 Nd Cr Sc 20.1 43.0 13.3 3.9 100 135 103
568 Nd Nb Zr 20.3 30.5 21.2 9.2 131 118 119
571 Ti Y Sm 20.4 47.6 7.4 6.1 126 136 114
573 Nd Nb Sm 20.4 33.9 15.4 11.9 124 117 109
590 Ti Y Sc 20.5 42.0 17.9 1.7 112 112 118
591 Sc Zr V 20.5 38.1 13.0 10.4 105 115 115
593 Sc Zr Cr 20.6 38.0 16.9 6.7 121 124 119
610 Ti Yb Sm 20.8 51.1 7.2 3.9 131 152 127
620 La Zr Yb 20.9 38.9 14.3 9.4 126 105 127
633 Ti Lu Nd 21.0 44.6 15.5 2.8 112 103 106
656 Ti Y La 21.2 44.4 14.7 4.5 153 116 134
670 Ti Cr Lu 21.4 50.9 10.4 2.9 110 115 104
690 Ce Cr V 21.7 36.5 16.2 12.3 126 105 122
759 Sm Zr Y 22.3 50.4 8.0 8.6 127 138 116
773 Ti Yb Nd 22.6 52.4 12.1 3.3 126 141 123
791 Sc Y V 22.8 31.1 12.6 24.8 103 111 117
792 Ce V Yb 22.8 44.0 16.2 8.3 100 105 108
797 Ti Lu La 22.9 50.0 16.1 2.7 118 112 113
803 Ti Zr Yb 23.0 48.8 15.1 5.1 125 106 117
818 La Cr V 23.2 42.4 16.0 11.1 125 131 117
824 Ti Zr Y 23.2 51.7 11.6 6.4 201 164 173
829 La Cr Sc 23.3 46.3 16.4 7.2 121 122 111
838 Sm Zr Yb 23.4 52.0 11.1 7.1 127 108 126
858 V Zr Cr 23.6 35.9 16.1 18.8 156 149 154
865 Sm Cr Lu 23.7 54.9 12.3 3.8 113 114 104
867 Nd Cr V 23.7 41.6 16.9 12.6 113 142 111
930 La V Yb 24.3 47.0 16.1 9.7 100 124 103
932 Ti Cr Yb 24.3 55.0 13.7 4.1 120 131 121
936 Sc Y Cr 24.3 29.5 15.5 28.0 112 116 118
941 Sm Cr Yb 24.4 53.7 13.4 6.0 123 134 116
947 La Zr Y 24.5 47.1 16.9 9.3 155 118 150
958 Ti Yb Ce 24.5 54.1 16.4 3.1 133 122 130
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fall within the ternary diagram, as they should.
Figure 7 shows an LDA of the synthetic data of
Figures 5 and 6, done the ‘‘wrong’’ way (i.e.,
treating the simplex as a regular data space). As
explained in the previous section, such an analysis
yields linear decision boundaries. 10% of the
training data were misclassified. Figure 8 shows
an LDA done the ‘‘correct’’ way (i.e., after map-
ping the data to log-ratio space). The decision
boundaries are still linear, but this time only

3% of the training data were misclassified. Be-
cause log(Y/Z) and log(X/Z) are rather hard quan-
tities to interpret, it is a good idea to map the results
back to the ternary diagram using the inverse log-
ratio transformation (Figure 9). The transformed
decision boundaries are no longer linear, but
curved. However, the misclassification rate is still
only 3%.

[14] Note that there are two different kinds of
constant-sum constraint. The first is a physical
one, resulting from the fact that all chemical
concentrations add up to 100%. The second is a
diagrammatic constraint caused by renormalizing
three chosen elements to 100% on a ternary plot.
Aitchison’s logratio transform adequately deals

with both types of constant sum constraint. The
first type is discussed in sections 5.1 and 5.3; the
second type is discussed in section 5.2.

5. Revisiting a Few Popular
Discrimination Diagrams

[15] In this section, a few historically important
and popular tectonic discrimination diagrams will
be discussed. They are as follows:

[16] . Ti-V [Shervais, 1982]

[17] . Ti-Zr [Pearce and Cann, 1973]

[18] . Ti-Zr-Y [Pearce and Cann, 1973]

[19] . Zr-Y-Nb [Meschede, 1986]

[20] . Th-Ta-Hf [Wood, 1980]

[21] . SiO2-Al2O3-TiO2-CaO-MgO-MnO-K2O-
Na2O [Pearce, 1976] (but without FeO)

[22] . Ti, Zr, Y and Sr [Butler and Woronow, 1986]

[23] The word ‘‘discrimination diagram’’ is used
instead of ‘‘discriminant analysis,’’ because most
of these diagrams are only loosely based on the
principles of discriminant analysis outlined in sec-
tion 2 and the decision boundaries were drawn by
eye. This section will revisit the combinations of
elements used in these discrimination diagrams. An
extensive data set of 756 samples (Figure 10) was
compiled from the PETDB and GEOROC data-
bases [Lehnert et al., 2000]. It contains:

[24] . 256 Island arc basalts (IAB) from the
Aeolian, Izu-Bonin, Kermadec, Kurile, Lesser
Antilles, Mariana, Scotia and Tonga arcs.

[25] . 241 Mid-ocean ridge (MORB) samples from
the East Pacific rise, Mid-Atlantic Ridge, Indian
Ocean and Juan de Fuca ridge.

[26] . 259 Ocean island (OIB) samples from St.
Helena, the Canary, Cape Verde, Caroline, Crozet,
Hawaii-Emperor, Juan Fernandez, Marquesas,
Mascarene, Samoan and Society islands.

[27] All the training data had SiO2 concentrations
between 45 and 53%. Duplicate analyses were
excluded from the database to avoid potential bias
toward overrepresented samples. From this data-
base, two sets of training data were generated:

[28] . 11 major oxides (in weight percent): SiO2,
TiO2, Al2O3, Fe2O3, FeO, CaO, MgO, MnO, K2O,
Na2O and P2O5.

Figure 36. Illustration of the bias-variance tradeoff in
a regression context. The thick gray line is the true
model (Y = X4). The white circles are 50 samples with
random normal errors. The dashed line is the inter-
polator, which is one of infinitely many functions that
go through all the data points and thus have zero bias.
The solid black line is a linear regression model, which
has a large bias but small variance. In this case, the
fourth-order polynomial (blue) is the best predictor of
future behavior. Although it has larger bias than the
50th-order polynomial (red) and larger variance than the
first-order polynomial (straight black line), it minimizes
the mean squared error (MSE = variance + bias2).
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Table 5. Misclassification Estimates

True Affinity

Predicted Affinity (Training) Predicted Affinity (Test)

IAB MORB OIB IAB MORB OIB

Linear Ti-V
IAB 130 24 5 19 8 0
MORB 34 153 10 2 39 12
OIB 0 14 144 0 0 36

Quadratic Ti-V
IAB 127 27 5 19 8 0
MORB 26 161 10 4 37 12
OIB 0 14 144 0 0 36

Linear Ti-Zr
IAB 176 28 6 36 10 1
MORB 34 125 22 0 7 4
OIB 0 17 170 0 2 29

Quadratic Ti-Zr
IAB 167 37 6 32 14 1
MORB 20 148 13 3 5 3
OIB 5 18 164 0 4 27

Linear Ti-Zr-Y
IAB 89 101 11 33 9 3
MORB 67 91 6 0 11 0
OIB 6 5 162 3 2 24

Quadratic Ti-Zr-Y
IAB 97 93 11 20 22 3
MORB 11 145 8 6 5 0
OIB 8 3 162 3 2 24

Linear Zr-Y-Nb
IAB 81 57 19 16 5 2
MORB 73 55 11 2 6 0
OIB 1 6 149 0 4 23

Quadratic Zr-Y-Nb
IAB 60 79 18 6 17 0
MORB 12 115 12 0 8 0
OIB 5 5 146 2 2 23

Linear Th-Ta-Hf
IAB 78 6 10 12 12 2
MORB 0 37 14 0 0 0
OIB 0 13 69 0 0 10

Quadratic Th-Ta-Hf
IAB 81 3 10 14 10 2
MORB 1 38 12 0 0 0
OIB 4 12 66 0 0 10

Linear Discriminant Function Analysis of SiO2, Al2O3, TiO2, CaO, MgO, MnO, K2O, and Na2O
IAB 205 15 7 52 7 5
MORB 7 205 9 2 17 4
OIB 2 8 188 1 0 59

Linear Discriminant Function Analysis of Ti, Zr, Y, and Sr
IAB 175 13 13 41 1 2
MORB 3 145 3 0 10 0
OIB 5 5 163 0 4 25
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[29] . 45 major, minor and trace elements (in
ppm): Si, Ti, Al, Fe(III), Fe(II), Ca, Mg, Mn, K,
Na, P, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb, Lu, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr,
Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th and U.

[30] The data are available as auxiliary material1

Tables S1 and S2. Not all samples were analyzed
for all the components. The data set of major
oxides is redundant, but a rescaling from % to
ppm is avoided by treating it separately. Being
admitted to the GEOROC and PETDB databases, it
was assumed that the training data are reliable.
Each data point in the auxiliary material is associ-
ated with a unique ID that allows the user to
recover the original publication source. Different
normalization procedures were used for different
data sets, but this is unlikely to have major con-
sequences for the discriminant analysis. So many
data sources are mixed that at most, this mixing of
normalization and laboratory procedures would
have induced some additional random uncertainty,
with only minor effects on the actual decision
boundaries. Mixing different data sources and

normalization procedures in the training data has
the positive side-effect that the user is more or less
free to use whichever normalization procedure
(s)he wishes.

[31] First, two simple bivariate discrimination dia-
grams will be discussed: the Ti-V diagram of
Shervais [1982] and the Ti-Zr diagram of Pearce
and Cann [1973]. Many of the problems that
plague the study of compositional data and were
discussed in section 3 are far less serious in the
bivariate than the ternary case. Of course, Ti and V,
or Ti and Zr are still subject to the (physical)
constant-sum constraint, but considering they typ-
ically constitute less than a few percent of the total
rock composition, a change in one element will
have little effect on the other one when the raw
measurement units are used on the axes of the
bivariate discrimination diagrams. In contrast with
this, all popular ternary discrimination diagrams
have been rescaled to a (diagrammatic) constant
sum of 100%, thus magnifying the effects of
closure. For all of the following discriminant
analyses, a uniform prior was used. Statistical
analysis was done with a combination of Matlab#
and R (http://www.r-project.org).

Table 5. (continued)

True Affinity

Predicted Affinity (Training) Predicted Affinity (Test)

IAB MORB OIB IAB MORB OIB

Linear Si-Ti-Sr
IAB 199 15 7 45 9 7
MORB 7 197 7 0 45 1
OIB 0 4 188 0 0 57

Linear Eu-Lu-Sr
IAB 111 9 4 31 7 3
MORB 3 110 4 0 35 0
OIB 1 3 116 0 0 27

Linear Ti-V-Sc
IAB 89 11 5 19 0 0
MORB 10 133 5 9 28 4
OIB 0 7 114 0 0 12

Quadratic Na-Nb-Sr
IAB 144 6 7 21 0 0
MORB 2 121 3 5 7 0
OIB 4 0 138 0 0 28

Quadratic Ti-V-Sm
IAB 91 8 5 24 2 0
MORB 5 152 5 1 44 5
OIB 3 9 93 0 0 9

1Auxiliary material is available at ftp://agu.org/apend/gc/
2005gc001092.
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5.1. Binary Discrimination Diagrams

[32] For the Ti-V system, the data were trans-
formed to the simplex by the log-ratio transforma-
tion. Thus two new variables were created: log(Ti/

(106-Ti-V)) and log(V/(106-Ti-V)), where 106 is
the constant sum of 1 million ppm. The discrimi-
nant analysis then proceeds as described in
section 2. The results were mapped back to bivar-

Figure 37. The test data (116/182 used) plotted on various versions of the Ti-V diagram with (a) the original
decision boundaries of Shervais [1982], drawn by eye; (b) LDA on the logratio plot, with anchor points 1–4 given in
Table 6; (c) QDA on the logratio plot; (d) the same LDA as in Figure 37b, but this time mapped back to the
‘‘traditional’’ compositional data space; and (e) the QDA of Figure 37c mapped back to Ti-V space. An error analysis
of these and subsequent diagrams is given in Tables 5 and 7.
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iate Ti-V space using the inverse log-ratio trans-
formation (equation (6)). Figure 11 shows the
results of the LDA of the Ti-V system, whereas
Figure 12 shows the QDA results. The decision
boundaries look almost identical for both cases.
Besides the decision boundaries, Figures 11 and 12
and subsequent figures also show the training data

as well as the posterior probabilities. One of the
properties of many data mining algorithms, includ-
ing discriminant analysis, is the ‘‘garbage in, gar-
bage out’’ principle: any rock that was analyzed for
the required elements will be classified as either
IAB, MORB or OIB, even continental basalts,
granites or sandstones! Therefore it is recommen-

Figure 38. The test data (89/182 used) plotted on the Ti-Zr diagram with (a) the original decision boundaries of
Pearce and Cann [1973] and (b–e) as in Figure 37.
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ded to treat the classification of samples plotting
far outside the range of the training data with
caution.

[33] In contrast with the Ti-V diagram, the decision
boundaries of the Ti-Zr system look quite different
between LDA (Figure 13) and QDA (Figure 14).
The misclassification risk of the training data (i.e.,

the resubstitution error) of QDA is always less than
that of LDA, because the former uses more param-
eters than the latter. However, this does not neces-
sarily mean that QDAwill perform better on future
data sets. This problem will be discussed in
section 7. For now, suffice it to say that the
resubstitution error can be used to compare two
binary or two ternary diagrams with each other,

Figure 39. The test data (85/182 used) plotted on the Ti-Zr-Y diagram with (a) the original decision boundaries of
Pearce and Cann [1973] and (b–e) as in Figure 37.
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but not to compare the performance of QDA with
LDA or of a binary with a ternary diagram.

5.2. Ternary Discrimination Diagrams

[34] The procedure for performing a discriminant
analysis for ternary systems is very similar to the

binary case. For example, for the Ti-Zr-Y system of
Pearce and Cann [1973], we first impose the
constant sum constraint: x = Y/(Ti + Zr + Y),
y = Zr/(Ti + Zr + Y) and z = Ti/(Ti + Zr + Y). The
log-ratio transformed variables are V = log(x/z)
and W = log(y/z). Note that this transformation

Figure 40. The test data (58/182 used) plotted on the Nb-Zr-Y diagram with (a) the original decision boundaries of
Meschede [1986] and (b–e) as in Figure 37.
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only takes care of the diagrammatic constraint x +
y + z = 1. Strictly speaking, it does not account for
the physical constraint Ti + Zr + Y + (all other
elements) = 100%. However, Ti + Zr + Y only
amount to at most a few percent of typical basalt
compositions, thereby greatly reducing the impact
of this second type of constant sum. It would be

possible to correct for the physical constraint, for
example by performing a discriminant analysis on
the following three variables: log(Ti/(106-Ti-Zr-
Y)), log(Zr/(106-Ti-Zr-Y)), and log(Y/(106-Ti-Zr-
Y)). However, the results of such an analysis can
no longer be plotted on a ternary diagram. In
practice, neglecting the physical constant sum

Figure 41. The test data (36/182 used, but no MORBs!) plotted on the Th-Ta-Hf diagram with (a) the original
decision boundaries of Wood [1980] and (b–e) as in Figure 37.
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constraint does not severely affect the performance
of the classification in this case.

[35] Figures 15 and 16 show the results of both
LDA and QDA transformed back to the Ti-Zr-Y
ternary diagram. The raw variables of many dis-
crimination diagrams are multiplied by constants to
improve the spread of the data. This is equivalent
to adding constants to the log-ratio transformed
variables. Either transformation does not affect the
discriminant analysis. As noted by Pearce and
Cann [1973], the Ti-Zr-Y diagram is quite good
at identifying OIBs, but cannot distinguish
MORBs from IABs. The training data of the latter
substantially overlap and their resubstitution errors
are quite high. The posterior probabilities of the
training data are low (<0.5 in Figure 16).

[36] This is also the case for the Nb-Zr-Y system of
Meschede [1986] (Figures 17 and 18). The high
misclassification rate of both the Ti-Zr-Y and Nb-
Zr-Y diagrams is largely caused by the large spread
of IAB compositions, which is likely caused by the
complexity of magma generation underneath island
arcs, where mixing of multiple melt sources often
occurs. The Th-Ta-Hf system of Wood [1980],
however, achieves a much better separation
between the three tectonic affinities (Figures 19
and 20). The decision boundaries of the QDA
(Figure 20) are much more complicated than those
of the LDA (Figure 19), without substantially
improving the overall misclassification risk. There-
fore adding the extra parameters (covariances) was
probably not worthwhile (see section 7).

Figure 42. The test data (164/182 used) plotted on the Si-Ti-Sr LDA diagram with (a) the decision boundaries and
anchor points (see Table 6) in log-ratio space and (b) the decision boundaries mapped back to the simplex.

Figure 43. The test data (103/182 used) plotted on the Eu-Lu-Sr LDA diagram: (a and b) as in Figure 42.

Geochemistry
Geophysics
Geosystems G3G3

vermeesch: tectonic discrimination diagrams revisited 10.1029/2005GC001092

48 of 55



5.3. Multielement Discriminant
Function Analysis

[37] As illustrated by Figure 2, LDA offers the
possibility of projecting a data set onto a subspace
of lower dimensionality. As explained in section 2
this procedure is related to, but quite different from
PCA. Therefore it is somewhat puzzling why
Butler and Woronow [1986] performed a PCA on
a data set of Zr, Ti, Y and Sr analyses of oceanic
basalts. These authors were the first to note the
significance of the constant sum constraint to the
problem of tectonic discrimination, but they
stopped short of doing a full discriminant analysis.
Figure 21 does exactly that. The two linear dis-
criminant functions (ld1 and ld2) are

ld1 ¼ �0:016 log Zr=Tið Þ � 2:961 log Y=Tið Þ þ 1:500 log Sr=Tið Þ
ld2 ¼ �1:474 log Zr=Tið Þ þ 2:143 log Y=Tið Þ þ 1:840 log Sr=Tið Þ

ð7Þ

Note that the training data cluster quite well, that
the clusters are of approximately equal size, and
that they are well separated, resulting in a
misclassification rate of only 8%.

[38] Butler and Woronow [1986] were the first ones
to note the potential importance of data-closure in
the context of tectonic discrimination of oceanic
basalts. However, as said before, they did not use
the log-ratio transformation to improve discrimi-
nant analysis, but performed a PCA instead, the
implications of which are unclear. On the other
hand, Pearce [1976] did perform a traditional
multielement discriminant analysis, but since his
paper predated the work of Aitchison [1982, 1986],
he was unaware of the effects of closure. Figure 22

shows the results of a reanalysis of the major
element abundances (except FeO) used by Pearce
[1976]. The two linear discriminant functions are

ld1 ¼ 0:555 log TiO2=SiO2ð Þ þ 3:822 log Al2O3=SiO2ð Þ
þ 0:522 log CaO=SiO2ð Þ þ 1:293 log MgO=SiO2ð Þ
� 0:531 log MnO=SiO2ð Þ � 0:145 log K2O=SiO2ð Þ
� 0:399 log Na2O=SiO2ð Þ

ld2 ¼ 3:796 log TiO2=SiO2ð Þ þ 0:008 log Al2O3=SiO2ð Þ
� 2:868 log CaO=SiO2ð Þ þ 0:313 log MgO=SiO2ð Þ
þ 0:650 log MnO=SiO2ð Þ þ 1:421 log K2O=SiO2ð Þ
� 3:017 log Na2O=SiO2ð Þ ð8Þ

This discriminant analysis performs about as well
as the Ti-Zr-Y-Sr diagram of Figure 21, although it
uses many more elements. The benefits of multi-
element LDA are clearly a decrease in misclassi-
fication rate. This comes at the expense of
interpretability, because the linear discriminant
functions (ld1 and ld2) have no easily interpretable
meaning, in contrast with their binary and ternary
counterparts.

6. An Exhaustive Exploration of Binary
and Ternary Discriminant Analyses

[39] Some of the popular discrimination diagrams
discussed in section 5 use a choice of elements that
is based on petrological reasons [e.g., Shervais,
1982]. However, more often the reasons are entirely
statistical, i.e., those features are used that result in a
‘‘good’’ classification. If a database of N elements is

used, there are
N

2

� �
= N(N � 1)/2 possible

Figure 44. The test data (72/182 used) plotted on the Ti-V-Sc LDA diagram: (a and b) as in Figure 42.
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binary diagrams and
N

3

� �
= N(N � 1)(N � 2)/6

possible ternary diagrams. For the database of
11 major oxides, this corresponds to 55 binary and
165 ternary diagrams, whereas the database of
45 elements yields 990 binary and 14,190 ternary
diagrams. To efficiently summarize the results of
these thousands of discrimination diagrams, amatrix
visualization was used.

6.1. Binary Discrimination Diagrams

[40] Figure 23 shows an example of such a visu-
alization for all bivariate LDAs using the major
oxides. Of the 756 training data, not all had been
analyzed for all major elements. The upper right
triangular part of the matrices in this figure show
the number of analyses for which both elements
were measured. Using the same color-code but a
different scale, the lower left triangular parts of the
matrices show the resubstitution errors of the 55
possible bivariate LDAs. For example, the lower
left triangular matrices of Figure 23 show that only
13.5% of IABs, 15.2% of MORBs and 7.4% of
OIBs were misclassified by an LDA using TiO2

and K2O. The overall resubstitution error is 12%.
The upper right triangular parts of the same figure
show that 229 out of 256 IABs, 230 out of
241 MORBs and 203 out of 259 OIBs were used
for the construction of the LDA, accounting for a
total of 662 out of 756 training data. Figure 24
shows the same thing for QDA.

[41] Figure 25 visualizes the results of all possi-
ble bivariate LDAs for the complete data set of
45 elements. On the whole, Ti jumps out as the

apparently best overall discriminator. One might
think that the Tm-Sc diagram performs very well,
considering that the overall error (shown in the
upper right triangle of the lower right matrix of
Figure 25) is only 7.7%. 12% of the IABs, 8.8%
of the OIBs and only 2.4% of the MORBs in the
training data were misclassified. However, the
upper right triangular matrices of the same figure
show that only 101 of 756 training data were
used for the classification. Only 25/256 of the
IABs, 42/241 of the MORBs and 34/259 of the
OIBs were analyzed for both Tm and Sc, thereby
greatly reducing the reliability of the classifica-
tion. Figure 26 shows the results of all possible
bivariate QDAs for the database of 45 elements.
The strikingly different colors of the lower tri-
angular matrices on this figure illustrate the
difficulties in classifying IABs. Both MORBs
and IABs are relatively easy to separate, but
the geochemical variability of IABs is much
larger, for reasons discussed before.

6.2. Ternary Discrimination Diagrams

[42] As calculated in the previous section, there are
990 ways to choose three out of 11 major oxides,
and 14,190 ways to choose three out of 45 major,
minor and trace elements. Although all these pos-
sibilities were explored in the framework of this
research, it is not practical to visually show all the
results in this paper, even using the highly compact
matrix visualization. Therefore only an (important)
subset is shown of all ternary diagrams using Ti.
As discussed before, many of the most effective
bivariate discriminant analyses use Ti. In addition
to being an excellent discriminator, Ti is also
highly immobile, in contrast with for example Sr,

Figure 45. The test data (61/182 used) plotted on the Na-Nb-Sr QDA diagram with (a) the decision boundaries in
log-ratio space and (b) mapped back to D2.
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which is another powerful discriminator. For these
reasons, only the results of ternary LDAs and
QDAs using Ti are shown in Figures 27, 28, 29,
and 30.

[43] The resubstitution errors of all 14,190 ternary
LDAs (i.e., not only those using Ti) were ranked to
find the best combinations of elements. Table 1
shows the 100 best LDAs. Only those diagrams for
which at least 100 IABs, 100 MORBs and 100
OIBs of the training data had been analyzed for all
three elements were used. 2,333 out of 14,190
possible combinations fulfilled this requirement.
The best ternary LDA uses the Si-Ti-Sr system. It
has an overall resubstitution error of 6.2%, (2.7%
for IABs, 2.8% for MORBs and 2.7% for OIBs),
using nearly all the training data (221/256 IABs,
211/241 MORBs and 192/259 OIBs). Figure 31
shows the Si-Ti-Sr LDA in detail. Another power-
ful ternary diagram using minor and trace elements
is the Eu-Lu-Sr system, which ranks third among
all the ternary LDAs of Table 1. This diagram is
shown in Figure 32. Many if not most of the best
performing ternary LDAs use Sr as one of the
elements. However, as discussed before, Sr is quite
mobile during processes of alteration and meta-
morphism, potentially affecting the reliability of
the discrimination diagrams using it. The Ti-V-Sc
diagram, ranking 28th in Table 1, suffers much less
from this problem and still has an overall misclas-
sification rate of only 10.4% while using 374 out of
756 training data. Figure 33 shows the Ti-V-Sc
diagram in detail. Table 2 lists the best performing
(lowest resubstitution error) ternary LDAs, using
the following 25 incompatible elements: Ti, La,
Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,
Sc, V, Cr, Y, Zr, Nb, Hf, Ta, Pb, Th, and U.

[44] Table 3 shows the 100 best performing ternary
QDAs. The Na-Nb-Sr system performs the best,
with an overall resubstitution error of only 5%. As
shown in Figure 34, this diagram misclassifies only
22 out of 425 training samples. However, Na is a
very mobile element and not much faith can be had
in a classification that uses it for basalt samples that
are not perfectly fresh. The Ti-V-Sm diagram
(Figure 35) is the best performing QDA using only
relatively immobile elements. It is ranked 33rd in
Table 3. Notice that both for LDA and QDA, the
best performing ternary discrimination diagrams
using immobile elements contain both Ti and V,
apparently confirming the effectiveness of the
approach used by Shervais [1982]. The latter
author selected Ti and V for mostly petrological
reasons, while the present paper arrived at the same
elements using an entirely statistical method. The
compatibility of both approaches lends more cred-
ibility to the results. Table 4 lists the best
performing QDAs using ternary combinations of
the 25 incompatible elements listed in the previous
paragraph for which at least 100 training samples
of each tectonic affinity were represented.

7. Testing the Results

[45] Some of the discrimination diagrams of the
previous section were extremely good at classify-
ing the training data. However, as briefly men-
tioned in section 5, the resubstitution error is not
the best way to assess performance on future data.
Furthermore, QDA nearly always performed better
than LDA, because the former involves more
parameters than the latter. As the number of
parameters in a model increases, its ability to

Figure 46. The test data (85/182 used) plotted on the Ti-V-Sm QDA diagram: (a and b) as in Figure 45.
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resolve even the smallest subtleties in the training
data improves. In a regression context, this would
correspond to adding terms to a polynomial inter-
polator (Figure 36). For a very large number of
parameters (equaling or exceeding the number of
data points), the curve will eventually pass through
all the points and the ‘‘error’’ (e.g., squared dis-
tance) will become zero. In other words, the high-
order polynomial model has zero bias. However,
unbiased models rarely are the best predictive
models, because they suffer from high variance.
High-order polynomial models built on different
sets of training data are likely to look significantly
different because of irreproducible random varia-
tions in the sampling or measuring process. On the
other hand, a one-parameter linear model will have
low variance, but can be very biased (e.g., when
the true model is really polynomial). This phenom-
enon is called the bias-variance tradeoff, and exists
for all data mining methods.

[46] By assuming equal covariance between the
different classes of the training data, LDA is a
very crude approximation of the data space. There-
fore it is likely to be quite biased in many cases.

However, because of the bias-variance tradeoff, the
variance of the LDAs described in previous sec-
tions is low. Therefore the resubstitution error
might actually be a decent estimator of future
performance. However, things are different for
QDA because it estimates the covariance of each
of the classes from the training data, thereby
dramatically increasing the number of parameters
in the model. Although this reduces the bias (i.e., a
QDA describes the training data better than an
LDA), it causes an increased variance. For exam-
ple, some of the intricate structure of Figures 16 or
20 might not be very stable. Therefore the resub-
stitution error is not a good predictor of future
performance. It must also not be used for compar-
ing the performances of bivariate and ternary
discrimination diagrams.

[47] The easiest way to obtain a more objective
estimate of future performance is to use a second
database of test data, which had not been used for
the construction of the discrimination diagrams.
Implementing this idea, a database of 182 test data
was compiled from three locations:

[48] . 67 IABs from the Aleutian arc.

[49] . 55 MORBs from the Galapagos ridge.

[50] . 60 OIBs from the Pitcairn islands.

[51] All previously discussed discrimination dia-
grams are represented in the error analysis of
Table 5. The left part of the table shows the
resubstitution errors, while the right side shows
the performance on the test-data. Figures 37–46
show the test data plotted on the binary and ternary
discrimination diagrams. The new decision bound-
aries are shown in both log-ratio space and con-
ventional compositional data space. As explained
in section 2, the decision boundaries are linear for
LDA in log-ratio space. To allow an easy repro-
duction of these decision boundaries, four ‘‘anchor
points’’ are provided for each LDA in Figure 21,
22, 37–46 and Table 6. Figures 37–41 and Table 7
allow a direct comparison of the decision bound-
aries of Shervais [1982], Pearce and Cann [1973]),
Meschede [1986], and Wood [1980] with the new
decision boundaries constructed using LDA and
QDA. Although it is hard to make a definite
comparison due to the relatively small size of the
effectively used test data set, the new decision
boundaries seem to always perform at least as well
as the old ones. Because the test data set is much
smaller than the training data set, it is more likely
affected by the missing-data problem. For example,
the test data contained no MORBs that had been

Table 6. Anchor Points for Selected Linear Discrimi-
nant Analyses

Node 1 2 3 4

ld1 (equation (7)) �12 �12.23 �18 �8
ld2 (equation (7)) 4 �1.37 �6.6 �6.45

ld1 (equation (8)) 5.02 12.17 15.9 11.85
ld2 (equation (8)) �6.28 �12.23 �10.93 �16

log(Ti/(106-Ti-V)) �4.65 �6 �4.11 �5.22
log(V/(106-Ti-V)) 7.36 10.5 7.36 10.5

log(Zr/(106-Ti-Zr)) �13 �7 �13 �7
log(Ti/(106-Ti-Zr)) �4.28 �4.45 �5.36 �4.72

log(100xZr/Ti) �2.5 2 �2.5 2
log(300xY/Ti) �0.48 0.53 �0.97 0.17

log(Zr/(8xNb)) �2 2 0.41 3
log(Y/(2xNb)) �1.49 2.92 0.19 1.81

log(3xTh/Hf) �1.49 1.43 �0.07 2.81
log(3xTa/Hf) �2.48 �1.5 �0.86 1

log(Si/(25xTi)) �1.26 �0.2 �0.05 2
log(40xSr/Ti) �2.15 2.98 0.39 �0.77

log(Eu/(5xLu)) �1.23 0.5 0.03 �0.61
log(Sr/(500xLu)) �1 2.33 1 �5

log(50xV/Ti) �2 1.1 0.57 2
log(250xSc/Ti) �0.54 2 �0.39 �1.41
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simultaneously analyzed for Th, Ta and Hf. For all
the discrimination diagrams of Table 5, QDA
performs better than LDA on the training data.
On the other hand, LDA often performs better than
QDA on the test data because of its lower variance.
For example, LDA misclassified 17 out of 85 test
samples using Ti, Zr and Y, whereas QDA
misclassified 38 using the same three elements
(Table 5). However, in most cases the difference
is not so dramatic.

8. Conclusions

[52] This paper revisited the observation by Butler
and Woronow [1986] that traditional statistical
analyses of geochemical data is flawed because it
ignores the effects of data-closure. Since the work
of Aitchison [1982, 1986], it is possible to account
and correct for the constant-sum constraint by
transforming the data to log-ratio space. Butler
and Woronow [1986] then went on to do a principal
component analysis. The present paper instead uses
the log-ratio method for the related, albeit different
technique of discriminant analysis.

[53] First, a number of popular discrimination
diagrams were revisited. Many of these histori-
cally important diagrams were not derived from a
real discriminant analysis sensu Fisher [1936],
but were instead obtained by drawing decision
boundaries by eye. A positive side-effect of this
is that the resulting diagrams are much less
affected by the constant-sum constraint discussed
before. A negative consequence remains, however,
that all statistical rigor is lost. Nevertheless, it is
not the intention of this paper to discredit the
discrimination diagrams of Pearce and Cann
[1973], Wood [1980], Shervais [1982], Meschede
[1986], and others. Rather, the paper merely
explains how to perform discriminant analysis
of geochemical data in a statistically more rigor-
ous manner.

[54] After revisiting these historically important
discrimination diagrams, an exhaustive exploration
was done of all possible linear and quadratic
discriminant analyses using a data set of 756 IABs,
MORBs and OIBs. The best overall performance
was given by the Si-Ti-Sr (LDA) and Na-Nb-Sr
(QDA) systems. The best LDA and QDA using
only immobile elements are the Ti-V-Sc and Ti-V-
Sm systems, respectively. One of the features of the
old discrimination diagrams was a field of ‘‘not
classifiable’’ compositions. If an unknown sample
plotted outside the predefined fields tectonic affin-

ity fields, it would be labeled as ‘‘other.’’ The
revisited discriminant analyses discussed above
do not have this feature. On the one hand, it might
be considered a positive thing that the method no
longer ‘‘breaks down’’ when encountering ‘‘diffi-
cult’’ samples. On the other hand, one might
wonder what would happen if we were to plot a
rock of very different affinity on the discrimination
diagrams. To mitigate this ‘‘garbage in, garbage
out’’ effect, we might want to opt for a hybrid
solution, and only accept results for data that plot
inside the old (hand-drawn) affinity fields, or
within the clouds of training data shown on all
discrimination diagrams in this paper (Figures 11–
22 and 31–35).

[55] Historically, discrimination diagrams and dis-
criminant analysis have been the method of choice
for geochemists to statistically classify rocks of
different environments. However, discriminant
analysis is not the only ‘‘data mining’’ method that
can be used for this purpose. For examples,
Vermeesch [2006] introduces classification trees
as a potentially very useful tool for tectonic
classification. Some of the advantages of classi-
fication trees over discriminant analysis are that
the former (1) do not make any distributional
assumptions, (2) can handle an unlimited number
of geochemical species, isotopic ratios or other
features, while still being easily interpretable as a
two-dimensional graph, and (3) can still be used
if some of these features are not available. Two
trees were constructed using the same training data
as in the present paper: one tree using 51 elements
and isotopic ratios and one using only 23 High Field
Strength (HFS) elements and isotopic ratios. Both
trees were evaluated with the same test data used on
the discrimination diagrams. The full tree misclas-
sifies 23 and the HFS tree 41 out of the 182 test
data. Presently, the Si-Ti-Sr and Eu-Lu-Sr LDAs,
and the Na-Nb-Sr and Ti-V-Sm QDAs intro-
duced in this paper still outperform the trees of
Vermeesch [2006]. However, this is likely to
change for trees created from a larger training
set. Whereas discriminant analysis does not gain
much from using exceedingly large training sets,
classification trees continue to improve with
growing sets of training data. Furthermore, the
classification trees succeeded in classifying all
182 test data, even for samples missing several
geochemical features. None of the discrimination
diagrams achieved this. Therefore it is probably
a good idea to use a combination of both
methods.
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