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Sedimentary provenance studies increasingly apply multiple chemical, mineralogical and isotopic proxies to
many samples. The resulting datasets are often so large (containing thousands of numerical values) and complex
(comprising multiple dimensions) that it is warranted to use the Internet-era term ‘Big Data’ to describe them.
This paper introduces Multidimensional Scaling (MDS), Generalised Procrustes Analysis (GPA) and Individual
Differences Scaling (INDSCAL, a type of ‘3-wayMDS’ algorithm) as simple yet powerful tools to extract geological
insights from ‘Big Data’ in a provenance context. Using a dataset from theNamib Sand Sea as a test case, we show
howMDS can be used to visualise the similarities anddifferences between 16fluvial and aeolian sand samples for
five different provenance proxies, resulting in five different ‘configurations’. These configurations can be fed into
a GPA algorithm, which translates, rotates, scales and reflects them to extract a ‘consensus view’ for all the data
considered together. Alternatively, the five proxies can be jointly analysed by INDSCAL, which fits the data with
not one but two sets of coordinates: the ‘group configuration’, which strongly resembles the graphical output
produced by GPA, and the ‘source weights’, which can be used to attach geological meaning to the group config-
uration. For theNamib study, the threemethods paint a detailed and self-consistent picture of a sediment routing
system inwhich sand composition is determined by the combination of provenance and hydraulic sorting effects.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Some 65% of Earth's surface is covered by siliclastic sediments and
sedimentary rocks. Unravelling the provenance of these materials is of
key importance to understanding modern sedimentary environments
and their ancient counterparts, with important applications for geomor-
phology, palaeotectonic and palaeogeographic reconstructions, hydro-
carbon exploration and reservoir characterisation, and even forensic
science (e.g., Pye, 2007; Vermeesch et al., 2010; Garzanti et al., 2012,
2014a,b; Stevens et al., 2013; Nie et al., 2014; Scott et al., 2014). Over
the years, thousands of studies have used a plethora of chemical, miner-
alogical and isotopic indicators to trace sedimentary provenance. The
complexity of the resulting datasets can be organised on a number of hi-
erarchical levels:

1. A single sample
Siliclastic sediments are made of grains, and on the most basic level,
geological provenance analysis extracts certain properties from these
grains. These properties can either be categorical (e.g, mineralogy) or
continuous (e.g., age). In rare cases, analysing just a single grain can
already yield important insight into the provenance of a sediment.
For example, a single grain of alluvial diamond confirms the exis-
tence of kimberlitic lithologies in the hinterland. In general, however,
).
provenance studies require not just one but many grains to be
analysed. The provenance information contained in a representative
collection of grains can be visualised with graphical aids such as his-
tograms, pie charts or kernel density estimates (Vermeesch, 2012).

2. Multiple samples
Subjective comparison of detrital zircon U–Pb age distributions or
heavy mineral compositions reveals the salient similarities and dif-
ferences between two samples. Things become more complicated
when more than two samples need to be compared simultaneously.
For example, a dataset comprising n= 10 age distributions presents
the observerwith n(n− 1)/2=45 pairwise comparisons. If n=100,
this increases quadratically to 4950 pairwise comparisons, which is
clearly too much for the human brain to process. Multidimensional
Scaling (MDS) is a technique aimed to simplify this exercise
(Section 3). Originating from the field of psychology, the method is
commonly used in ecology (Kenkel and Orlóci, 1986) and
palaeontology (e.g., Dunkley Jones et al., 2008; Schneider et al.,
2011). MDS was introduced to the provenance community by
Vermeesch (2013), and has instantly proved its value for the inter-
pretation of large datasets (e.g., Stevens et al., 2013; Nie et al., 2014).

3. Multiple methods
Several provenance methods are in use today which can be broadly
categorised into two groups. Each of these tells a different part of
the provenance story:
(a) Multi-mineral techniques such as heavy mineral analysis and

bulk geochemistry provide arguably the richest source of
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provenance information, but are susceptible to hydraulic
sorting effects during deposition as well as chemical dissolu-
tion by diagenesis and weathering (Garzanti et al., 2009;
Andò et al., 2012). These effects obscure the provenance signal
and can be hard to correct.

(b) Single mineral techniques such as detrital zircon U–Pb geo-
chronology are less sensitive to hydraulic sorting effects and,
in the case of zircon, scarcely affected by secondary processes
as well. However, zircon is ‘blind’ to sediment sources such as
mafic volcanic rocks and carbonates. Furthermore, the robust-
ness of zircon comes at a price, as it is difficult to account for
the effect of sediment recycling (Garzanti et al., 2013).

Great benefits arise when these two types of methods are used in
tandem. A string of recent studies combining conventional bulk and
heavy mineral petrography techniques with detrital geochronology
have shown that this provides a very powerful way to trace provenance
(e.g, Stevens et al., 2013; Garzanti et al., 2012, 2014a,b). Combiningmul-
tiple methods adds another level of complexity which requires an addi-
tional layer of statistical simplification. The datasets resulting from
these multi-sample, multi-method studies are so large and complex
that it is warranted to use the Internet-era term ‘Big Data’ to describe
them. This paper introduces Procrustes analysis (Section 4) and 3-way
MDS (Section 5) as valuable tools to help make geological sense of ‘Big
Data’. These methods will be applied to a large dataset from the
Namib Sand Sea, which combines 16 samples analysed by 5 different
methods (Section 2). Although the use of somemathematical equations
Fig. 1. The Namib dataset comprises of 1533 detrital zircon U–Pb ages (shown as kernel d
counts (‘HM’), 6400 petrographic point counts (‘QFL’), and chemical concentration m
clinopyroxene, ‘am’= amphibole, ‘gt’= garnet, ‘ep’= epidote, ‘oth1’= zircon + tourmal
spar, ‘P’ = plagioclase, ‘Lm’, ‘Lv’ and ‘Ls’ are lithic fragments of metamorphic, volcan
Sc+ Y+ La+ Ce+ Pr+ Nd+ Sm+Gd+Dy+ Er+ Yb+ Th+U, and ‘oth4’=Cr+ Co+
of a large database like this is impossible without the help of statistical aids.
was inevitable in this paper, we havemade the text as accessible as pos-
sible by reducing the algorithms to their simplest possible form. The for-
mulas given in Sections 3–5 should therefore be considered as
conceptual summaries rather than practical recipes, with further
implementational details deferred to the Appendices.

2. The Namib dataset

The statistical methods introduced in this paper will be illustrated
with a large dataset from Namibia. The dataset comprises fourteen aeo-
lian samples from the Namib Sand Sea and two fluvial samples from the
Orange River (Fig. 1). These samples were analysed using five different
analytical methods:

1. Geochronology: ~100 zirconU–Pb ageswere obtained per sample by
LA-ICP-MS. For samples N1–N13, this was done using methods de-
scribed by Vermeesch et al. (2010). N14, T8 and T13 are new samples
which were analysed at the London Geochronology Centre using an
Agilent 7700x ICP-MS coupled to a New Wave NWR193 excimer
laser with standard two volume ablation cell.

2. Heavy minerals: a full description of samples N1–N14 was given by
Garzanti et al. (2012). Samples T8 and T13were reported (as samples
S4328 and S4332) by Garzanti et al. (2014a,b).

3. Bulk petrography: is also taken from Garzanti et al. (2012,
2014a,b).

4. Major element composition: 10 major elements were measured
by acid dissolution (Aqua Regia) ICP-ES at AcmeLabs Inc. in
Vancouver, Canada (protocol 4A/B).
ensity estimates with a bandwidth of 30 Ma, Vermeesch, 2012), 3600 heavy mineral
easurements for 10 major and 27 trace elements. ‘opx’ = orthopyroxene, ‘cpx’ =
ine + rutile + Ti-oxides + sphene + apatite + staurolite; ‘Q’=quartz, ‘KF’=K-feld-
ic and sedimentary origin, respectively; ‘oth2’ = TiO2 + P2O5 + MnO; ‘oth3’ =
Ni+ Cu+ Zn+Ga+ Pb. This figure makes the point that an objective interpretation
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5. Trace element composition: 27 trace elements were measured
by acid dissolution (Aqua Regia) ICP-ES and ICP-MS at AcmeLabs
(protocol 4A/B).

The complete dataset is available as an Online Supplement in a tab-
ular form that can be imported into the software discussed later in this
paper. Taken altogether, the entire dataset contains 16,125 physical
measurements covering a variety of ordinal and compositional spaces.
This is a prime example of ‘Big Data’ in a provenance context. A lot can
be learned by a simple qualitative analysis of themeasurements. For ex-
ample, the zircon age distributions reveal prominent peaks at ~600 and
~1000 Ma, consistent with a hinterland affected by Damara and
Namaqua orogenesis, while the widespread occurrence of pyroxene
and basaltic rock fragments indicates the existence of a volcanic sedi-
ment source (Garzanti et al., 2012, 2014a). But it is difficult to go beyond
these general observations without statistical assistance because there
is simply ‘too much’ data. In the following sections, we will follow the
hierarchical organisation of Section 1 to gain a better understanding of
the multivariate dataset in different steps. First, we will integrate the
different age distributions and compositions into five MDS maps
(Section 3). Then, we will integrate these MDS maps into a single ‘Pro-
crustes analysis’ (Section 4). Finally, we will jointly analyse the five
datasets using ‘3-way MDS’ to gain further insight into the sediment
routing system (Section 5).

3. Multidimensional Scaling

The Namib study contains 16 samples, which can be visualised as ker-
nel density estimates (for theU–Pbdata) or pie charts/histograms (for the
compositional datasets). For each of the five provenance proxies, we have
16 × 15 / 2 = 120 pairwise comparisons, which is clearly too much to
handle for an unaided human observer (Fig. 1). Multidimensional Scaling
(MDS) is a technique aimed to simplify the interpretation of such large
datasets by producing a simple two-dimensional map in which ‘similar’
samples plot close together and ‘dissimilar’ samples plot far apart. The
technique is rooted in the field of psychology, in which human observers
are frequently asked to make a subjective assessment of the dissimilarity
between ‘stimuli’ such as shapes, sounds, flavours, etc. A classic example
of this is the colour-vision experiment of Helm (1964), which recorded
the perceived differences between 10 colours by a human observer,
resulting in a 9 × 9 dissimilarity matrix. Let δi,j be the ‘dissimilarity’ be-
tween two colours i and j (‘red’ and ‘blue’, say). Then MDS aims to find
a monotone ‘disparity transformation’ f

f δi j
� � ¼ δ0i j ð1Þ

and a configuration1 X

X ¼ x1 x2 ⋯ xi ⋯ xj ⋯ xn
y1 y2 ⋯ yi ⋯ yj ⋯ yn

� �
ð2Þ

so as to minimise the (‘raw’) stress S

S ¼
X
i b j

δ0i j−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xj
� �2 þ yi−yj

� �2
r" #2

: ð3Þ

The (x,y)-coordinates resulting from Eq. (2) can be plotted as a map
which, in the case of the Helm (1964) dataset, reveals the well-known
colour circle (Fig. 2a). Exactly the same principle can be used for geolog-
ical data with, of course, dissimilarities not based on subjective percep-
tions but analytical data. There is a rich literature documenting ways to
quantify the dissimilarity between petrographic or geochemical
datasets. Further details about this are provided in Appendix A.
1 In this paper we will only consider two-dimensional solutions, which simplifies the
notation and interpretation. It is easy to generalise the equations to more than two
dimensions.
Applying these methods to the Namib dataset, we can convert the
raw input data (Fig. 1) into five dissimilarity matrices. For the purpose
of this exercise, we have used the Kolmogorov–Smirnov statistic for
the U–Pb data, the Bray–Curtis dissimilarity for the heavy mineral and
bulk petrography data, and the Aitchison distance for the major and
trace element compositions (see Appendix A for a justification of
these choices). Each of the resulting dissimilarity matrices can then be
fed into an MDS algorithm to produce five configurations (Fig. 2).
Note that, because the Bray–Curtis dissimilarity does not fulfil the trian-
gle inequality, the petrographic and heavy mineral datasets cannot be
analysed by means of classical MDS (Vermeesch, 2013). The MDS
maps of Fig. 2 were therefore constructed using a nonmetric algorithm
(see Kruskal and Wish, 1978; Borg and Groenen, 2005; Vermeesch,
2013, for further details). It is important to note that nonmetric MDS
merely aims to reproduce the ‘rank order’ of the input data, rather
than the actual dissimilarities themselves (Kruskal, 1964; Borg and
Groenen, 2005). Bearing this in mind, the five MDS maps representing
the Namib dataset reveal some clear trends in the data.

A first observation is that the coastal samples (N1, N2, N11, N12, T8
and T13) plot close together in all fiveMDSmaps, with the easternmost
samples (N4, N5, N8 and N9) plotting elsewhere. Second, the Orange
River samples (N13 and N14) tend to plot closer to the coastal samples
than to the inland samples. And third, within the eastern group, the
northern samples (N4 and N5) are generally found in a different direc-
tion from the southern samples (N8 and N9), relative to the coastal
group. But in addition to these commonalities, there also exist notable
differences between the five maps. Specific examples of this are the
odd position of N14 in the bulk petrography configuration (Fig. 2d),
the different orientation of the major and trace element configurations
(Fig. 2e and f) and countless other minor differences in the absolute
and relative inter-sample distances. Also note that not all five datasets
fit their respective MDS configuration equally well. A ‘goodness of fit’
measure called ‘Stress-1’ can be obtained by normalising the ‘raw’ stress
(Eq. (3)) to the sum of the squared fitted distances (Kruskal, 1964;
Kruskal and Wish, 1978). The resulting Stress-1 values range from
0.02 to 0.07, indicating ‘excellent’ fits to some and ‘fair’ fits to other
datasets (Fig. 2b–f). The five MDS maps, then, present us with a multi-
comparison problem similar to the one presented by Fig. 1, with the
only difference being that it does not involve multiple KDEs or pie
charts, but multiple MDS maps. Making this multi-sample comparison
more objective requires an additional layer of statistical simplification,
in which all the data are pooled to produce a ‘consensus’ view.

4. Procrustes analysis

According to Greek mythology, Procrustes was an inn keeper who
managed to fit all travellers to a single bed, regardless of their size or
length, by stretching or amputation. Similarly, in a statistical context, a
Procrustes arrangement can be found that resembles each of several
MDSmaps by a combination of stretching, translation, reflection and ro-
tation. In mathematical terms, Generalised Procrustes Analysis (GPA,
Gower, 1975; Gower and Dijksterhuis, 2004; Borg and Groenen, 2005)
proceeds in a similar manner to the method laid out for MDS in
Section 3. Given K sets of two-dimensional MDS configurations Xk (for
1 ≤ k ≤ K)

Xk ¼ x1k x2k ⋯ xik ⋯ xnk
y1k y2k ⋯ yik ⋯ ynk

� �
: ð4Þ

GPA aims to find a transformation g constituting of a combination of
scale factors sk, orthonormal transformationmatrices Tk and translation
matrices tk (Borg and Groenen, 2005):

g Xkð Þ ¼ skXkTk þ tk ¼ X0
k ¼

x01k x02k ⋯ x0ik ⋯ x0nk
y01k y02k ⋯ y0ik ⋯ y0nk

� �
ð5Þ
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and a ‘group configuration’ X

X ¼ x1 x2 ⋯ xi ⋯ xj ⋯ xn
y1 y2 ⋯ yi ⋯ yj ⋯ yn

� �
ð6Þ

so as to minimise the least squares misfit SS:

SS ¼
XK
k¼1

Xn
i¼1

x0ik−xi
� �2 þ y0ik−yi

� �2
: ð7Þ

Applying this method to the five (i.e., K = 5) Namib MDS maps of
Fig. 2 produces a Procrustes map (Fig. 3) confirming the salient points
raised in Section 3. The GPA analysis shows the dichotomy between the
coastal and eastern sands, as well as the similarity of the coastal sands
with the Orange River, and it does so more clearly than any of the five
original MDS maps (Fig. 2). It also emphasises the significance of the dif-
ferences between the northeastern and southeastern samples, which
plot at right angles from each other relative to the coastal samples. The
GPA map, then, paints a detailed picture of the sediment routing system
in the Namib Sand Sea, which would have been difficult to obtain from
(a) (

(c) (

(e) (

Fig. 2. Nonmetric (2-way) MDS analyses of (a) Helm's (1964) colour-vision data (for a single
(b 0.025) to ‘fair’ (b0.1)fits (Kruskal andWish, 1978; Vermeesch, 2013). Axes are plotted on a on
the ranks rather than the values of the dissimilarities. The MDS maps for the Namib dataset all
N11, N12, T8 and T13) plot close together and the inland samples (N4, N5, N8 and N9) plot els
direction from the southeastern samples (N8 and N9), relative to the coastal group. However, th
3-way MDS analysis presented in Figs. 3 and 4 make an abstraction of these differences.
a simple visual inspection of the raw data. However, GPA weighs all five
MDSconfigurations equally anddoes not readily take into account the sig-
nificant differences in ‘goodness offit’ (Stress-1, Section 3) between them.
Also, although the trends and groupings among samples are clear from
the GPA map, the underlying reasons for these features are not. The
next section introduces a method aiming to solve this problem and thus
yields additional insight into the sediment routing system of Namibia.

5. 3-way MDS

Aswe saw in Section 4, Procrustes analysis is a two-step process. First,
the various datasets are analysed byMDS. Then, the resultingMDS config-
urations are amalgamated into a single Procrustesmap. The question then
arises whether it is possible to skip the first step and go straight from the
input data to a ‘group configuration’. Such methods exist under the um-
brella of ‘3-way MDS’. In this paper, we will discuss the oldest and still
most widely used technique of this kind, which is known as INdividual
Differences SCALing (INDSCAL, Carroll and Chang, 1970). The method is
b)

d)

f)

observer, ‘N1’) and (b)–(f) the five Namib datasets. The ‘stress’ values indicate ‘excellent’
e-to-one scalewith omitted labels to reflect the fact that non-metricMDS aims to preserve
paint a consistent picture in which (i) the coastal dune and Orange river samples (N1, N2,
ewhere; and (ii) the northeastern samples (N4 and N5) are generally found in a different
ere are also some distinct differences between the five configurations. The Procrustes and



Fig. 3. Generalised Procrustes Analysis (GPA) of the Namib dataset, pooling together all
fiveMDSmaps of Fig. 2 into a single ‘average’ configuration. This confirms the strong sim-
ilarities between sand samples collected along the Atlantic coast (N1, N2, N11, N12, T8,
T13) and the Orange River (N13 and N14) as opposed to samples collected further inland
(N4 through N10).
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formulated as a natural extension of the basic MDS model outlined in
Section 3. Given K dissimilarity matrices δij,k (1 ≤ i, j ≤ n and 1 ≤ k ≤ K),
INDSCAL aims to find K disparity transformations fk

δ0i j;k ¼ f k δi j;k
� �

with
X
i b j

δ02i j;k ¼ constant ∀ k

0
@

1
A; ð8Þ

a group configuration X (defined as in Eq. (6)), and a set of dimension
weights W

W ¼ wx1 wx2 ⋯ wxk ⋯ wxK
wy1 wy2 ⋯ wyk ⋯ wyK

� �
ð9Þ

so as to minimise a modified stress parameter S′

S0 ¼
XK
k¼1

X
i b j

δ0i j;k−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wxk xi−xj

� �2 þwyk yi−yj

� �2
r" #2

: ð10Þ

To illustrate the application of INDSCAL to real data, it is instructive to
revisit the colour-vision example of Section 3. In addition to test subject
‘N1’ shown in Fig. 2a, the study by Helm (1964) involved thirteen more
participants. Each of these people produced one (or two, for subjects N6
and CD2) dissimilarity matrix(es), resulting in a total of sixteen MDS
maps, which could in principle be subjected to a Procrustes analysis
(Section 4). Alternatively, the sixteen dissimilarity matrices can also be
fed into the INDSCAL algorithm. The resulting ‘group configuration’ X

� �
is a map that fits the perceived differences of all fourteen observers by
stretching and shrinking (but not rotating) in the x- and y-direction
(Fig. 4a). The degree of stretching or shrinking associated with each ob-
server is given by the ‘source weights’ (W), which can be plotted as a sec-
ond piece of graphical output (Fig. 4b). For the colour-vision experiment,
the group configuration shows the familiar colour circle, and the source
weights express the degree to which this colour circle is distorted in the
perception of the colour deficient test subjects (prefix ‘CD’) relative to
those subjects with normal colour vision (prefix ‘N’). The latter all plot to-
gether in the northwest quadrant of the diagram,whereas the former plot
in the southeast quadrant. Multiplying the x–y coordinates of the group
configurationwith the respective dimensions of the sourceweights yields
sixteen ‘private spaces’, which are approximate MDS maps for each test
subject. For the colour deficient subjects, these private spaces have an ob-
late shape, emphasising the reduced sensitivity of the colour deficient test
subjects to the red–green colour axis relative to the blue–yellow axis. In
summary, whereas an ordinary MDS configuration can be rotated by an
arbitrary angle without loss of information, this is not the case for an
INDSCAL group configuration. The principal axes of the latter generally
have an interpretive meaning, which is one of themost appealing aspects
of the method (Arabie et al., 1987; Borg and Groenen, 2005).

The five datasets of the Namibian study can be analysed in exactly the
same manner as Helm's (1964) colour data, producing the same two
pieces of graphical output as before. The resulting ‘group configuration’
(Fig. 4c) looks remarkably similar to the GPA map of Fig. 3. It shows the
same separation between samples collected from the eastern and west-
ern parts of the desert, and the same 90° angle between the northeastern
and southeastern sampling locations. But whereas the GPA map did not
offer any explanation for these observations, the source weights of the
INDSCAL analysis do provide some important clues (Fig. 4d). The prove-
nance proxies based on the analysis of bulk materials (chemistry and pe-
trography) attach stronger weights to the horizontal dimension. The
proxies based on density separates (U–Pb ages and heavy minerals), on
other hand, weigh the vertical dimension more heavily. Because the for-
mer proxies are more sensitive to hydraulic sorting effects and compara-
tively less sensitive to provenance than the latter proxies (see Section 1),
this observation leads to the interpretation that hydraulic sorting (pre-
dominantly) separates samples along the x-dimension,whereas theprov-
enance signal (predominantly) separates samples along the y-dimension.

6. Discussion, caveats and conclusions

Until recently, large multi-proxy provenance studies like the Namib
case study presented in this paper were prohibitively expensive and
time consuming. However, continued technological advances in mass
spectrometry (Frei and Gerdes, 2009) and petrography/geochemistry
(Allen et al., 2012) promise to change this picture. In anticipation of
the impending flood of provenance data resulting from these advances,
this paper borrowed some simple yet powerful ‘datamining’ techniques
from other scientific disciplines, which help to make geological sense of
complex datasets. Some readers will be familiar with Principal Compo-
nents Analysis (PCA), which is a dimension-reducing procedure that is
commonly used to interpret geochemical, petrographic and other com-
positional data (Aitchison, 1983; Vermeesch, 2013). Multidimensional
Scaling is a flexible and powerful superset of PCA which allows geolo-
gists to extend PCA-like interpretation to isotopic data such as U–Pb
ages (Vermeesch, 2013). Generalised Procrustes Analysis and Individual
Differences Scaling are higher order supersets of MDS which can be
used to integrate multiple proxies in a single comprehensive analysis.

The application to the Namib Sand Sea has yielded results that are
broadly consistent with previous interpretations by visual inspection
of the age distributions, petrographic diagrams, etc. The statistical
tools presented in this paper offer two key advantages over the tradi-
tional approach. First, they are farmore objective and easy to use. Expert
knowledge ofmineralogy, petrography and isotope geochemistry,while
still desirable, becomes less crucial because the statistical tools automat-
ically extract geologically meaningful differences between the datasets.
Second, themethods introduced in this paper provide away to compare
datasets of very different nature in a common framework. Thus the new
approach to data interpretationmakes it much easier to combine petro-
graphic and isotopic provenance proxies.

Despite the intuitive appeal of INDSCAL and its apparent success in the
Namib study, it is important tomention a few caveats.Whereas the group
configuration is quite robust (as exemplified by the similarity of Figs. 3
and 4d), the same cannot be said about the source weights. Consider,
for example, the INDSCAL analysis of the Namib data, which used a com-
bination of Kolmogorov–Smirnov (for the U–Pb data), Bray–Curtis (for
the mineralogical data) and Aitchison (for the bulk chemistry) measures.
Replacing the Kolmogorov–Smirnov statistic with Sircombe and
Hazelton, 2004’s L2-norm, say, results in a similar group configuration
but in significantly different source weights with a less clear interpreta-
tion (although the bulk and density separatedproxies still plot in opposite
corners). The instability of the source weights may easily lead to over-
interpretation, causing some (e.g., Borg and Groenen, 2005) to recom-
mend abandoning INDSCAL in favour of GPA or similar techniques.



(a) (b)

(c) (d)

Fig. 4. 3-wayMDS analysis of the colour-vision experiment byHelm (1964, (a)–(b)) and theNamib dataset [(c)–(d)]. The left panels [(a) and (c)] show the ‘group configurations’, whereas
the right panels [(b) and (d)] show the ‘source weights’. For the Namib dataset, the former shows essentially the same picture as the Procrustes analysis (Fig. 3). The map of
‘source weights’ (d) shows the degree of importance which each of the five proxies attach to the horizontal and vertical dimension of the group configuration. An intuitive
interpretation of these two dimensions suggests that the y-axis shows the provenance signal (which dominates the proxies based on density separates, see Section 1), whereas
the hydraulic sorting effect dominates the x-axis (and the bulk analysis proxies).
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Thanks to the widespread acceptance of MDS, GPA and INDSCAL in
other fields of science, several software options are available (see
Appendix B for details). These tools can be combined with other
types of inferential techniques such as cluster analysis, regression,
bootstrapping, etc. This paper barely scratches the surface of the vast
field of MDS-related research. We refer the user to the reference
works by Arabie et al.(1987); Borg and Groenen (2005); Borg et al.
(2012); Gower and Dijksterhuis (2004) for further details and ideas
and hope that our paper will encourage others to explore these exten-
sions in order to address a new class of geological problems.
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Appendix A. Dissimilarity measures

This sectionprovides a fewexamples of dissimilaritymeasures to com-
pare two sediment samples (A and B, say). Let us first consider the case of
categorical data (A= {A1, A2,⋯, An} and B= {B1, B2,⋯, Bn}, where Ai rep-
resents the number of observations of class i, etc.) such as heavy mineral
counts. Vermeesch (2013) used Aitchisons centred logratio distance:

δaitAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ln
Ai

g Að Þ
	 


−ln
Bi

g Bð Þ
	 
� �2vuut ð11Þ
where ‘g(x)’ stands for ‘the geometric mean’ of x (Aitchison, 1986;
Vermeesch, 2013). Note that the same distance is obtained irrespective
of whether the input data are expressed as fractions or percents. The
Aitchison distance breaks down for datasets comprising ‘zero counts’
(Ai=0 or Bi=0 for any i). This problem can be solved by pooling several
categories together, or by using a different dissimilarity measure such as
the Bray–Curtis dissimilarity:

δbcAB ¼

Xn
i¼1

jAi−Bij

Xn
i¼1

Ai þ Bið Þ
ð12Þ

where | ⋅ | stands for the absolute value. Note that the Bray–Curtis dissim-
ilarity does not fulfil the triangle inequality. It can therefore not be used for
‘classical’MDS (in which the disparity transformation is the identity ma-
trix, Vermeesch, 2013). However, this is not an issue for nonmetric MDS
(as well as certain classes of metric MDS). For ordinal data such as U–Pb
ages, it is useful to define the empirical cumulative distribution functions
(ECDFs):

FA tð Þ ¼ 1
n

#ai≤tð Þ and FB tð Þ ¼ 1
m

#bi ≤tð Þ ð13Þ

where n and m are the sample sizes of A and B, respectively and ‘# x ≤ t’
stands for “the number of items in x that are smaller than or equal to t”.
The simplest ECDF-based statistic was developed by Kolmogorov and
Smirnov and uses the maximum absolute difference between FA(t) and
FB(t) (Feller, 1948):

δksAB ¼ max
t

jFA tð Þ−FB tð Þj: ð14Þ
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The Kolmogorov\\Smirnov (KS) statistic takes on discrete values in
steps of 1

n−
1
m

�� �� and may therefore yield dissimilarity measures with
duplicate values, which in turn may cause problems in certain MDS al-
gorithms. Furthermore, the KS-statistic is most sensitive to the region
near the modes of the sample distribution, and less sensitive to the
tails. Finally, when FA(t) and FB(t) cross each other multiple times, the
maximum deviation between them is reduced. Therefore, the KS-
statistic (or variants thereof such as the Kuiper statistic) cannot ‘see’
the difference between a uniform distribution and a ‘comb’-like distri-
bution. Although alternative statistics such as Cramér-von Mises and
Anderson-Darling solve any or all of these problems, they generally ex-
hibit an undesirable dependence on sample size. One promising alterna-
tive which does not suffer from this problem is the L2-norm proposed
by Sircombe and Hazelton (2004). Thismeasure explicitly takes into ac-
count the analytical uncertainties and may therefore be the preferred
option when combining samples from different analytical sources.
Appendix B. Software

The methods introduced in this paper are widely used in a variety of research fields, and several software options are available, includingMatlab
(Trendafilov, 2012), SPSS (PROXSCAL, Busing et al., 1997), PAST (Hammer andHarper, 2008) and R (De LeeuwandMair, 2011). This section contains
the shortestworkable example of R code needed to reproduce the figures in this paper. The BigData.Rdata input file and amore general purpose code
can be downloaded from http://mudisc.london-geochron.com.

http://mudisc.london-geochron.com
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Appendix C. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemgeo.2015.05.004.
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