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More often than not, (U–Th–Sm)/He ages are overdispersed with respect to the formal analytical
uncertainty. The Mean Square of the Weighted Deviates (MSWD) is a useful tool for assessing the amount
of overdispersion. If the MSWD is significantly greater than one, the ages can be parameterised by a (log)
normal distribution with two sources of variance, which can be iteratively solved using the method of
maximum likelihood. The overdispersion of replicate (U–Th–Sm)/He ages is caused by the overdispersion of
the underlying U–Th–Sm–He compositions, the geometric mean of which gives rise to the so-called ‘central
age’. These compositions can be normalised to unity and parameterised by a multivariate logistic normal
distribution with two sources of variance, which can be iteratively solved by a multivariate generalisation of
the aforementioned age-averaging algorithm. Exact and asymmetric confidence intervals for the central age
are obtained using a deterministic Bayesian algorithm. HelioPlot is a Java application developed for the
purpose of plotting U–Th–(Sm)–He data on ternary diagrams and logratio plots that implements all these
calculations. The program can be downloaded from http://pvermees.andropov.org/helioplot.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Measuring several single grain U–Th–(Sm)–He aliquots per
sample is not only possible, thanks to the development of laser
heating (House et al., 2000), but also desirable, because U–Th–(Sm)–
He data are generally overdispersed with respect to the formal
analytical uncertainty and this overdispersion can only be quantified
by analysing a representative number of mineral grains. The question
that then arises is how to average these measurements. Traditionally,
this is done by simply averaging the single grain age estimates, an ad
hoc solution that lacks a proper theoretical justification and does not
make full use of the data. Potentially valuable information is lost when
the chemical composition of samples is ignored, and compositional
controls on thermochronological models may go unnoticed. The most
natural way to study U–Th–(Sm)–He data is as a geochemical
composition on a ternary diagram or in logratio space (Vermeesch,
2008).

HelioPlot is a data visualisation tool that plots U–Th–(Sm)–He data
on ternary diagrams and logratio plots. The program also calculates
the so-called ‘central age’, which is the age corresponding to the
geometric mean U–Th–(Sm)–He composition. To this end, it applies a
weighted mean algorithm taking into account both the analytical
uncertainty and any possible overdispersion simultaneously, in
contrast with Vermeesch (2008)'s web calculator, which propagated
them separately. U–Th–(Sm)–He data are often overdispersed with
respect to the analytical uncertainty, for reasons that have been
discussed elsewhere (Fitzgerald et al., 2006; Shuster et al., 2006). The
amount of overdispersion can be quantified using the Mean Square of
theWeighted Deviates (McIntyre et al., 1966). Given a dataset of n age
measurements, or the logarithms thereof (ti, for 1≤ i≤n), the MSWD
is a measure of the ratio of the observed scatter of the data points (ti)
around the mean value (t–) to the expected scatter from the assigned
errors (σi):

MSWD =
1

n−1
∑
n

i=1

ðti−–tÞ2
σ2
i

: ð1Þ

If the assigned errors are the only cause of scatter, the MSWD will
tend to be near unity. MSWD values much less than unity indicate
either overestimated analytical errors or unrecognized error-correla-
tions. MSWD values much greater than unity generally indicate either
underestimated analytical errors, or the presence of non-analytical
scatter. HelioPlot implements methods to deal with the latter
situation.

Although there is no formally agreed convention for calculating
the average of multiple (U–Th)/He ages, this is either done by
computing the unweighted arithmetic mean, ignoring the analytical
precision, or by calculating the error-weighted mean, ignoring
overdispersion. Section 2 introduces a one-dimensional weighted
mean algorithm that deals with analytical precision and overdisper-
sion simultaneously, using the method of maximum likelihood.
Section 3 generalises this method to compositional data space, so as
to calculate the best estimate for the central age, taking into account
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both the internal and external reproducibilities of the data, as well as
their full covariance structure. ‘Conventional’ propagation of uncer-
tainty for the central age, as implemented by Vermeesch (2008),
involves linearisation by a first-order Maclaurin series expansion,
which may be inaccurate. Section 4 proposes a deterministic
algorithm to avoid this problem, yielding exact confidence intervals
for the central age. Finally, Section 5 provides further details about
HelioPlot and illustrates its usefulness with a number of real world
examples.

2. Overdispersed ages

Assume that the ages (or the logarithm of the ages) come from a
normal distribution of the form

ti∼Nðμ ;σ2
i + ξ2Þ ð2Þ

where μ denotes the mean and ξ2 is the amount of overdispersion, i.e.
the excess scatter that cannot be explained by the analytical uncertainty
alone. Unbiased estimates μ̂ and ξ̂2 for these two parameters can be
obtained by maximising the likelihood l:

l≡ ∏
n

i=1

exp − ðti− μ̂Þ2

2ðσ2
i +ξ̂2Þ

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2

i +ξ̂
2Þ

q ð3Þ

or, more conveniently, the log-likelihood L ≡ log(l):

L = −1
2
∑
n

i=1

ðti− μ̂Þ2

σ2
i +ξ̂2

+ lnðσ2
i +ξ̂

2Þ + lnð2πÞ
" #

: ð4Þ

Calculating the derivatives of Lwith respect to μ̂ and ξ̂2 and setting
them to zero to find the maximum likelihood:

∂L
∂μ̂

= ∑
n

i=1

ti−μ̂

σ2
i + ξ̂2

= 0 ð5Þ
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ðσ2
i + ξ̂2Þ2

− 1

σ2
i + ξ̂2

" #
= 0 ð6Þ

which can be solved iteratively for μ̂ and ξ̂2. The variance σμ̂
2 of the

weighted mean μ̂ is given by the inverse of the Fisher Information, i.e.
the negative expected value of the second derivative of the log-
likelihood function with respect to μ:̂

σ̂2
μ =

1

∑n
i = 11 = ðσ2

i + ξ̂2Þ
: ð7Þ

3. Overdispersed compositions

U, Th and He form a ternary system, can be plotted on a ternary
diagram, and are subject to the peculiarmathematics of the ternary data
space. The ‘central age’ is calculated from the geometric mean
composition of a U–Th–He dataset and is a more accurate estimator of
the true age than the arithmetic mean (Vermeesch, 2008). This concept
can be easily generalised to four dimensions and this section will,
therefore, discuss the case of (U–Th–Sm)/Hedating. Givenn single grain
measurements [Ui, Thi, Smi, Hei] (1≤ i≤n), the calculation of a central
age involves a bijection from the four-dimensional ‘simplex’ to a three-
dimensional Euclidean logratio-space (Aitchison, 1986; Vermeesch,
2008):

vi = ln
½U i�
½He i�

 !
;wi = ln

½Thi�
½Hei�

 !
; xi = ln

½Smi�
½He i�

 !
: ð8Þ

The central age is obtained by calculating the average logratio
composition (ν̅, w ̅, x ̅) and converting it to a geometric mean
composition using the inverse logratio transformation:

P
U = e
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e
Pv + e
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Px + 1
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P
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+ 1
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:
ð9Þ

This result is then plugged into the U–Th–(Sm)–He age equation.
The problem of averaging the compositions is very similar to the

problem of averaging the ages discussed in the previous section. Given
n logratio measurements Xi and their (co)variances Ei (1≤ i≤n):

Xi≡
vi

wi

xi

2
4

3
5and Ei≡
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Our aim is to develop an algorithm to calculate the weightedmean
M and its covariance matrix Σ:

M≡
v
w
x

2
4
3
5and Σ ≡

σv
2 covv;w covv;x

covv;w σw
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covv;x covw;x σx
2

2
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3
7775: ð11Þ

In principle, the logratio covariances (Ei) could be directly
determined from the raw mass spectrometer measurements. In
practice, however, they are calculated from the individual concentra-
tions by linear approximation, using Eq. (21) of Vermeesch (2008),
which assumes that the errors on the individual concentrations are
Normal and independently distributed. Rather than propagating the
internal and external uncertainties separately, as done by Vermeesch
(2008), this section introduces a weighted mean algorithm that
considers both factors simultaneously, using a multivariate general-
isation of the one-dimensional maximum likelihood algorithm
developed in Section 2. First, redefine the MSWD in matrix form:

MSWD =
1
df

∑
n

i=1
ðXi−MÞ′½Ei�−1ðXi−MÞ ð12Þ

where df=d×(n−1) is the number of degrees of freedom of the
problem, with d=2 for (U–Th)/He and d=3 for (U–Th–Sm)/He
dating. Note that, because the variability of Sm does not contribute as
much to the age dispersion as that of U and Th, it is better to use only
the latter two elements for the MSWD calculation. If MSWD≫1, the
data are overdispersed and, in analogy with Eq. (2), we will assume
that the observations come from a multivariate normal distribution of
the form

Xi∼NðM; Ei + ΞÞ ð13Þ

where M denotes the mean and Ξ is the overdispersion. The log-
likelihood of the estimates M̂ and Ξ̂ is given by:

L = −1
2
∑
n

i=1
ððXi− M̂Þ′½Ei + Ξ̂ �−1ðXi−M̂Þ + ln jEi + Ξ̂ j +3 lnð2πÞÞ:

ð14Þ
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M̂ and Ξ̂ can be found by solving the following system of non-
linear equations:

∂L
∂M̂

= ∑
n

i=1
½ðEi + Ξ̂Þ−1ðXi−M̂Þ� = 0 ð15Þ

∂L
∂Ξ̂
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n

i=1
½ðEi + Ξ̂Þ−1ðXi−M̂ÞðXi−M̂Þ′ðEi + Ξ̂Þ−1−ðEi + Ξ̂Þ−1� = 0

ð16Þ

The covariance matrix Σ̂ of the weighted mean M̂ is obtained by
inverting the Fisher Information matrix, i.e. the matrix of the negative
expected values of the second derivatives of the log-likelihood
function:

Σ̂ = ½ ∑n
i=1

ðEi + Ξ̂Þ−1�−1

: ð17Þ

4. Confidence intervals

Using the covariance matrix of the logratio average (Σ̂), and
performing a linear error propagation, it is straightforward to
calculate the covariance matrix of the geometric mean composition
(Γ̂), evaluated at M̂:

Γ̂ = A′ Σ̂ A ð18Þ

where A is the matrix of first derivatives of Eq. (9):
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Eq. (18) contains an expression for the covariances of the
geometric mean composition, which were omitted by Vermeesch
(2008) but are required for a full propagation of age uncertainty.
Fig. 1. (a) the deterministic Bayesian algorithm collects a large number of ages across a r
likelihood of the data (ellipse); (b) 95% confidence intervals are then simply calculated by
However, even the complete error propagation may be inaccurate
because it is based on a first order Maclaurin series expansion of
Eq. (9), which is highly non-linear. This problem can be circumvented
using numerical techniques, such as the following deterministic
algorithm. First, build a regular grid across the two (for U-Th-He) or
three (for U–Th–Sm–He) dimensions of logratio space (Fig. 1a).
Second, for each of these grid points, calculate (a) its likelihood under
a normal distribution with mean M̂ and covariance matrix Σ̂ , and (b)
the corresponding age. Third, calculate the Bayesian cumulative
posterior distribution by ranking the numerical data in order of
increasing age and computing the running sum of the likelihoods.
Fourth, obtain an asymmetrical 95% confidence interval from the 2.5
and 97.5 percentiles of the posterior distribution (Fig. 1b).
5. Applications

HelioPlot is a computer program for visualising U–Th–(Sm)–He
data on ternary diagrams and logratio plots that implements all the
above calculations, including the computation of central ages and 95%
confidence intervals. Eqs. (6) and (16) are solved using Newton's
method. HelioPlot was written in Java and is, therefore, perfectly
platform independent. The program and its source code can be
downloaded free of charge from http://pvermees.andropov.org/
helioplot. Data can be copied and pasted to-and-from Microsoft
Excel, or entered directly using the built-in editing tools. Data files are
saved in a comma-separated-variable (.csv) format. Samarium is an
optional input parameter and the complete functionality of the
program is still available when Sm is missing. If Sm is absent, it will be
assumed to be zero, and the data naturally reduce to their two
dimensions in compositional data space. If Sm is present, the
geometric mean Sm composition is used as a common reference for
the ternary diagrams and logratio plots. Colour is used to visualise the
Sm content of aliquots, or any other numerical quantity, such as
sample number (Fig. 2a), grain size (Fig. 2b), elevation, or, for the case
of double-dated grains, a U–Pb or fission track age (Campbell et al.,
2005). HelioPlot is capable of saving the graphical output as either
bitmap or vector images, in a .png or .pdf format, respectively.

Example input files are provided on the website for testing
purposes. Fig. 2b shows the output for one of these files, based on a
published (U–Th)/He dataset (Vermeesch et al., 2007), which was α-
egular grid in logratio space (crosses), and records the corresponding logistic normal
looking up the 2.5 and 97.5 percentiles of the resulting ‘posterior distribution’.
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Fig. 2. Two diagrams produced byHelioPlot. (a) Ternary diagramwith two synthetic U–Th–He samples (U⁎ = U−0:0611
0:362

, Th⁎ = Th−0:574
0:362

,He⁎ = He−0:0041
0:362

). (b) Logratio plot of U–Th–He

data from Naxos (Vermeesch et al., 2007), colour-coded according to grain size. The geometric mean composition is shown as a white ellipse.
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ejection corrected according to the guidelines of Ketcham (2009). The
output includes the arithmetic and geometric mean ages and their
standard errors, calculated using the methods of Section 2, in addition
to the central age, its standard error and 95% confidence interval,
calculated according to the algorithm of Section 3. Three separate
MSWDs are given, reflecting the overdispersion of the ages and the U-
Th-He compositions.

6. Conclusions

The aim of this paper was to bring the statistical treatment of U–
Th–(Sm)–He data on an equal footing with more established
geochronometers such as U-Pb, 40Ar/39Ar, or fission tracks. Weighted
least squares algorithms similar to the maximum likelihood methods
of Sections 2 and 3 have been used in U–Pb (Ludwig, 1998) and fission
track dating (Galbraith & Green, 1990). Visual aids such as the U–Pb
concordia diagram, the Rb–Sr isochron, or the fission track radial plot
can be very useful for the exploratory analysis of geochronological
data. The ternary diagram and logratio plot play the same role for
helium thermochronology, as they bring out the full information
content of U–Th–(Sm)–He data, and can help to reveal patterns
between aliquots and samples that may not be seen otherwise.
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