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The petrography and geochronology of detrital minerals form rich archives of information pertaining to the
provenance of siliclastic sediments. The composition and age spectra of multi-sample datasets can be used
to trace the flow of sediments through modern and ancient sediment routing systems. Such studies often in-
volve dozens of samples comprising thousands of measurements. Objective interpretation of such large
datasets can be challenging and greatly benefits from dimension-reducing exploratory data analysis tools.
Principal components analysis (PCA) is a proven method that has been widely used in the context of compo-
sitional data analysis and traditional heavy mineral studies. Unfortunately, PCA cannot be readily applied to
geochronological data, which are rapidly overtaking petrographic techniques as the method of choice for
large scale provenance studies. This paper proposes another standard statistical technique called multi-
dimensional scaling (MDS) as an appropriate tool to fill this void. MDS is a robust and flexible superset of
PCA which makes fewer assumptions about the data. Given a table of pairwise ‘dissimilarities’ between sam-
ples, MDS produces a ‘map’ of points on which ‘similar’ samples cluster closely together, and ‘dissimilar’ sam-
ples plot far apart. It is shown that the statistical effect size of the Kolmogorov–Smirnov test is a viable
dissimilarity measure. This is not the case for the p-values of this and other tests. To aid in the adoption of
the method by the geochronological community, this paper includes some simple code using the statistical
programming language R.More extensive software tools are provided on http://mudisc.london-geochron.com.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Ever since the development of single grain U–Pb dating by (ion
and laser) microprobe analysis, the method has been applied to detri-
tal zircon (DZ) as a means of reconstructing the provenance of
siliciclastic rocks. Initially, DZ geochronology was primarily used to
trace the provenance of such rocks back to individual ‘protosources’
or source terranes (Gehrels et al., 1995; Pell et al., 1997). But in recent
years, the ever-increasing throughput and ever decreasing cost of DZ
geochronology have enabled a more sophisticated kind of applica-
tions, in which the U–Pb age distributions of multiple samples are
used as a characteristic ‘fingerprint’ to trace the flow of zircon grains
through the sediment routing system.

This paper introduces methods that make the interpretation of
such datasets more objective, using a recently published provenance
study from China as an example. Stevens et al. (in press) present a
dataset comprising ten sand(stone) samples from the Mu Us desert,
a Quaternary loess sample, a modern fluvial sand sample from the
Yellow River, and a dataset of DZ ages from the Tibetan headwaters
of the Yellow River taken from Pullen et al. (2011). The degree of sim-
ilarity between these samples can be assessed on a qualitative basis
by jointly plotting their respective age spectra (Fig. 1). Another
rights reserved.
commonly used visual aid is the so-called ‘QQ plot’, in which various
quantiles of the samples are plotted against each other, the idea being
that two samples follow an identical distribution if and only if their
quantiles plot on a 1:1-line (Fig. 2).

Both the QQ plots and the age spectra can become unwieldy if
they contain more than a dozen or so samples. For example, Fig. 1
contains n=13 kernel density estimates (KDEs, Vermeesch, 2012)
showing the probability distributions of 2025 single grain age esti-
mates, while the QQ-plots in Fig. 2 form an upper triangular matrix
with n(n−1)/2=78 pairwise comparisons. This is simply too much
information for the human eye to process. To solve this problem, we
need a ‘filter’ removing the redundant features of the individual dis-
tributions while preserving and amplifying the significant differences
between them. This paper makes the case that a standard statistical
technique called multidimensional scaling (MDS) can be used effec-
tively for this purpose (Sections 3 and 4).

In addition to the DZ ages, all but one (T) of the samples in
the Chinese study were subjected to heavy mineral (HM) analysis.
With the exception of samples 1 and 8, the HM analyses were
performed on separate aliquots from the U–Pb measurements. For
samples 1 and 8, the HM mounts were prepared by mixing leftover
mineral separates from the DZ study. Between 201 and 419 grains
were counted in the 63–250 μm size fraction of each sample,
resulting in an additional 2901 datapoints. Part of the aim of this
paper is to treat these categorical data on an equal footing with
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http://www.sciencedirect.com/science/journal/00092541


Fig. 1. Sample locations and kernel density estimates (KDEs, Vermeesch, 2012) of the Chinese loess study (N=number of concordant ages). Samples 1–5, 7 and 9–10 — dune sand;
samples 6 and 8 — Cretaceous sandstone; sample L — Quaternary loess; sample Y — fluvial sand from the Yellow River; sample T — compilation of proposed sources in Yellow River
headwaters from Pullen et al. (2011).

141P. Vermeesch / Chemical Geology 341 (2013) 140–146
the continuous age data in a consistent mathematical framework
(Section 5). All the analyses presented in this paper can be repro-
duced using the software discussed in Section 6 and made available
on http://mudisc.london-geochron.com.
2. Measuring the dissimilarity between two samples

Before discussing multi-sample comparisons, it is useful to
review the underlying principles for measuring the dissimilarity (δi,j)
between two samples (i and j, say). It is desirable for any dissimilarity
measure to fulfil the following four requirements:

δi;j should independent of sample size N ð1Þ

δi;j ¼ 0 if i ¼ j and δi;j > 0 otherwise nonnegativityð Þ ð2Þ

δi;j ¼ δj;i symmetryð Þ ð3Þ

http://mudisc.london-geochron.com
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Fig. 2. QQ plots of the Chinese U–Pb dataset. Blue dots represent the 0, 5, 10, …, 95 and
100 percentiles (or ‘quantiles’) of the samples whose names are shown on the X- and
Y-axis, respectively. Two samples follow an identical distribution if and only if their
percentiles fall on the 1:1-line.
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δi;k≤δi;j þ δj;k triangle inequalityð Þ: ð4Þ

The first requirement is important for the Chinese loess study, as it
would be impossible to compare samples 6 (N=58) and T (N=772)
otherwise. If a dissimilarity measure fulfils the remaining three condi-
tions, then it is said to be a ‘metric’. One example of such a metric is
the Euclidean distance (di,j). Given two R-dimensional points xi=
(xi1, xi2,…, xiR) and xj=(xj1, xj2,…, xjR), the Euclidean distance is given
by:

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1i −x1j

� �2 þ x2i −x2j
� �2 þ…þ xRi −xRj

� �2
r

: ð5Þ

Unfortunately, the space of detrital age distributions (which is a
‘function space’) is not a Euclidean space. And neither is the space
of HM compositions (which is a ‘simplex’). Therefore, the Euclidean
distance cannot be directly applied to either DZ or HM data. However,
HM compositions can be converted to a Euclidean space by applying a
so-called logratio transformation. Further details about this are pro-
vided in Appendix A. Unfortunately, no such transformation exists
for geochronological data, and we can therefore not use the Euclidean
distance to compare these. Fortunately, several alternatives are avail-
able that also fulfil conditions 1–4. One of these is the sample effect
size of the Kolmogorov–Smirnov (KS) test:

KS ¼ max
t

Fi tð Þ−Fj tð Þ
��� ��� ð6Þ

where |⋅| stands for the absolute value and F(t) is the empirical
cumulative distribution function (CDF):

F tð Þ ¼ number of ages less than tð Þ=N: ð7Þ

Note that Eq. (6) is identical to the well known KS statistic (Feller,
1948). The difference between the terms ‘statistic’ and ‘effect size’ is
explained in Appendix B. The KS statistic is most sensitive to the re-
gion near the modes of the sample distributions, and less sensitive
to their tails. Several alternatives are available that fix this problem,
such as the Anderson–Darling (AD) and Cramér–von Mises (CvM)
statistics, which are based on the squared differences between two
CDFs (Anderson and Darling, 1954; Anderson, 1962). However, it
can be shown that these more sophisticated measures do not fulfil
the triangle inequality (Eq. (4)), causing some limitations. Therefore,
the remainder of this paper will use the KS effect size as a dissimilar-
ity measure.

3. Multidimensional scaling

Let δ be a matrix of pairwise dissimilarities between n samples:

δ ¼
δ1;1 δ1;2 … δ1;n
δ2;1 δ2;2 … δ2;n
⋮ ⋮ δi;j ⋮

δn;1 δn;2 … δn;n

0
BB@

1
CCA ð8Þ

where δi,j is the dissimilarity between samples i and j, as before. And
let f(δi,j) be a monotonically increasing function transforming the dis-
similarities into ‘disparities’. Then MDS produces an R-dimensional
(where R≤n) configuration of points x={x1,x2,…,xi,…,xj,…,xn} with
xi=(xi1,xi2,…,xiR) and xj=(xj1,xj2,…,xjR) for 1≤ i, j≤n. The Euclidean
distance between any two points xi and xj in this configuration ap-
proximates the disparities between samples i and j:

di;j≈f δi;j
� �

ð9Þ

with di,j as defined by Eq. (5). In this paper, we will only consider the
case where R=2, so that the configuration x can be plotted on a sheet
of paper, like a map. Therefore, we will use the terms ‘configuration’
and ‘map’ interchangeably. In fact, one of the classic applications of
MDS involves the reconstruction of a topographic map from a table
of pairwise (Euclidean) distances between cities with the minimum
possible distortion (e.g., p8–9 of Kruskal and Wish, 1978).

If the disparity transformation is the identity matrix (i.e., f(δi,j)=
δi,j), and if δi,j is a metric, then the configuration x can be found ana-
lytically by relatively straightforward linear algebra (Cox and Cox,
2000, p.23–25). This is called classical MDS. If the triangle inequality
(Eq. (4)) is violated, then δi,j is not a metric but a ‘semi-metric’. In
this case, it may still be possible to perform an MDS analysis by con-
sidering a disparity transformation such as:

f δi;j
� �

¼ aþ bδi;j ð10Þ

or any other parametric equation (e.g. exponential), so long as it
monotonically increases. This superset of classical MDS is (somewhat
confusingly) called metric MDS. It solves for the configuration that si-
multaneously determines both the distances di,j and the fit to the dis-
parity transformation f(δi,j). In the most general case, f is allowed to
take any nonparametric monotonically increasing form such as a
step function. This method is called nonmetric MDS, and allows not
only violations of the triangle inequality but also of the condition of
symmetry (Eq. (3)). The goal of nonmetric MDS is not to approximate
the dissimilarities themselves, but rather their relative ranks. In the
case of non-metric MDS, the solution is not found analytically but nu-
merically. This is done by minimizing a so-called ‘stress parameter’ S,
the most common form (so-called ‘Stress-1’) of which is (Kruskal,
1964):

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1∑
n
j¼iþ1 f δi;j

� �
−di;j

h i2
∑n

i¼1∑
n
j¼iþ1 d

2
i;j

vuuut : ð11Þ

The final stress value can be used to evaluate the quality of the
MDS fit (Table 1).

MDS is generally insensitive to the choice of S and f. Therefore,
metric and nonmetric MDS will generally give similar-looking results,
and even the choice of δi,j will often have only a minor effect. This ro-
bustness is one of the major strengths of the method.



Table 1
Rules of thumb for interpreting the goodness of fit (g.o.f.) using the final value of
Kruskal (1964)'s Stress-1 (S).

g.o.f Poor Fair Good Excellent Perfect

S 0.2 0.1 0.05 0.025 0
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4. Application to the Chinese dataset

Let us now return to the Chinese dataset to illustrate these theo-
retical concepts with a practical example. The matrix of KS dissimilar-
ities (multiplied with 100 for brevity) is given by:

1 2 3 4 5 6 7 8 9 10 L T Y

δ ¼

1
2
3
4
5
6
7
8
9
10
L
T
Y

0 14 33 27 18 14 15 22 48 32 42 37 40
14 0 36 33 16 14 15 24 46 32 47 42 43
33 36 0 19 24 44 47 55 17 10 13 12 8
27 33 19 0 20 38 41 48 28 14 21 17 16
18 16 24 20 0 22 24 33 31 20 33 28 30
14 14 44 38 22 0 14 24 52 41 52 48 49
15 15 47 41 24 14 0 16 51 43 54 49 52
22 24 55 48 33 24 16 0 61 53 63 59 62
48 46 17 28 31 52 51 61 0 20 22 18 16
32 32 10 14 20 41 43 53 20 0 17 15 13
42 47 13 21 33 52 54 63 22 17 0 10 11
37 42 12 17 28 48 49 59 18 15 10 0 7
40 43 8 16 30 49 52 62 16 13 11 7 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

:

ð12Þ

Note that this is a symmetric matrix (due to Eq. (3)) with zero di-
agonal (due to Eq. (2)), so that it suffices to provide the MDS algo-
rithm with only the upper (or lower) triangular part of it. Using
metric MDS, the data can be completely described (i.e. S=0) by an
8-dimensional (i.e., R=8) configuration (again multiplied with 100):

x ¼

1
2
3
4
5
6
7
8
9
10
L
T
Y

x1 x2

−17 10:0
−19 −2:0
17 0:1
9 7:0
−5 −3:8
−25 2:1
−28 −47
−37 −2:7
23 −16:2
14 0:1
25 5:1
21 3:4
23 1:6

x3 x4 x5 x6 x7 x8

−1:9 2:6 −2:2 1:1 1:2 0:63
7:4 −2:4 −5:2 0:1 0:8 −0:39
2:2 2:8 −6:9 2:0 −1:6 0:19
−4:0 −8:4 3:2 0:1 0:9 −0:93
1:7 −2:6 2:8 −1:2 −2:9 2:58
8:2 2:6 6:4 1:3 −2:6 −0:45
−1:6 4:1 2:1 −2:3 4:0 −1:51
−10:3 −2:2 −3:0 0:9 −1:9 0:13
−2:6 0:3 1:3 1:0 0:2 −0:31
5:9 −3:3 −2:0 −4:1 2:0 1:03
−4:1 4:0 −0:1 −4:6 −3:1 −1:44
−3:3 3:6 2:6 2:0 2:6 2:84
2:3 −1:1 0:9 3:7 0:3 −2:37

����������������������������

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

The two-dimensional map coordinates are given by the first two
columns and are shown in Fig. 3a. Plugging these coordinates into
Eq. (5) and calculating the corresponding (Euclidean) distance matrix
yields:

1 2 3 4 5 6 7 8 9 10 L T Y

d ¼

1
2
3
4
5
6
7
8
9
10
L
T
Y

0 12 35 26 18 11 18 23 48 32 42 38 41
12 0 36 30 14 7 9 18 44 33 45 40 43
35 36 0 10 23 42 45 54 17 3 9 5 7
26 30 10 0 18 35 39 47 27 8 16 12 15
18 14 23 18 0 21 22 31 31 20 32 27 29
11 7 42 35 21 0 7 13 51 39 50 46 48
18 9 45 39 22 7 0 9 52 42 54 49 51
23 18 54 47 31 13 9 0 61 50 62 58 60
48 44 17 27 31 51 52 61 0 19 21 20 18
32 33 3 8 20 39 42 50 19 0 12 8 10
42 45 9 16 32 50 54 62 21 12 0 5 4
38 40 5 12 27 46 49 58 20 8 5 0 3
41 43 7 15 29 48 51 60 18 10 4 3 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

ð14Þ
which is again a symmetric matrix with zero diagonal because the
Euclidean distance is a metric and therefore obeys Eqs. (2)–(4). Plot-
ting the (upper- or lower triangular parts of the) distance matrix d
(Eq. (14)) against the corresponding dissimilarities δ (Eq. (12)) yields
a so-called ‘Shepard plot’, allowing a graphical assessment of the
quality of the model fit (Fig. 3b). Doing the same exercise with
nonmetric MDS yields a very similar looking map (Fig. 3c), with the
fitted distances on the Shepard plot, of course, not following a linear
but a step function (Fig. 3d). Both Shepard plots show a tight fit of
the distances around the disparities. The relatively minor amount of
scatter is reflected in the stress values of 0.064 and 0.025. Using the
rules of thumb given in Table 1, this qualifies as a ‘good’ fit for the
metric, and an ‘excellent’ fit for the nonmetric MDS, respectively.

The MDS maps group samples with similar age spectra, and pull
apart samples with different spectra. For example, samples T (Tibet)
and Y (Yellow River) nearly overlap on the MDS maps because the KS
dissimilarity between them is only 0.07, which is the smallest value in
Eq. (12). On the other hand, samples L (loess) and 8 (northeastern
Mu-Us) plot very far apart on theMDSmap because the KS dissimilarity
between them is 0.63, which is the largest value in Eq. (12). One simple
but effective way to aid in the interpretation of MDS maps is to draw a
solid line from each point in the configuration to its ‘closest’ neighbour
in dissimilarity-space, and a dotted line to the second closest neighbour.
For example, sample 8 is the closest (or ‘least dissimilar’) to sample 7
(KS=0.16), and the second closest to sample 1 (KS=0.22), while sam-
ple 7 is the closest to sample 6 (KS=0.14) and second closest to sample
2 (KS=0.15). These connecting lines define two distinct groups divid-
ing the field area into a southwestern area containing sediments of
‘Yellow River affinity’ (samples 3, 4, 9, 10, L, T and Y) and a northeastern
area containing sediments of a different origin (samples 1, 2, 5, 6, 7 and
8). The MDS maps reveal a pronounced East-West dichotomy within
the Mu-Us sand desert, in which sands from the eastern part of the de-
sert are locally derived, whereas thewestern sands are far travelled and
exhibit virtually identical age spectra to the fluvial sands of the Yellow
River, which in turn are indistinguishable from Quaternary loess of
the Chinese Loess Plateau. This leads to two new conclusions. First,
the northern parts of the Tibet Plateau are the ‘ultimate source’ of the
Chinese loess. Second, fluvial transport is a more significant supplier
of silt-sized particles to the Chinese loess deposits than was previously
recognised (Stevens et al., in review).

5. Relationship with principal components analysis (PCA)

Principal components analysis (PCA) is one of the most widely
used dimension-reducing exploratory data analysis tools for compo-
sitional data such as HM counts. Given a multi-dimensional dataset,
PCA finds an orthogonal transformation (i.e., a rotation, reflection or
both) to define a lower-dimensional set of new variables explaining
most of the scatter in the input data. PCA is closely related to MDS.
In fact, it can be shown that PCA is a special case of classical MDS in
which the dissimilarities are Euclidean distances. This means that δi,j
can be calculated in exactly the same way as di,j in Eq. (5). The best
way to measure the dissimilarity between two HM compositions is
the so-called ‘Aitchison distance’. As mentioned in Section 2 and
explained in Appendix A, this distance is calculated by first applying
a data transformation and then calculating the Euclidean distance
on the transformed data. Therefore, an MDS analysis of the Aitchison
distance is identical to a PCA of the transformed data (Fig. 4). One
common way to visualise PCA results is as a ‘biplot’ which jointly
shows the configuration and the endmember compositions. This re-
veals that the most important differences between the two groups
are found in their epidote and amphibole contents. The MDS/PCA
map of the HM counts has a striking resemblance to the MDS map
of the DZ ages (Fig. 3). Both maps are organised into the same two
groups. Therefore, not only the zircons but also the other heavy min-
erals exhibit the aforementioned East-West dichotomy, indicating
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Fig. 3. (a) Metric and (b) non-metric MDS plots of the Chinese U–Pb dataset using the KS effect size as a dissimilarity measure. Solid lines mark the closest neighbours and dashed
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for the nonmetric MDS (Table 1).
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limited aeolian mixing within the Mu-Us desert. Only sample 1 has
‘switched groups’, possibly due in part to the fact that it was
‘reconstructed’ from mineral separates.
6. Software

Given that MDS is a standard statistical technique, numerous
software tools are available that can easily be adopted for detrital
geochronology, including several open source options, such as R
(http://www.r-project.org). In R, classical MDS is implemented by
the cmdscale function of the stats package, while nonmetric MDS
is implemented by the isoMDS function of the MASS package.
Appendix C contains a simple snippet of code using the Chinese DZ
dataset as an example. PCA of compositional data is implemented in
R by the princomp function of the compositions package. In Matlab,
both classical, metric and non-metric MDS are implemented by the
mdscale function of the Statistics Toolbox. A graphical user interface
has been created that implements this function in a user-friendly
way and can be downloaded from http://mudisc.london-geochron.com
along with further details about the R code, input files and so
forth.
7. Concluding remarks

This paper introduced MDS as a simple yet powerful tool provid-
ing informative, mutually consistent measures of difference for a
group of observations taken together. It is important to note that,
just like any other dimension-reducing technique, MDS makes an ab-
straction of the data and may not always represent all the details of
complex datasets. One problem with dissimilarity measures such as
the KS effect size is that they are simple scalars which cannot capture
the full richness of entire probability distributions. For example, the
KS test cannot see the difference between a ‘comb-like’ and a ‘flat’
density. Despite these limitations, the MDS map often captures the
main features of detrital zircon datasets, as illustrated in the Chinese
case study.

Itwas shown that PCA is a special case of classicalMDS, using Euclid-
ean distance for dissimilarities and thusmaking restrictive assumptions
about the structure of the data, which are relaxed by metric and
non-metric MDS. Thus, MDS is a flexible technique which makes
fewer assumptions about the data than PCA. The user is not restricted
to the KS effect size used in this paper. Other statistic-based dissimilar-
ities such as Cramér–von Mises and Anderson–Darling would also
work, although it is advised to use nonmetric MDS in these cases as

http://www.r-project.org
http://mudisc.london-geochron.com
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this is themost robustmethod. NonmetricMDS usually yields better fits
thanmetricMDS. In the Chinese case study, this is reflected in the stress
value of S=0.025 for the former and S=0.064 for the latter (Fig. 3). The
stress of the corresponding classical MDS analysis is even higher at S=
0.78. It would therefore seem that nonmetric MDS is the best method.
However, the nonmetric MDS algorithm may fail for small datasets. In
these cases, metric and classical MDS provide a more stable backup
solution.

One aspect of detrital geochronologywhich this paper has ignored is
analytical uncertainty. An implicit assumption behind the use of the KS
effect size as ameasure of dissimilarity is that all the samples under con-
sideration are characterised by the same analytical precision. This is a
valid assumption for the Chinese data, all of which were measured by
LA-ICP-MS (and all but one of which were analysed in the same lab).
But it is not necessarily true for datasets combining age spectra from
different laboratories using a combination of LA-ICP-MS and SIMS, say.
In such cases, it would be advised to remove the analytical effects
first. Sircombe and Hazelton (2004) show that this can be achieved by
adding an arbitrary variance term to all the measurements. The
resulting ‘kernel functional estimates’ (KFE) are, essentially, over-
smoothed KDEs that can be objectively compared using the methods
described in this paper. Finally, although this paper focused on detrital
zircon U–Pb age spectra, the conclusions follow for any other min-
eral (such as rutile, apatite, or monazite) or dating technique
(such as 40Ar/39Ar, fission tracks, or U–Th–He). In the rapidly chang-
ing field of detrital geo- and thermochronology, the multi-sample
comparisonmethod described here will be able to informmore evolved
efforts of the future.
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Appendix A. Brief summary of the Aitchison geometry applied to PCA

Let y={y1,y2,…,yn} be a set of k-dimensional point-counting data
ya={ya1,ya2,…,yak}, so that yab represents the integer number of grains
of mineral b counted in sample a. The most straightforward way to
measure the dissimilarity between two samples (i and j, say) would
appear to be the Euclidean distance between the corresponding
proportions:

δi;j ¼
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Xk
b¼1

ybi
∑k

c¼1 y
c
i

−
ybj

∑k
c¼1 y

c
j

0
@

1
A

2
vuuut : ðA−1Þ

Unfortunately, this approach is wrong because the proportions are
subject to a constant sum constraint (all fractions must add up to
100%) and are therefore notmutually independent. This restriction pro-
duces geometric artefacts (curvature) whichmay negatively affect line-
ar procedures such as PCA. Note that this also invalidates prior attempts
to apply PCA to detrital age histograms (Sircombe, 2000). To solve this
problem, Aitchison (1982, 1983, 1986) developed a mathematical for-
malism inwhich the compositional data are transformed to an ordinary
Euclidean space using a (centred) log-ratio transformation (yab→za

b), by
normalising the compositions to their respective geometric means and
taking logarithms:

zba ¼ ln
ybaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with a and b referring to the sample andmineral, as before. This logratio
transformation removes the geometric artefacts caused by the closure
operation so that the transformed data can be subjected to a PCA. In-
stead of the centred logratio transformation, other options are available
such as the isometric logratio transformation (ilr), which may actually
be even better suited for PCA/MDS (Egozcue et al., 2003; Filzmoser et
al., 2009).

Appendix B.Why p-values are unsuitable as ameasure of dissimilarity

Some workers have used statistical tests such as Kolmogorov–
Smirnov to make the comparison of detrital age distributions more
‘objective’ than mere visual inspection of age spectra or QQ-plots.
Such statistical tests require the formulation of a so-called ‘null
hypothesis’ (H0, e.g.: “two detrital age distributions were drawn
from the same population”), and the selection of a ‘test statistic’
(e.g., Eq. (6)). If the observed value of the test statistic is ‘unlikely’
to occur under the null hypothesis, then the latter is rejected in fa-
vour of the alternative hypothesis (Ha: “two detrital age distributions
were drawn from different populations”). The probability of observing
a value at least as extreme as the observed statistic under the null
hypothesis is called the ‘p-value’. An arbitrary cut-off value α may be
used to make a decision on a ‘100(1−α)% confidence level’. For exam-
ple, if α=0.05 and pbα, then H0 is rejected in favour of Ha ‘with
95% confidence’. The probability of erroneously rejecting a true null
hypothesis, which is given by α, is also called a ‘Type-I error’. In
other words, the α-value expresses the risk we are willing to take
of committing a Type-I error. The p-value is a poor measure of dis-
similarity between samples, because it lumps together two factors:
the ‘effect size’ and the ‘sample size’. The sample size is simply the
total number of grains analysed (N). The effect size expresses “the
degree to which the null hypothesis is false” (Cohen, 1977). To illus-
trate this concept, consider the case of two Normally distributed
detrital age populations with means μ1 and μ2, variances σ1

2 and σ2
2,

and sample sizes N1 and N2, respectively. Assume that N1=N2=N
and σ1=σ2=σ. Let X1 and X2 be the sample means and S1

2 and S2
2
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Table 2
Statistic (t) and p-value (p) of a t-test with sample effect size d=0.1 as a function of
sample size (N). The strong dependence of t and p on N indicates that both parameters
are unsuitable as dissimilarity measures for MDS analysis.

N 10 100 1000 10,000
t 1=

ffiffiffiffiffiffi
10

p
1

ffiffiffiffiffiffi
10

p
100

p 0.41 0.24 0.013 8×10−13
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the sample variances. We can test the null hypothesis “Ho: μ1=μ2”
with the t-test, using the t-statistic:

t ¼ X1−X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22
� �

=N
q ðA−3Þ

where the denominator is the standard error of the difference
between the two means. The sample effect size of the t-test is given by:

d ¼ X1−X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22
� �

=2
q ðA−4Þ

where the denominator is the ‘pooled standard deviation’ of the two sam-
ples. By definition, d=0 under the null hypothesis. Let us now consider
the situation where d≠0. Suppose that μ1=100.1 Ma, μ2=100.0 Ma,
and σ=1 Ma so that the population effect size is 0.1. Suppose for the
sake of simplicity that these population characteristics are reflected in
the sample so that d=0.1. Table 2 shows some key values of the
t-statistic and corresponding p-values for different sample sizes. Not sur-
prisingly, a sample size of N=10 is insufficient to resolve the 0.1 Ma ‘off-
set’ between the two peaks. In this case, the p-value is 0.41, which is
greater than the cutoff value of α=0.05, leading us to erroneously accept
the false null hypothesis. This means that we have committed a ‘Type-II
error’. It is only when sample size increases to N=1000 that the t-test
has sufficient ‘power’ to reject the null hypothesis (0.013bα). In conclu-
sion, both the statistic and the p-value of the t-test are sensitive functions
of sample size. Both are therefore unsuitable as measures of dissimilarity
in an MDS analysis.

These same arguments are valid for other statistical tests such as
Chi-square and Kolmogorov–Smirnov, with the caveat that the effect
size of the KS-test is given by the KS-statistic itself (Eq. (6)). Never-
theless, the p-value of the KS-test is still a function of sample size
and is therefore still useless as a dissimilarity measure.

Appendix C. Multidimensional scaling with R

This section presents a simple example of computer code for MDS
analysis with the open source statistical programming language R.
The example input file DZages.Rdata containing the data shown in
Fig. 1 can be downloaded from http://mudisc.london-geochron.com.
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