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Abstract

Traditionally, geochemical classification of basaltic rocks of unknown tectonic affinity has been performed by discrimination dia-
grams. Although easy to use, this method is fairly inaccurate because it only uses bi- or trivariate data. Furthermore, many popular dis-
crimination diagrams are statistically not very rigorous because the decision boundaries are drawn by eye, and they ignore closure, thus
violating the rules of compositional data analysis. Classification trees approximate the data space by a stepwise constant function, and
are a more rigorous and potentially more effective way to determine tectonic affinity. Trees allow the simultaneous use of an unlimited
number of geochemical features, while still permitting visualization by an easy-to-use, two-dimensional graph. Two classification trees
are presented for the discrimination of basalts of mid-ocean ridge, ocean island, and island arc affinities. The first tree uses 51 major,
minor, and trace elements and isotopic ratios and should be used for the classification of fresh basalt samples. A second tree only uses
high field strength element analyses and isotopic ratios, and can also be used for basalts that have undergone alteration. The probability
of successful classification is 89% for the first and 84% for the second tree, as determined by 10-fold cross-validation. Even though the
trees presented in this paper use many geochemical features, it is not a problem if some of these are missing in the unknown sample.
Classification trees solve this problem with surrogate variables, which give more or less the same decision as the primary variables.
The advantages of the classification tree approach over discrimination diagrams are illustrated by a comparative test on a sample dataset
of known tectonic affinities. Although arguably better than discrimination diagrams, classification trees are not perfect, and the limita-
tions of the method are illustrated on a published dataset of basalts from the Pindos Basin (Greece).
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Igneous rocks form in a wide variety of tectonic settings,
including mid-ocean ridges, ocean islands, and volcanic
arcs. It is a problem of great interest to igneous petrologists
to recover the original tectonic setting of mafic rocks of the
past. When the geological setting alone cannot unambigu-
ously resolve this question, the chemical composition of
these rocks might contain the answer. The major, minor,
and trace elemental composition of basalts shows large
variations, for example as a function of formation depth
(e.g., Kushiro and Kuno, 1963). Traditionally, statistical
classification of geochemical data has been done with dis-
crimination diagrams (e.g., Chayes and Velde, 1965; Pearce
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and Cann, 1971, 1973; Pearce, 1976; Wood, 1980; Shervais,
1982). The decision boundaries of most tectonic discrimi-
nation diagrams are drawn by eye (e.g., Pearce and Cann,
1973; Wood, 1980; Shervais, 1982). Although still widely
used, these diagrams have some serious problems,
including:

• Although (linear) discriminant analysis works in any
number of dimensions, visual interpretation is only pos-
sible for bi- or trivariate data. By only using two or three
geochemical features, a lot of information is not used,
resulting in poor performance (large misclassification
error).

• The geochemical discrimination diagrams of Pearce and
Cann (1971, 1973) and others are often based on collec-
tions of the means of many analyses of a certain sample
area. This means that, strictly speaking, such diagrams
should only be used for the classification of similar data,
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i.e., not individual samples but means of composites of
multiple samples. Moreover, taking the mean of compo-
sitional data is a dangerous thing to do, considering the
fact that elemental concentrations are subject to a con-
stant-sum constraint, which is generally not taken into
account (e.g., Chayes, 1971; Aitchison, 1986; Woronow
and Love, 1990).

• Discrimination diagrams do not easily handle samples
with missing data, for example if only Ti and not V were
measured in the diagram of Shervais (1982).

As an alternative to discriminant analysis which resolves
all these issues, this paper suggests classification trees,
which are one of the most powerful and popular ‘‘data
mining’’ techniques (Hastie et al., 2001). One application
in which classification trees have been quite successful is
email spam filtering (e.g., Hastie et al., 2001; Carreras
and Marquez, 2001). Based on a large training database
of predetermined genuine and spam messages, spam filters
automatically generate a series of nested yes/no questions
that decide which of the two categories (genuine or spam)
a new message belongs to. The attributes used in a tree-
based spam filter can be the frequencies of certain words
or characters as a percentage of the total length of the mes-
sage, the average length of uninterrupted sequences of cap-
ital letters, the total number of capital letters, etc. Spam
filtering has many similarities with the problem of tectonic
discrimination. In the latter case, the training data will not
contain two but three classes (mid-ocean ridge, ocean is-
land, and island arc). The attributes used for the classifica-
tion will be chemical concentrations and isotopic ratios.

Section 2 will give an introduction to the construction of
classification trees. As for discrimination diagrams, it is not
really necessary for the end-user to know all the details of
the building process, because this has to be done only once
(hence this paper) after which they are very easy to use;
trees in fact easier to use than discrimination diagrams.
Therefore, only a brief introduction to the technique will
be given, along with the necessary references for the inter-
ested reader.

In Section 3, two classification trees will be presented for
the discrimination between basalts from mid-ocean ridge
(MORB), ocean island (OIB), and island arc (IAB) set-
tings, based on 756 major and trace element measurements
and isotopic ratio analyses, compiled from two publicly
available petrologic databases. The first tree uses all major,
minor, and trace elements, and should be used for the clas-
sification of unaltered samples of basalt. The second tree
only uses immobile elements and can also be used for sam-
ples that underwent some degree of weathering and/or
metamorphism. Beyond this initial selection of suitable fea-
tures, the construction of the trees is entirely statistical, and
involves no further petrological considerations or arbitrary
decision boundaries.

In Section 4, both classification trees will be tested.
First, a suite of modern basalts of known tectonic affin-
ity will be classified by trees as well as discrimination
diagrams. Then, a published dataset of 20 basalts from
the Pindos Basin (Greece) will be classified. This will
illustrate the limitations of the tree method and serve
as a cautionary note, which is valid for all statistical clas-
sification methods.

2. Method

The following paragraphs give a brief introduction to
the theory of classification trees. They were compiled from
Breiman et al. (1984), Ripley (1996), and Hastie et al.
(2001). The interested reader is referred to these books
for more details, while those who are merely interested in
the applications can safely skip to Section 3.

2.1. Classification trees: introduction

Suppose we have N J-dimensional data points
X n ¼ fxn

1; . . . ; xn
j ; . . . ; xn

Jg (1 6 n 6 N) belonging to one of
K classes: Yn = c1Œ� � �ŒckŒ� � �ŒcK. For example,
X = {X1, . . .,Xn, . . .,XN} might represent J features (e.g.,
various major and trace element concentrations, isotopic
ratios, color, weight, . . .) measured in N samples of basalt.
c1, . . .,cK might then be tectonic affinity, e.g., ‘‘mid-ocean
ridge,’’ ‘‘ocean island,’’ ‘‘island arc,’’. . . The basic idea be-
hind classification and regression trees (CART) is to
approximate the parameter space by a piecewise constant
function, in other words, to partition X into M disjoint re-
gions {R1, . . .,Rm, . . .,RM}. An example of such a partition
is given in Fig. 1a. Because it is impossible to describe all
possible partitions of the feature space, we restrict our-
selves to a small subset of possible solutions, the recursive
binary partitions (Fig. 1b). Surprising as it may seem, con-
sidering the crudeness of this approximation, trees are one
of the most powerful and popular data mining techniques
in existence. One of the reasons for this is that besides
assuring computational feasibility, the recursive partition-
ing technique described next also allows the representation
of the multi-dimensional decision-space as a two-dimen-
sional tree graph (Fig. 1c). Although building a tree might
seem complicated, this is not important to the user, because
it only has to be done once, after which using a classifica-
tion tree for data interpretation is extremely simple.

2.2. Building a tree

At any point in the recursive process, a partition is de-
fined by two quantities: the split variable j (1 6 j 6 J) and
the split point s (�1 < s <1). For any given partition
Rm of a tree T, there are at most N · J possible binary sub-
partitions, which can be exhaustively searched. We choose
the one that minimizes the ‘‘node impurity’’ Qm (T). Let p̂mk

be the proportion of class k observations in node m, then
QmðT Þ ¼
XK

k¼1

p̂mkð1� p̂mkÞ. ð1Þ
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Fig. 1. An example of a bivariate (X1,X2) classification tree. Classification trees approximate the data space with a piecewise constant function (a). To
ensure computational feasibility, a recursive binary partitioning method is used (b). Such partitions have the added advantage that the results can be
visualized as a two-dimensional graph or ‘‘tree’’ (c). In this and subsequent trees, left branches mean ‘‘Yes’’ and right branches ‘‘No.’’
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This particular form of Qm (T) is called the ‘‘Gini index
of diversity,’’ but alternatives exist. Note that if we simply
used the ‘‘misclassification error’’ (i.e., the number of mis-
classified data points resulting from a candidate split) as a
measure of node impurity, it would be impossible to parti-
tion the data set shown in Fig. 1 because any initial split
would misclassify all the triangles, yielding the same mis-
classification error (=23/63 in this case). The recursive par-
titioning process continues until all the end-nodes are
‘‘pure,’’ i.e., all belong to the same class. The maximum
sized tree thus obtained perfectly describes the training
data. In other words, it has zero bias. However, for the
purpose of prediction, this tree is not optimal, because it
overfits the training data, causing high variance. The tree
with optimal predictive power will be smaller than the larg-
est possible tree, and can be found by ‘‘cost-complexity
pruning.’’

2.3. Pruning a tree

Define the ‘‘cost-complexity criterion’’ of a tree T as

cpaðT Þ ¼
XjT j

m¼1

NmQmðT Þ þ ajT j ð2Þ

with ŒT Œ the number of terminal nodes in T, Nm the num-
ber of observations in the mth terminal node, Qm (T) the
‘‘node impurity’’ defined by Eq. (1) and a a tuning param-
eter. For a given a P 0, it is possible to find the subtree
Ta � T0 that minimizes cpa (T) over all possible subtrees
of the largest possible tree T0

T a ¼ argmin
T�T 0

cpaðT Þ. ð3Þ

Repeating this procedure for a range of values 0 6 a <1
produces a finite nested sequence of trees fT 0; T a1; . . . ;
T amaxg. Except for T0, these trees will no longer have only
pure end-nodes. Impure end-nodes are assigned the class
that dominates in them. We then choose the value a* that
minimizes an estimate of future prediction error, for exam-
ple by ‘‘V-fold cross-validation.’’ The training data are ran-
domly divided into V (e.g., 10) fractions of equal size. We
then grow V overly large trees T ðvÞ0 , each time using all but
the vth sample fraction. Each of these trees then goes
through the pruning procedure described before, yielding V

nested sequences of trees fT ðvÞ0 ; T
ðvÞ
a1 ; . . . ; T ðvÞamax

g; 1 6 v 6 V .
The trees T ðvÞa were constructed without ever seeing the cases
in the vth fraction. Sending the vth fraction down T ðvÞa for each
v = 1, . . .,V thus yields an independent estimate of the mis-
classification error.

A plot of these cross-validated (CV) prediction errors
versus the number of nodes in each of the nested subtrees
shows a minimum at some point. As discussed before, trees
with fewer nodes tend to have large bias, while the in-
creased CV-cost of overly large trees is caused by their
inflated variance. There typically exist several trees with



Fig. 2. Primary split variable Xk and split point sk and surrogate split
variable Xj and split point sj. Surrogates answer the question: ‘‘which other
splits would classify the same objects in the same way as the primary
split?’’
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CV-costs close to the minimum. Therefore, a ‘‘1-SE rule’’ is
used, i.e., choosing the smallest tree whose CV misclassifi-
cation cost does not exceed the minimum CV-cost plus one
standard error of the CV-cost for the minimum CV-cost
tree. An example of this procedure will be given in
Section 3.

2.4. Handling missing data

One of the greatest advantages of classification trees is
their ability to handle missing data. For example, in a data-
set of geochemical analyses, some samples might have been
analysed for major and trace elements, while others were
only analysed for trace elements and stable isotopes. Yet
another set of samples might have been analysed for all ele-
ments except Zr, etc. Methods like discriminant analysis
cannot easily handle these situations, severely restricting
their applicability and power. Both for training and predic-
tion, trees solve the missing data problem by ‘‘surrogate
splits.’’ Having chosen the best primary predictor and split
point (disregarding the missing data), the first surrogate is
the predictor and corresponding split point that has the
highest correlation with the primary predictor in Rm

(Fig. 2). The second surrogate is the predictor that shows
the second highest correlation with the primary split vari-
able and so forth.

3. Application to the tectonic discrimination of basalts

An extensive dataset of 756 samples was compiled from
the online PETDB and GEOROC databases (http://
www.petdb.org and georoc.mpch-mainz.gwdg.de). The
dataset can be downloaded from electronic annex EA-1.
It contains:

• 256 Island arc basalts (IAB) from the Aeolian, Izu-
Bonin, Kermadec, Kurile, Lesser Antilles, Mariana,
Scotia, and Tonga arcs.
• 241 Mid-ocean ridge (MORB) samples from the East
Pacific Rise, Mid Atlantic Ridge, Indian Ocean, and
Juan de Fuca Ridge.

• 259 Ocean-island (OIB) samples from St. Helena, the
Canary, Cape Verde, Caroline, Crozet, Hawaii-Emper-
or, Juan Fernandez, Marquesas, Mascarene, Samoan,
and Society islands.

Duplicate analyses were excluded from the database to
avoid potential bias towards overrepresented samples. Fif-
ty-one geochemical features were used:

• Major element concentrations (in weight percent): SiO2,
TiO2, Al2O3, Fe2O3, FeO, CaO, MgO, MnO, K2O,
Na2O, and P2O5.

• Minor and trace element concentrations (in ppm): La,
Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
Lu, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb,
Sn, Cs, Ba, Hf, Ta, Pb, Th, and U.

• Isotopic ratios: 143Nd/144Nd, 87Sr/86Sr, 206Pb/204Pb,
207Pb/204Pb, and 208Pb/204Pb.

The fact that different measurement units are mixed
and that for none of the 756 samples all 51 features were
measured is not a problem for the construction of the
trees, once again illustrating the robustness of the method.
The classification trees discussed next were constructed
using the rpart library of the statistical software pack-
age R, which can be downloaded free of charge from
www.r-project.org. The actual R-code is provided in elec-
tronic annex EA-2.

3.1. A tree using major, minor, and trace elements and

isotope ratios

In a first approach, all 51 features were used for the tree
construction, including relatively mobile elements such as
CaO and Na2O. Therefore, the resulting tree should only
be used on fresh samples of basalt. The largest possible tree
(T0) has 51 splits, and actually uses only 23 of the 51 select-
ed features. These are: SiO2, TiO2, CaO, Fe2O3, MgO,
K2O, La, Pr, Nd, Sm, Gd, Tb, Yb, Lu, V, Ni, Rb, Sr, Y,
Hf, Th, 87Sr/86Sr, and 206Pb/204Pb. The remaining 28 fea-
tures apparently did not contain enough discriminative
power. As discussed in Section 2, T0 is not the best possible
tree. A plot of relative cross-validation misclassification
risk versus tree size shows a minimum at 18 splits
(Fig. 3). Using the 1-SE rule then puts the optimal tree size
at 8 splits (Fig. 3). The resulting, optimally pruned tree is
shown in Fig. 4.

The classification by the optimal tree is remarkably suc-
cessful. No less than 79% of all the training data correctly
fall in just three terminal nodes (encircled in Fig. 4). Only
7% of the training data were misclassified, while the 10-fold
cross-validation error is about 11%, corresponding to a
success-rate of 89%. In other words, the probability that
a sample of unknown tectonic affinity will be classified

http://www.petdb.org
http://www.petdb.org
http://georoc.mpch-mainz.gwdg.de
http://www.r-project.org
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boxed part of the curve, illustrating the 1-SE rule.
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correctly is 89%. The first two splits (on TiO2 and Sr) ac-
count for 87% of the discriminative power (Fig. 3). In a
way, this can be seen as a justification of the use of these
elements in popular discrimination diagrams such as the
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Fig. 4. The optimal classification tree, based on a training set of 756 geochem
terminal nodes are encircled.
Ti–Zr–Sr diagram (Pearce and Cann, 1973). An analysis
of TiO2 and Sr alone already gives a pretty reliable classi-
fication. For example, if TiO2 P 2.135%, the tree tells us
there is a 91% chance that the rock has an OIB affinity.
Likewise, 87% of the training data with TiO2 < 2.135%
and Sr < 156 ppm are MORBs. For further discrimination,
additional elements can be used, which inevitably increases
the chance of missing variables. However, as discussed be-
fore, classification trees elegantly resolve this problem with
surrogate split variables, which are shown in Table 1.

3.2. A tree of HFS elements and isotopic ratios only

Even though the classification tree built in the previous
section (Fig. 4) performs very well for fresh basalts, this
might not necessarily be the case for weathered or meta-
morphosed samples. For example, a lot of the power of this
tree depends on Sr, which is considered a mobile element
(e.g., Rollinson, 1993). Also MgO, Ni, and Rb are species
used in Fig. 4 that are mobile to some degree. Performance
of our classification, which was based on fresh samples of
basalt, cannot be guaranteed if used for the tectonic dis-
crimination of samples that have undergone alteration.
Therefore, an alternative tree was built that only uses the
so-called high field strength (HFS) cations, which are char-
acterized by an ionic potential greater than two (Rollinson,
1993), as well as the isotopic ratios of Sr, Nd, and Pb, be-
cause these are considered less prone to change during
alteration than the concentrations themselves. The follow-
ing 28 features were used: TiO2, La, Ce, Pr, Nd, Sm, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y, Zr, Nb, Hf, Ta, Pb,
TiO2 < 2.135%

Ni < 49.5ppm

Sr < 189ppm

TiO2 < 2.135%

Ni < 49.5ppm

Sr < 189ppm

|

IAB 
2/3/0

MORB
5/180/1

MORB
0/7/0

OIB 
8/5/216

1

5

3

No

ical analyses of at most 51 elements and isotopic ratios. The ‘‘heaviest’’



Table 1
Primary and surrogate splits for the nodes of Fig. 4

Split number IAB/MORB/OIBa Primary split Surrogate 1 Surrogate 2

1 256/241/259 TiO2 < 2.135% P2O5 < 0.269% Zr < 169.5 ppm
2 248/229/43 Sr P 156 ppm K2O P 0.275% Rb P 3.965 ppm
3 8/12/216 Sr < 189 ppm — —
4 221/46/42 TiO2 < 1.285% Al2O3 P 15.035% SiO2 P 46.335%
5 27/183/1 Ni < 49.5 ppm Cr < 82 ppm TiO2 < 0.71%
6 19/37/31 MgO < 9.595% SiO2 P 46.605% Al2O3 P 13.945%
7 19/36/6 MgO < 5.775% Al2O3 P 17.03% CaO < 10.02%
8 7/34/5 Rb < 3.675 ppm Na2O P 4% —

a The number of IABs, MORBs, and OIBs from the training data. The nodes without surrogates do not have any alternative variables that do better
than a ‘‘go with the majority’’ decision. Split number 8 has only one worthwhile surrogate.
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Fig. 5. The optimal classification tree using only HFS cations and isotopic
ratios. The encircled terminal nodes contain the bulk of the training data.
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Th, U, 143Nd/144Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb,
and 208Pb/204Pb. The resulting pruned tree is shown in
Fig. 5, while its surrogate splits are given in Table 2. The
first two splits, both on TiO2, contribute 85% of the dis-
criminative power of the tree. The cross-validated mis-
classification error of the optimal tree is 16%, i.e., there is
84% chance of a correct classification.

4. Testing the trees

First, we will use the trees given by Figs. 4 and 5 to clas-
sify some fresh, modern basalts of known tectonic affinity,
Table 2
Surrogate splits for the HFS tree shown in Fig. 5

Split number IAB/MORB/OIB Primary split

1 256/241/259 TiO2 < 2.135%
2 250/229/44 TiO2 < 1.0455%
3 177/35/1 87Sr/86Sr P 0.7031
4 73/194/43 87Sr/86Sr P 0.7030
5 66/51/41 Nb < 5.235 ppm
6 23/31/41 Yb P 2.17 ppm
but from field areas that were not included in the training
dataset. Then, the classification tree method will be applied
to a published dataset of unknown tectonic affinity.

4.1. Classifying rocks of known tectonic affinity

Both trees were tested on three suites of samples that
had not been used in the tree construction. The test data
(electronic annex EA-1) include:

• 67 IABs from the Aleutian Arc.
• 55 MORBs from the Galapagos Ridge.
• 60 OIBs from the Pitcairn Islands.

First, these geochemical analyses were classified using
the classic Ti–Zr–Y diagram of Pearce and Cann (1973).
The results are shown on Fig. 6 and Table 3. A large subset
of the data could be not classified, because (1) either Ti, Zr,
or Y had not been analysed, or (2) because the data do not
plot inside any of the labeled areas of the ternary diagram.

A substantial portion of the remaining data plots in field
‘‘B’’ of the discrimination diagram, which is of mixed tec-
tonic affinity, although further classification can be done
using the Ti–Zr diagram (Pearce and Cann, 1973). For
the samples that plot in fields ‘‘A,’’ ‘‘C,’’ and ‘‘D,’’ the clas-
sification seems to be quite successful, although it is hard to
assess the misclassification risk because the number of
‘‘classifiable’’ points is so small.

It might not seem fair to the discrimination diagram
method to only compare our classification trees with the
method of Pearce and Cann (1973). Although this diagram
has great historical significance and is still used a lot, it suf-
fers from many of the wrong statistical assumptions that
have plagued the analysis of compositional data, and have
Surrogate 1 Surrogate 2

Zr < 169.5 ppm —
Zr < 75.5 ppm Y < 22.9 ppm

75 — —
03 143Nd/144Nd < 0.5130585 Nd P 12.785 ppm

TiO2 < 1.565% Zr < 100.5 ppm
Lu P 0.325 ppm Sm P 3.705 ppm
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Fig. 6. The test data plotted on the Ti–Zr–Y discrimination diagram of
Pearce and Cann (1973). More than half of the test data could not be
plotted on this diagram because at least one of the three elements was
missing. A—island arc tholeiites, C—calc-alkali basalts, D—within plate
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are the IAB fields, D the OIB field, and B a mixed field of MORBs and
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Fig. 7. The test data plotted on the Ti–V discrimination diagram of
Shervais (1982).

Table 3
Test of the Pearce and Cann diagram (Fig. 6)

True
affinity

Missing
data

Out of
bounds

Predicted tectonic affinity

MORB or IABa IAB MORB OIB

IAB 22 6 31 5 — 3
MORB 44 3 8 0 — 0
OIB 32 2 2 1 — 23

a The Ti–Zr–Y plot does not discriminate MORBs from IABs (both plot
in field ‘‘B’’).

Table 4
Test of the Ti–V discrimination diagram (Fig. 7)

True
affinity

Missing
data

Out of
bounds

Predicted tectonic affinity

IAB MORB OIB

IAB 40 0 17 10 0
MORB 2 3 0 48 2
OIB 24 7 0 1 28

Si/1000 Sr

Ti/40

OIB

MORB

IAB

Galapagos ridge
Pitcairn islands
Aleutian arc

Fig. 8. The test data (164/182 used) plotted on the Si–Ti–Sr linear
discrimination diagram (redrawn from Vermeesch, 2006).

Table 5
Test of the best linear discriminant analysis of Vermeesch (2006), using Si,
Ti, and Sr (Fig. 8)

True affinity Missing data Predicted tectonic affinity

IAB MORB OIB

IAB 6 45 9 7
MORB 9 0 45 1
OIB 3 0 0 57
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been discussed elsewhere (e.g., Aitchison, 1986). The Ti–V
diagram of Shervais (1982) largely avoids these problems,
because it only uses two variables, and does not rescale
them to a constant sum, as is the case for the ternary Ti–
Zr–Y diagram of Pearce and Cann (1973). Furthermore,
the training data of Shervais (1982) do not consist of aver-
ages of multiple samples, but of individual geochemical
analyses. The Ti–V diagram can distinguish between all
three tectonic affinities, so there is no field of ‘‘mixed affin-
ity’’ like field ‘‘B’’ of Fig. 6. Fig. 7 shows the test data plot-
ted on the Ti–V diagram. Table 4 summarizes the
performance of this classification. The decision boundaries
of all the tectonic discrimination diagrams discussed so far
were drawn by eye. Vermeesch (2006) revisited these and
other diagrams and recalculated the decision boundaries
using the statistically more rigorous technique of discrimi-
nant analysis. Besides revisiting the diagrams of Pearce and
Cann (1973), Shervais (1982), and others, Vermeesch
(2006) also performed an exhaustive exploration of all pos-
sible binary and ternary combinations of 45 elements,
based on the same training data used in the present paper.
Here, only two of these diagrams will be discussed. The
best overall linear discrimination diagram uses the combi-
nation of Si, Ti, and Sr (Fig. 8 and Table 5). The best qua-
dratic discrimination diagram of only relatively immobile
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elements uses Ti, V, and Sm (Fig. 9 and Table 6). The same
data were also classified with the trees of Figs. 4 and 5. The
results of this experiment are shown in Tables 7 and 8.
Contrary to the discrimination diagrams, the classification
trees managed to assign a tectonic affinity to all 182 test
samples. The HFS tree misclassifies quite a few more IABs
and MORBs than the full tree. For the MORBs, it is prob-
ably not surprising that 14 out of 54 Galapagos ridge sam-
ples were misclassified as OIBs, considering the possible
presence of plume-ridge interactions near the Galapagos
hot spot. The higher misclassification risk of the HFS tree
50xSm V

Ti/50

OIB

IAB

MORB

Galapagos ridge
Pitcairn islands
Aleutian arc

Fig. 9. The test data (85/182 used) plotted on the Ti–V–Sm quadratic
discrimination diagram (redrawn from Vermeesch, 2006).

Table 6
Test of the best quadratic discriminant analysis of Vermeesch (2006), using
only the relatively immobile elements Ti, V, and Sm (Fig. 9)

True affinity Missing data Predicted tectonic affinity

IAB MORB OIB

IAB 41 24 2 0
MORB 5 1 44 5
OIB 51 0 0 9

Table 7
Test of the full tree (Fig. 4)

True affinity Predicted tectonic affinity

IAB MORB OIB

IAB 54 8 5
MORB 4 49 2
OIB 2 2 56

Table 8
Test of the tree using only HFS elements (Fig. 5)

True affinity Predicted tectonic affinity

IAB MORB OIB

IAB 44 17 6
MORB 3 38 14
OIB 0 1 59
reminds us of the fact that unless rocks are obviously al-
tered, it is better to use the full tree, which includes Sr.
Performance of the Ti–V diagram is remarkably good
and comparable to that to the full tree with a misclassifi-
cation rate of 13/93 for the former and 23/182 for the lat-
ter (Tables 4 and 7). The Si–Ti–Sr (17/164 misclassified,
Table 5) and Ti–V–Sm (8/85 misclassified, Table 6) dia-
grams even seem to perform better than the classification
trees. However, this is likely to change for new trees cre-
ated from larger sets of training data. Discriminant anal-
ysis does not gain much from excessively large
databases, whereas classification trees keep improving.
And again, neither the Si–Ti–Sr nor the Ti–V–Sm diagram
succeeded in classifying all the test data, in contrast with
the classification trees.

4.2. Predictions for rocks of unknown tectonic affinity

We will now apply the classification tree method to a
published dataset of 20 basalts from the Pindos Basin in
Greece (Saccani et al., 2003). This exercise will serve as an
illustration of the way the tree method works in practice,
and of its limitations. The features relevant to the classifica-
tion tree analysis are shown in Table 9. As a first example,
consider sample GR 47b. It travels through the full classifi-
cation tree of Fig. 4 as follows: TiO2 < 2.135% fi
Sr P 156 ppm fi TiO2 P 1.285% fi MgO < 9.595% fi
MgO P 5.775% fi Rb P 3.675 ppm. The same sample
travels through the HFS tree of Fig. 5 along the following
path: TiO2 < 2.135% fi TiO2 P 1.046% fi Nd < 12.785 ppm.
Note that for the last step, the second surrogate variable
was used (Table 1), because no isotopic ratios were measured
for these samples. No rare earth elements were measured for
sample GR 56c. Therefore, its path through the HFS tree
ends at node 4, where a ‘‘follow the majority’’ decision
must be made. Since the distribution of training data in
this node is IAB/MORB/OIB = 73/194/43 (Table 2),
GR 56c is classified as a MORB, albeit not with the great-
est confidence.

There is agreement between the full tree and the HFS
tree for only half of the samples. Samples GR 50d, 51a,
and 51b were classified as IAB by the full tree, and as
MORB by the HFS tree. The distinction between IAB
and MORB is the hardest one to make. IABs have a much
greater compositional diversity than both MORBs and
OIBs. This is also reflected in most discrimination diagrams
(see for example, Fig. 6). Furthermore, it might be possible
that Mg was lost during the greenschist metamorphism
that affected the Pindos ophiolites (Saccani et al., 2003).
This would have caused sample GR 50d to be sent left,
rather than right at node 7 of Fig. 4. Likewise, it is possible
that Sr-loss caused samples GR 71a–e and 195a to be sent
left, rather than right at node 3 of the full tree. Finally,
sample GR 181b was classified as an IAB by the HFS tree
(Fig. 5). However, its terminal node (left branch of node 5)
is not very pure: IAB/MORB/OIB = 43/20/0, once again
illustrating the difficulty of distinction between MORB



Table 9
Summary of geochemical analyses of Triassic basalts of the Pindos Basin, from Saccani et al. (2003)

Sample name TiO2 (%) MgO (%) Ni (ppm) Rb (ppm) Sr (ppm) Nb (ppm) Nd (ppm) Yb (ppm) Tectonic affinitya Commentb

Full tree HFS only

GR47b 1.41 6.6 81 17 163 10.6 12.3 2.87 MORB MORB
GR50c 1.6 8.36 61 7 225 9.69 13.1 3.16 MORB MORB
GR50d 1.52 5.69 56 18 176 — — — IAB MORB Mg loss?
GR50e 1.56 5.6 66 20 138 9.38 13.1 3.31 MORB MORB
GR51a 1.18 7.22 104 4 242 6.87 9.5 2.17 IAB MORB
GR51b 1.17 7.05 97 5 180 — — — IAB MORB
GR56a 1.68 6.57 85 4 98 5.87 14 3.15 MORB MORB
GR56b 1.61 6.77 72 5 200 4.23 11.8 3.4 MORB MORB
GR56c 1.68 6.9 65 5 81 — — — MORB MORB
GR56d 1.52 6.33 72 7 247 3.94 11.8 3.37 MORB MORB
GR71a 2.82 6.87 76 4 114 3.74 19.8 5.96 MORB OIB Sr loss?
GR71b 2.79 6.82 73 3 115 — — — MORB OIB Sr loss?
GR71c 2.36 7.24 80 3 166 3.27 17.7 5 MORB OIB Sr loss?
GR71d 2.8 7.12 75 5 125 3.66 19.7 5.92 MORB OIB Sr loss?
GR71e 2.89 6.66 71 3 124 — — — MORB OIB Sr loss?
GR181a 1.38 6.61 83 8 176 — — — MORB MORB
GR181b 1.5 7.32 88 4 152 4.18 21.8 6.55 MORB IAB 43/20/0
GR181c 1.35 6.64 90 8 366 1.65 10.1 2.91 MORB MORB
GR181d 1.3 6.21 85 4 76 — — — MORB MORB
GR195a 2.43 6.55 63 4 102 4.35 17.6 5.37 MORB OIB Sr loss?

a Most of the analyses point towards a MORB affinity for these rocks. There is agreement between the full classification tree and the one only using HFS
elements for half of the samples (all agreeing on a MORB affinity).

b The cases where there is disagreement between the two classifications might be caused by the selective loss of Mg and Sr. Sample GR 181b was
classified as an IAB with a probability of only �2/3.
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and IAB affinities, which is caused by the complicated pet-
rogenesis of the latter.

5. Conclusions

It was not the purpose of this paper to claim that dis-
criminant analysis or discrimination diagrams are either
bad or obsolete. It merely suggests a completely different
statistical approach to tectonic classification by rock geo-
chemistry. Classification trees are presented as a simple
yet powerful way to classify basaltic rocks of unknown
tectonic affinity. Some of the strengths of the method
are:

• Classification trees approximate the feature space by a
piecewise constant function. This non-parametric
approach avoids the statistical quagmire of discriminant
analysis on compositional data (e.g., Aitchison, 1986;
Woronow and Love, 1990).

• Classification trees are insensitive to outliers. In other
words, if some of the training data were misidentified
or accidentally very inaccurate (e.g., misplaced decimal
point), trees remain almost unaffected.

• They can be used for the classification of highly multi-
variate data, while preserving the possibility of a simple,
two-dimensional visualization. Therefore, trees are
extremely easy to use. The trees presented in this paper
were based on a database of moderate size (756 analy-
ses). If a much larger database were compiled, the trees
would grow and their discriminative power increase, but
they would still be easy to interpret. It should also be
easy to extend the trees given in this paper to more tec-
tonic affinities, such as active continental margins, con-
tinental within-plate basalts, or different lithologies,
simply by adding data to the training-set. In principle,
there is no upper limit to the number of ‘‘class labels’’
that the method can discriminate, provided enough
training data are available.

• Trees do not discriminate according to some complicat-
ed decision boundary (e.g., multivariate discriminant
analysis) or a black box process (e.g., neural networks),
but split the data space up one variable at the time, in
decreasing order of significance. Therefore, the split
variables have geochemical significance. For example,
if TiO2 and Sr contribute 87% of the discriminative
power, there likely is a real geochemical mechanism that
causes this to be so.

• Although the trees presented in this paper were built
from as many as 51 different variables, we can still use
them if some of these variables were not measured for
the unknown sample that we want to classify. This can
be done with the surrogate split variables of Tables 1
and 2.

• A rough idea can be had of the statistical uncertainty of
the classification by looking at the purity of the terminal
nodes. For examples, see samples GR 181b and 56c of
Section 4.2. This is not possible for discrimination dia-
grams because the decision boundaries of the latter are
drawn as hard lines, and not as the ‘‘fuzzy’’ zones which
they really are.
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On the other hand, trees are not perfect, and also have a
few problems:

• Classification trees are biased because the piecewise con-
stant approximation which they implement is an over-
simplification of the feature space. Increasing the size
of the training dataset will alleviate this problem. Alter-
natively, we could also allow linear combination splits
instead of only splits on a single variable, but this would
hurt interpretability.

• Trees also suffer from large variance. In other words,
they are unstable. A different set of training data could
result in very different looking trees. This somewhat lim-
its the interpretability of the split variables, which was
hailed before. More importantly, small errors in one of
the split variables of the unknown dataset are propagat-
ed down to all of the splits below it. ‘‘Bagging’’ is a way
to solve these problems by collecting a large number of
‘‘bootstrap samples’’ of the training data, and building a
large number of trees from them (Hastie et al., 2001).
The unknown data are then sent through all these trees
and the results averaged. This provides a more robust
classification algorithm, but again at the expense of
interpretability, because bagged trees can no longer be
easily plotted as a simple two-dimensional graph.

• One of the properties of many data mining algorithms,
including classification trees, is the ‘‘garbage in, garbage
out’’ principle. There is no field of ‘‘ambiguous’’ tectonic
affinity, which is effectively the output of geochemical
compositions that plot ‘‘out of bounds’’ on traditional
discrimination diagrams (e.g., Fig. 6 and Table 3).
Any rock will be classified as either IAB, MORB or
OIB, also when it really is a continental basalt, granite
or even sandstone! Therefore, one might treat composi-
tions that plot far outside the decision boundaries of the
traditional discrimination diagrams with extra caution.

Most importantly, as was illustrated by the examples of
Section 4, no classification method based solely on geo-
chemical data will ever be able to perfectly determine the
tectonic affinity of basaltic rocks (or other rocks for that
matter) simply because there is a lot of actual overlap be-
tween the geochemistry of the different tectonic settings.
Notably IABs have a much wider range of compositions
than either MORBs or OIBs. Therefore, geochemical clas-
sification should never be the only basis for determining
tectonic affinity. This is especially the case for rocks that
have undergone alteration. In such cases, mobile elements
such as Sr, which have great discriminative power, cannot
be used. If in addition to this, some other features have not
been measured (such as isotope ratios and rare earths in
some of the samples of Table 9), then one might not be able
to put much faith in the classification.
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