
www.elsevier.com/locate/epsl

Earth and Planetary Science Letters 224 (2004) 441–451
How many grains are needed for a provenance study?

Pieter Vermeesch*

Department of Geological and Environmental Sciences, Stanford University, Braun Hall, room 320-305, 450 Serra Mall, Stanford,

CA 94305-2115, USA
Received 11 December 2003; received in revised form 18 May 2004; accepted 30 May 2004
Abstract

Detrital provenance studies using single-grain geochronology are very labor-intensive. This paper presents a method for

calculating k, the smallest number of grains in a sample that must be dated to achieve a required level of statistical adequacy. For

example, if it is desired that no fraction of the population comprising more than 0.05 of the total is missed at the 95% confidence

level, at least 117 grains should be dated. The paper also provides recommendations about cases where fewer than the optimal

number of grains have been dated.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction the population was not missed. It will be shown why

this is not true (a proof is given in Appendix A), and
Single-grain age measurements have become a

popular way to investigate detrital sedimentary prov-

enance. Such studies must fulfill an important condi-

tion that the measured sample is representative of the

total detrital population. Dodson et al. [1] argue that at

least k = 60 grains must be measured to reduce the

chance to less than p = 5% that one particular fraction

(in their case, the oldest) of the population is missed if

this fraction is greater than f= 0.05, according to:

p ¼ ð1� f Þk ð1Þ

This equation has been used incorrectly (e.g.

[2,3]) to imply that 60 grains would be enough to

have 95% confidence that any fraction fz 0.05 of
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(P. Vermeesch).
an alternative will be developed for studies that are

interested in all age components, rather than just

one. While some studies use 60 grains for the wrong

reason, other authors have used even fewer grains,

thereby increasing the likelihood of missing signifi-

cant fractions of the detrital age spectrum (e.g. [4,5]).

However, it is not my intention to suggest that these

are necessarily bad studies. In addition to making

recommendations for the number of sediment grains

that should be dated in a statistically adequate

provenance study, this paper also suggests how to

report data sets with fewer measurements.
2. The worst-case scenario

Consider a population that consists of M age

fractions and define relevant fractions to be those



Fig. 1. Evolution of pmax with increasing number of population/sample fractions for (a) a fixed number of measurements (k= 60) and (b) a fixed

relevant fraction size ( f = 0.05). Solid lines represent worst- and dashed lines best-case scenarios. The shaded region on (a) marks the area where

Mz 1/f and p is kept constant at pmax.
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fractions that are greater than f. For a given M

(assuming M� 1 < 1/f), the worst-case scenario is that

M� 1 of the population fractions are of size f, and one

fraction is of size 1� f (M� 1). The probability p that

at least one fraction z f of the population was missed

is given by:

p ¼
XM�A

n¼1

ð�1Þn�1

  
M�A

n

!
ð1� nf Þk

þ B

 
M�1

n�1

!
ððM � nÞ f Þk

!
ð2Þ

with

A ¼ 0 if : Mf ¼ 1
A ¼ 1 if : Mf p1
B ¼ 0 if : Mfz1
B ¼ 1 if : Mf < 1

This is a combinatoric expression where
x

y

0
@

1
A is the

binomial coefficient. Each term in the summation

adds a correction to the previous terms. Eq. (2) is

derived in Appendix A. For a given number of

relevant fractions m (mV 1/f), a best-case scenario

can also be calculated (Appendix A):

p ¼
Xm
n¼1

ð�1Þn�1
�m
n

	
1� n

m

� 	k
ð3Þ
Exploration of Eqs. (2) and (3) over M and

m, and for different values of f and k, is shown

in Fig. 1. The maximum number of (relevant)

fractions for which Eqs. (2) and (3) are valid is

1/f. At larger values of M (or m), p is kept

constant. The shaded region in Fig. 1a marks the

area where this is the case. One way to reduce the

probability that fractions z f are missed when only

k grains are dated is to reduce the number of

bins Mopt in the sample histogram. For example,

if k = 60, f = 0.05, and p = 20%, then Mopt = 6 (Fig.

1). A detrital age histogram that is constructed in

this way conveys as much information about the

population as can be inferred from the sample and

is statistically ‘‘allowed’’ by p and f. However,

it is less well suited for showing the sample

distribution. Therefore, such a histogram should

be used in conjunction with markers for the sample

data, or better still, a probability density plot [6].

Such a combined plot carries an optimal amount

of information: the histogram represents the popu-

lation with the resolution that the data and the

parameters p and f allow, while at the same time,

the probability density plot represents the data itself

and the uncertainties that are associated with it

(Fig. 2). Mopt usually is a rather small number,

much smaller than commonly used guidelines for

the number of histogram bins such as Sturges’ rule

[7,8]. Using Mopt will tend to oversmooth the



Fig. 2. As shown in Fig. 1, at most Mopt = 6 bins are allowed in a sample histogram in order to reduce the chance that at least one fraction

fz 0.05 is missed of a perfectly uniform population (worst-case scenario) to less than p= 20%. The black dots represent the 60 samples. In

histogram a, M = 20 >Mopt. In this particular example, three bins are empty, amounting to a total fraction 0.15 of the population. When the data

are grouped into 20 bins, this occurs 64% of the time. In histogram b, M=Mopt = 6 and, for exactly the same sample, no fraction z 0.05 is

missed. Only 20% of the histograms with 6 bins will have an empty fraction in their worst-case scenario, which corresponds to five fractions of

size 0.05 and one of size 0.75. While using Mopt theoretically is a valid way to prevent relevant fractions of being missed, it will generally yield

oversmoothed histograms and be of limited practical use. Instead, it is better to simply report fact and/or pmax along with the data.
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histogram, so although it theoretically is a viable

way to reduce the chance of missing significant

fractions of the population, there are better methods

for dealing with datasets that contain fewer than the

optimal number of measurements. These methods
Fig. 3. Graphs that allow a quick assessment of the number of grains (k)

worst-case population below pmax, (a) as a function of the number of grain
are discussed in the following paragraph and in

Section 4.

Rather than reducing m, a much better way to

reduce p is to increase k or f. We now define pmax

as the maximum value of p, reached when M =m=
needed to push the chance of missing at least one fraction z f of a

s (k) and (b) the number of (relevant) fractions (M) or their size ( f ).



Table 2

fact, pmax and Mopt as a function of k
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[1/f], where square brackets mark truncation to the

nearest integer. The equation for pmax is a special

case of (2):

pmax ¼
X½1=f �
n¼1

ð�1Þn�1
½1=f �

n

0
@

1
Að1� nf Þk ð4Þ

Fig. 3 shows the evolution of pmax as a function

of f and k. Note the discrete ‘‘knee’’ in the pmax vs. f

curve wherever M = 1/f. Fig. 3 can be used for a

quick assessment of the number of grains that are

needed for a provenance study, and of the risk of

information loss that is caused by smaller samples.

For example, if 60 grains are dated, then pmax = 64%.

Therefore, in the worst-case scenario (which, at

m = 20, is a perfectly uniform population) there is

64% chance that at least one fraction z 0.05 of the

population is missed. This is a dramatically different

result from the 5% probability suggested by Eq. (1).

Furthermore, the actual fraction fact that we can be

sure not to have missed with 95% certainty is not

0.05, but 0.085, as can be read from Fig. 3. Finally,

and perhaps most importantly, Fig. 3 also shows that

in order to be 95% confident that no fraction z 0.05

was missed, at least k = 117 grains must be dated.

Table 1 can be used to choose k, the number of

grains required to lower p and f to some desired

limits. If fewer than this optimal number of grains

have been dated, Table 2 can be used to estimate the

actual levels of p and f that have been achieved with

that k. The same table also lists the value of Mopt in

the unlikely event that the user prefers to reduce the

resolution of the age histogram, rather than to

increase the desired p and/or f. Table 1 should be
Table 1

The adequate number of grains (k) as a function of the desired

probability ( p) of missing at least one fraction z f of a worst-case

population

p (%) f

k: 0.02 0.05 0.1 0.2

2 387 135 59 25

5 341 117 51 21

10 306 103 44 18

20 269 89 37 15

50 214 67 27 10

Given a specified number of grains (k), this table shows fact—the

smallest population fraction that has not been missed with at least

p% certainty—for four values of p; pmax—the maximum probability

of missing at least one fraction z f of a worst-case population—for

four values of f; and Mopt—the largest number of bins that are less

than p% likely to miss at least one fraction z f of the worst-case

population—for four values of f and p.
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used before embarking on a provenance study to

determine how many grains are needed. Alternative-

ly, Table 2 can be used for the interpretation of

provenance data with less than the optimal number

of grains. For example, if only 30 grains have been

dated, Table 2 says that fact = 0.15 is the smallest

fraction not missed at a 95% confidence level.

Likewise, there is 20% chance of missing at least

one fraction representing z 0.12 of the total popu-

lation, and the probability of missing at least one

fraction z 0.1 when 30 grains were dated is 37%.

Finally, to reduce the chance of missing at least one

fraction z 0.2 of the population to less than 10%,

and still only use 30 grains, the age histogram cannot

have more than Mopt = 5 bins. As an alternative to

Fig. 3, and to Tables 1 and 2, an online web-form [9]

is available for the calculation of k, pmax, fact and

Mopt.
Fig. 4. The random uniform numerical analogue to Fig. 1, for k= 60

and f = 0.05. The solid black line gives the worst-case probability

from Fig. 1. The different symbols represent different levels of

uniformity. The higher its ‘‘percentile’’, the closer a synthetic

population is to a uniform distribution. For example, a ‘‘99

percentile’’ population is likely to be multimodal, while a ‘‘5

percentile’’ population would be nearly unimodal.
3. More realistic populations

As was shown in the first part of the paper, of all

possible populations, the most difficult to sample is a

perfectly uniform distribution, where each age frac-

tion is of the same size. It is sufficient to date k grains,

according to Fig. 3, Table 1 or the web-form [9], to

reduce f and p to the desired levels. However, most

naturally occurring populations differ from the worst-

case distribution and it is less likely that statistically

significant fractions of such populations might be

missed in a sample. As a consequence, fewer grains

need dating to achieve the same levels of f and p. A

number of numerically generated random populations

are discussed next, followed by some real detrital age

spectra.

3.1. Synthetic populations

In this section, we will try to find the minimum

number of grains that have to be dated to adequately

represent an ‘‘average’’ population, as opposed to the

best- and worst-case populations of the previous

section. We will assume that all possible detrital

populations of the geologic record are equally likely

to occur. Such populations can be synthetically gen-

erated by randomly selecting multinomial proportions

from a uniform distribution. This procedure is illus-
trated in Appendix B. Thus, for any specific number

of fractions M, we generate a large number of random

populations (e.g. 1000). For each population, we

construct a large number (e.g. 200) of random samples

(again, see Appendix B for details). For each sample,

the relevant population fractions are tested to see if the

sample contains at least one ‘‘grain age’’ that falls

within it. If at least one of the relevant fractions is

empty, the test has failed. The ratio of the number of

samples that failed the test to the total number of

samples represents an estimate of p. This process is

repeated for a range of values for M.

Fig. 4 shows the result of this procedure for k = 60

and f = 0.05. For M ranging from 1 to 100, 1000

populations of that size were created. For each of

these populations, 200 samples of k random numbers

were generated. For each value ofM, a 5%, 50%, 95%,

99% and 100% percentile was computed from the p-

estimates of its 1000 random populations. The higher

its ‘‘percentile’’, the closer a synthetic population is to

a uniform distribution. For example, a ‘‘99 percentile’’

population is likely to be strongly multimodal, while a

‘‘5 percentile’’ population would be more unimodal.
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All future plots in this paper that are derived from plots

like Fig. 4 will only consider the 95 percentile popu-

lations. That said, Fig. 4 is the numerical ‘‘intermedi-

ate-case’’ analogue to Fig. 1. p reaches a maximum

value at Mc 35, and not at M = 20, which would be

the expected result when only considering the fact that

at M = 20 (= 1/f), the number of relevant fractions (m)

reaches a maximum. The reason why the peak is

located at a higher M is that p is not only a function

of m, but the result of a tradeoff between the number of

relevant fractions (m) and the total portion of the

population that is covered by these fractions, where

the latter parameter steadily decreases with increasing

M. From Fig. 4 (which, as discussed before, is only

valid for k = 60 and f = 0.05), the chance of missing at

least one fraction fz 0.05 in the median population is

10%; pV 18.5% in 95% of the randomly generated

populations; pV 25% in 99% of the populations; and

pV 30% in all 1000 populations. Not surprisingly,

these probabilities are significantly less than the 64%

which was calculated for the worst-case scenario for

the same values of k, f and p with Eq. (4). However,

even for samples from the median synthetic popula-

tion, the chance of missing at least one fraction z 0.05

is more than the 5% which was the result of the

erroneous use of Eq. (1). Only in little over 5% of

all randomly generated populations there is less than

5% chance of missing at least one fraction z 0.05 of

the population when 60 grains were measured. In

addition to a numerical analogue to the analytical
Fig. 5. The numerical analogue to Fig. 3, this plot allows a quick lookup of

of a ‘‘95 percentile’’ synthetic population when k grains are dated.
parameter pmax, it is also possible to obtain a numerical

version of Mopt. This value will generally be larger

than its analytical equivalent for the worst-case sce-

nario. For example, to reduce the chance of missing at

least one fraction z 0.05 of the population to less than

5%, while still only measuring 60 grains, the maxi-

mum number of fractions that can be used in the age

histogram is Mopt = 6 (as opposed to Mopt = 2 in the

worst-case scenario) (Fig. 4).

By tracing the evolution of the numerical pmax with

k and f, Fig. 5 illustrates the numerical analogue to

Fig. 3. It allows a quick estimation of the number of

grains that are required for certain key values of f and

p. For example, when 95% confidence is desired that

no fraction z 0.05 is missed, and this for 95% of all

randomly generated populations, at least f 95 grains

must be dated. This estimate is less than the 117

grains which are necessary in the worst-case scenario,

but greater than the 60 grains that Eq. (1) implies.

Alternatively, when 60 grains are dated, we can be

95% certain that no fraction factz 0.07 was missed. As

might be expected, the numerical estimate falls in

between the worst-case scenario ( fact = 0.85) and the

result from Eq. (1) ( f= 0.05).

3.2. Case studies of real populations

Now that the theoretical foundations have been

built to calculate the number of grains required for a

statistically adequate provenance study, they will be
the maximum probability ( pmax) of missing at least one fraction z f



Fig. 6. (a) Probability density plot of the Nubian Sandstone [11] and (b) the result of numerical resampling experiments for different numbers of

grains (k), for f = 0.05.
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tested on real data. Unfortunately, no population is ever

completely known (certainly not if we consider that

most published provenance studies work with fewer

than 117 ages per sample). Therefore, two relatively

large published detrital data sets will be used as a proxy

for the populations that they were sampled from.

By randomly selecting numbers from these ‘‘popula-

tions’’ with replacement, we can generate synthetic

samples. This procedure is similar to what is called

‘‘bootstrapping’’ in the statistical literature [10].

Avigad et al. [11] published a set of 157 concordant

single zircon U/Pb ages from the Early Paleozoic
Fig. 7. Same as Fig. 6, but for the lu
Nubian Sandstone. The vast majority of these grains

are of Pan-African age (900–540 Ma) with relatively

few older grains. Therefore, the population is relative-

ly ‘‘easy’’ to sample (Fig. 6). One thousand ‘‘boot-

strap samples’’ of k numbers were selected from the

data set for each value of M between 1 and 50, where

the latter value is assumed to be the highest number of

bins that one would ever want to use in a grain-age

histogram. Similar to the algorithm that was used in

Section 3.1, the proportion of the 1000 samples that

miss at least one of the relevant fractions ( fz 0.05)

was calculated. This exercise was done for k = 60,
nar impact spherules data [12].
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k = 95 and k = 117 (Fig. 6). The pmax vs. M curve of

this figure is much more irregular than that of Figs. 1

and 4, because it represents only one, irregular pop-

ulation, and not the composite of a thousand random

distributions (Fig. 4), or one smooth uniform analyt-

ical distribution (Fig. 1). For k = 60, the maximum

value for p is 8.8%. As expected, this is less than the

64% predicted by Eq. (4), but almost twice as much as

predicted by Eq. (1). The fact that even samples from

this ‘‘easy’’ population have z 5% chance of missing

at least one fraction z 0.05 is another confirmation

that 60 grains is not enough to attain the degree of

adequacy many would consider necessary for a good

provenance study. The maximum probability of miss-

ing any fraction z 0.05 is reduced to 1.5% when 95

grains are dated, and if k = 117, pmax is only 0.9%.

As an example that is closer to the worst-case

scenario, we now consider a dataset of 155 40Ar/39Ar

ages on lunar spherules collected by Apollo 14 [12].

The age histogram of these data is more evenly

distributed than was the case for the Nubian Sandstone

(Fig. 7). The maximum probability of missing at least

one fraction z 0.05 when only 60 grains are dated is

28%. When 95 grains are dated, the probability of

missing at least one fraction z 0.05 is reduced to

3.7%. Finally, dating 117 grains results in pmax = 1.2%.
4. Conclusions and recommendations

� The optimal number of grains that should be dated

of a detrital provenance sample can be looked up

from Table 1, Fig. 3, or the web-form [9]. To be 95%

certain that no fraction z 0.05 of the population was

missed, 117 grains should be dated. This is a fairly

large number, often too high perhaps for analytical

methods such as fission-track, (U–Th)/He, or

TIMS. One hundred seventeen measurements may

be more readily achievable with the ion-microprobe

(e.g. [11]) or laser ablation ICP-MS (e.g. [13]).
� If there exists some prior knowledge about the

population that indicates it is not uniformly

distributed, a risk can be taken to date fewer that

the optimal number of grains, by using Fig. 5. To be

95% certain that no fraction fz 0.05 was missed, it

is recommended that this number be no less than

95. However, dating fewer grains limits the

possibility to rigorously calculate and report p and f.
� It is definitely not the purpose of this paper to

suggest that studies reporting fewer than 117 single-

grain measurements would be scientifically wrong.

The purpose of some provenance studies may be to

prove the presence of one or more specific age

fractions in a detrital population. Once these

fractions have been found, there is no reason to

date more grains. It is only when provenance studies

discuss the absence of certain age fractions that

counting statistics come into play. Even then, it may

not be possible to date as many as 117 grains for

technical, financial or other reasons. If fewer than

117 grains were dated per sample, or when age

histograms must be interpreted from published

studies that use fewer than the optimal number of

grains, the actual pmax and f values that result from

using the available number of grain ages should be

reported. For example: if only 60 grains were dated,

it is sufficient to report that the maximum proba-

bility of missing at least one fraction greater than

0.05 is pmax = 64%, or that there is 95% confidence

that no fraction factz 0.085 was missed. Note

that the latter statement definitely sounds better

than the former. Such information can be obtained

from Eq. (4), Fig. 3, Table 2, or the web-form [9]. In

theory, an alternative solution to changing p and f

would be to reduce the number of bins of the

age histogram to Mopt, according to Table 2 or the

web-form [9]. However, Mopt is typically a low

number which would over-smooth the histogram.
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Appendix A. Derivation of Eqs. (2) and (3)

Of all possible populations, those with a perfectly

uniform distribution require the collection of the
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largest sample in order to be certain that no significant

fractions have been missed. We will consider the case

where there are M = 20 such fractions. This case can

easily be generalized to anyM. For a perfectly uniform

distribution, each of the 20 fractions equals exactly

f = 0.05.

If we are interested in only one of these fractions,

e.g. #1 (in subsequent figures, the shaded box(es)

indicate(s) the fraction(s) of interest), then the prob-

ability of missing this fraction is p = 1� f. The prob-

ability that this occurs for each one of k experiments is

p=(1� f )k. This is the probability calculated by Dod-

son et al. [1], and given by Eq. (1).

However, if we are not just interested in one

particular fraction, but in all 20 fractions, the proba-

bility of missing at least one of them is much larger. It

is the probability of missing:

In combinatoric terms:

p ¼


20

1

�
ð1� f Þk ð5Þ
While better than Eq. (1), this is still not the

equation that we want, because the probability that

any two fractions are simultaneously missed is

counted twice, causing an estimate of p that is too

high. Therefore, the following situations:

have to be subtracted from Eq. (5). This gives rise to

the following expression:

p ¼


20

1

�
ð1� f Þk �



20

2

�
ð1� 2f Þk ð6Þ

Eq. (6) is a better approximation than Eq. (5), but

the probability that three fractions are missed at the

same time is subtracted twice, resulting in too low an

estimate for p.

Therefore, a correction is added to Eq. (6), result-

ing in a third-order approximation:

p ¼


20

1

�
ð1� f Þk �



20

2

�
ð1� 2f Þk

þ


20

3

�
ð1� 3f Þk ð7Þ

This equation will again overestimate p because

the probability of simultaneously missing four frac-
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tions is counted twice. It is clear by now that this

process of iterative corrections to Eq. (5) can be

repeated until we have corrected for the probability

that all 20 fractions are missed:

This probability equals
20

20

0
@

1
Að1� 20f Þk = 0, a trivial

result. Adding it to the 19 previous corrections yields:

p ¼


20

1

�
ð1� f Þk �



20

2

�
ð1� 2f Þk þ . . .

�


20

20

�
ð1� 20f Þk ð8Þ

¼
X20
n¼1

ð�1Þn�1



20

n

�
ð1� nf Þk ð9Þ

or, generalizing by replacing 20 with M:

XM
n¼1

ð�1Þn�1



M

n

�
ð1� nf Þk ð10Þ

Eq. (10) is a special instance of Eq. (2) for A= 0

and B = 0. This form gives the correct value for p

when the relevant fractions exactly add up to 100%

of the population (i.e. M = 1/f). There are two sit-

uations where the relevant fractions do not exactly

add up to 1:
The derivation of p for these cases is completely

analogous to the derivation of Eq. (10). Eq. (2) is a

generalization that takes care of all possibilities.

In addition to the worst-case scenario, a best-case

scenario can also be considered given a certain

number of relevant fractions (m). If the number of

relevant fractions is not known, the lowest possible p

is always associated with a delta function (one single

age component). For the latter population p equals

zero, which is an information-free trivial result.

However, if m is known, for example, m = 3, the

best-case scenario is given by:

The derivation of p for this case is completely

analogous to the derivation of Eq. (10) with M =m = 3

and f= 1/3:

p ¼
X3
n¼1

ð�1Þn�1



3

n

�
1� n

3

� 	k
ð11Þ
Appendix B. Details of the synthetic population

generator

Consider a specific value for M (the number of

fractions), for example M= 7. A population is gener-

ated by selecting an array of M� 1 random numbers

(xi, with i = 1. . .6) between 0 and 1, drawn from a

uniform distribution. This array is sorted and padded

with a leading zero and a trailing one, becoming of

size M + 1.

The difference between subsequent numbers in the

array is a new array of size M ( fj, with j= 1. . .7), in
which each element represents a fraction of the total

population. The population, when generated in this

way, is automatically normalized to one.
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Random samples are generated by choosing k (for

example 20) random numbers between zero and one,

also from a uniform distribution. On the following

figure, these numbers are marked by black dots. Each

of the relevant fractions (‘‘boxes’’) of the population

is tested to see if the sample contains at least one

number (‘‘dot’’) that falls within it. On the next figure,

the relevant fraction size f is marked by a gray bar. If

at least one of the relevant fractions is empty, the test

has failed. This is the case for our example, since the

third box is empty and f3z f. Note that fraction #7 is

also empty, but this is irrelevant because f7 < f.

For each population, the ratio of the number of

samples that failed the test to the total number of

samples represents one estimate of p. This procedure

is repeated for a large number of synthetically gener-

ated populations. The iterative process becomes of

third order when a range of M values is evaluated

(Fig. 4).
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