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In the reply of Vermeesch and Tian (2018, hereafter referred to as
VT2) to our comment Gallagher and Ketcham (2018; hereafter referred
to as GK), they graciously open by expressing appreciation for some of
our contributions to thermochronology. We were disappointed, how-
ever, that their reply does not acknowledge the clarifications and cor-
rections we presented, nor does it address our more direct criticisms of
the errors and misconceptions in their original article. Instead, the reply
consolidates the mistakes of the original, cites selectively and provides
harmful or contradictory recommendations. We thus see a need for
another brief round of clarification. The organisation of our second
comment follows the structure of VT2. We refer to the original paper of
Vermeesch and Tian (2014) as VT1.

1. VT2 introduction

The statement that GK essentially rephrased the main points of VT1
is false and dismissive. It misconstrues our efforts to show where we
agree, and misses the fact that many points made by VT1 without ci-
tation have been made previously (e.g. Ketcham, 2005, p 309–311).

The next comment concerns assessment of model fits in HeFTy and
QTQt. First, in their point (a) they restate that HeFTy struggles to fit
large data sets, but GK demonstrated this is not the case, if a rational
and informed approach is taken to dealing with the data.

Their point (b) states that QTQt requires comparison of the model
predictions with the observed data. Assessment of any model result
should include this, and such assessments can be made statistically and
graphically. Nonetheless, VT1 failed to do just that in when assessing
the results of fitting an inappropriate order polynomial and thermal
history models inferred from inconsistent thermochronology data. In
both cases, nothing sophisticated is required to decide that the pre-
dictions do not agree with the data. Furthermore, VT2 cites Gallagher
(2016) to support their point (a), but the latter does not mention model
results from HeFTy. In fact, Gallagher (2016) cited the polynomial
example of VT2 as the example of bad practice when not considering
the quality of the data fit.

Having been regularly used in presentations by KG for perhaps
10 years, the quote from George Box was not repeated, but cited in a
more complete form appropriate to the issue in hand, given we are
interested in assessing how useful inversion generated models are.

2. VT2 HeFTy

The primary reason HeFTy sometimes “struggles” is not due to its
statistics, but simply that it uses a non-learning Monte Carlo algorithm.
If HeFTy utilized a search algorithm, such as Markov Chain Monte Carlo
as in QTQt, or Constrained Random Search (Willett, 1997) as in HeFTy's
predecessor AFTSolve (Ketcham et al., 2000), it would find solutions
more quickly, but at a cost. The design choice to remove the latter
functionality when creating HeFTy stemmed from RAK's observation
that it tended to collapse into the best-fitting paths while insufficiently
exploring the range of other solutions consistent with the data, leading
to an improperly rosy picture of the data's resolving power.

GK demonstrated how using HeFTy sensibly with minimal con-
straints could find thermal histories consistent with even their full-sized
data set in fairly short order (as described in the text, ignored in the VT2
response), and how cautious (and far from “complicated”) optimization
can improve run times. GK also provided advice on how constraints
should be defined purposefully, rather than arbitrarily.

VT2's critique of the “tiny” constraint boxes as non-geological re-
flects another misunderstanding. The simple model embodies the rea-
sonable assumption that the apatite grains were, at some time prior to
their measured ages, above their closure temperatures, and then fol-
lowed some path to the present day. The fact that there is some time
after the initial constraint where the thermal history is not constrained
by the data is properly represented by wide confidence intervals,
making the precise size and positioning of that box unimportant so long
as it is not absurd.

We strongly disagree with VT2's claim that their approach to
creating constraints is “sensible”; we cannot identify any sense in in-
tentionally arbitrary program input, and GK demonstrated its
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shortcomings. Among our motivations for this second comment is to
reinforce our warning to readers against using this approach.

VT2 conclude this section criticising HeFTy's “so-called” algorithms
as not being used elsewhere in capital-S “Science”, and thus lacking
“bona fide” credentials. Both Monte Carlo algorithms and frequentist
use of p-values to define confidence intervals are widespread, error bars
being an obvious example of the latter. HeFTy's approach is a variant on
and descendant of methods described by Willett (1997). The use of
goodness of fit metrics for selecting acceptable models and contouring
results is another design choice, in this case based on the opinion that,
when one cannot find a model that fits the data to within uncertainties,
the appropriate thing to do is revisit one's data and assumptions. A
specific intention of HeFTy's design is to nudge users toward measuring
and including information that is still frequently omitted from apatite
fission-track analyses, such as kinetic indicators and length calibrations.
As demonstrated in GK, HeFTy's approach also provides intuitive
feedback on the benefits of increasing sample sizes.

3. VT2 QTQt

In contrast to VT2, we suggest that fitting the data is not missing the
point. It is surely a desirable objective of an inverse modelling ap-
proach. The tightly constrained solutions shown in VT1 do not fit the
data, neither for the appropriate polynomial solution, nor for thermal
histories using inconsistent data. Therefore these are not appropriate
solutions but VT2 gloss over this aspect as if irrelevant. We return to the
issue of fitting data below.

The typographical error in Ketcham et al. (2007) in the formula for
the projected lengths has an insignificant effect on the projected length
distributions for the data from fig. 8 in VT1 (Fig. 1a,b). So it is far from
obvious that this is a good example of QTQt finding tightly constrained
solutions for an inappropriate model with a bug that remained “un-
detected for 5 years”.1 Any effect is most significant for short lengths at
high angles to the c-axis. While short tracks are important for the in-
ference of thermal histories, they are relatively rare. The distributions
of thermal histories (Fig. 1c,d) inferred with the data in Fig. 1 differ
considerably more for the data sets with different numbers of track
lengths than different projection calculations. So let us ignore all the
natural uncertainties associated with real fission track data and an-
nealing models (e.g. Ketcham et al., 2009, 2015), and perhaps our
colleagues could provide a real data example where this difference in
calculating 100 or more projected lengths is actually important rather
than merely making an unsupported statement that it is.

The second point concerning problems with marginal distributions
is similarly unjustified and misleading. VT2 state “a tremendous amount
of information is lost”, without specifying what the tremendous amount
of information actually is. We can guess perhaps it concerns the true
thermal history. In fact the relevant information (which is not lost) is
that contained in the data concerning the ability to recover the true
thermal history. In this case, the ability of the data to provide precise
details of multiple reheating-cooling episodes is limited. The algorithms
implemented in QTQt try to exploit information in the data to infer the
thermal history. In particular this information is used to assess simpler
thermal histories relative to complex ones. The sampling adopted in the
version of QTQt used in VT2 will explicitly prefer the simpler model
over a more complex one if they both fit the data to more or less the
same degree.

The apparent lack of resolution of a true model can also be ex-
plained in the context of fitting a polynomial y= ƒ(x), relevant to the
examples in Figs. 2–6 from VT1. If the coefficients of the higher order
terms are small enough, they have minimal influence on the predicted
values, depending on the range of the variable x where predictions are
sought. In that case, we would prefer polynomials of lower order than

the true solution, but we would still fit the observed data.
The results of modelling synthetic data are poorly presented in VT2

and have been edited relative to the default output of QTQt, but we
return to that below. However, if we assume the predicted length dis-
tributions are for the two thermal histories in Fig. 1 of VT2, then it is
difficult to be convinced that the predictions are significantly different
in terms of their agreement with the input distribution. Although these
data were generated with the specified thermal history, there is not
enough information even in these near perfect data to recover the true
thermal history with high probability, i.e. it is not well resolved. Fig. 14
of Green and Duddy (2012), cited in the conclusions of VT2, clearly
demonstrates this behaviour with a set of forward models of varying
complexity, stating explicitly:

“The fission-track parameters resulting from these histories are indis-
tinguishable, despite the time of cooling below 110° C varying from 250
Ma to 1000 Ma, and for histories ranging from progressive cooling to
various more complex heating and cooling histories”.

This is not referred in the context of Fig. 1 in VT2. Additionally, VT2
does not comment on the quality of the data fit, despite citing Gallagher
(2016) in the introduction.

When data can be satisfied with a simple model, it is surely im-
portant and desirable to know this. While more complex models will be
also consistent with the data, additional complexity needs to be justi-
fied independently. For example, Gallagher (2012), Fig. 2) provides an
example of the effect of trying to fit data as well as possible. This leads
to complex structure in the inferred thermal history that is not in the
true solution at all. For these reasons, the sampling algorithms in the
version of QTQt used in VT2 are such that more complex models that do
not improve the data fit are not overly sampled.

Relative to the default format of QTQt, the output represented in
Fig. 1 of VT2 has been edited. In particular, the credible intervals, the
expected and maximum posterior models having been removed, redu-
cing our ability to assess the results. To reassess this result, we gener-
ated synthetic data (20 single grain ages, and 100 projected track
lengths) with QTQt using the thermal history in VT2, and used these
data with uniform proposal functions in QTQt 5.6.0 (the version cur-
rently available on the SourceSup website dating from January 2017).
A summary of the relevant results are shown in Fig. 2. We can see the
maximum posterior model is similar to the simpler model in VT22 and
predicts the length distribution and age pretty much as well as the
maximum likelihood model. The predicted mean length and the length
distribution for the expected model replicate the observed data well,
although the predicted age is a little older that we might be happy with,
given the error for the synthetic data central age is 3.85m.y. The ex-
pected model implies changes in the rate of cooling at the 2 times of
maximum temperature for the two reheating events specified by VT2,
demonstrating there is some information on these events in the ac-
cepted model distribution. Similarly, the credible intervals, not in-
cluded in Fig. 1 of VT2, show the thermal history is relatively better
constrained at those times.

The thermal histories described above can be explained by con-
sidering a subset of the sampled thermal histories, an option available
in version 5.6.0 of QTQt. These are shown in Fig. 1c and d, the thermal
histories being colour coded relative to the maximum likelihood and
maximum posterior probability values. Fig. 1c highlights there are
many two event reheating-cooling models that give slightly higher
likelihoods (better fits to the data). The range in timing of these events
captures those in the true model, but the time of maximum temperature

1 In fact it would be more like 9 years at the time of writing.

2 VT refer to one thermal history as the expected model but it seems to be the
maximum mode model. The expected model should always be relatively
smooth and should not lie along the peaks of the marginal distribution when
this is asymmetrical at any given time, as is generally the case in their Fig. 1.
The peaks of the marginal distribution define the maximum mode distribution.
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for the younger event being less well resolved that the earlier event.
Also, we can see that the rate of cooling-reheating prior to the second
event is quite variable, and not really constrained at all as fission track
data are not sensitive to the magnitude of cooling if a reheating event
occurs subsequently. This is also clearly demonstrated in fig. 13 of
Green and Duddy (2012).

Now consider Fig. 1d, in which the same group of models as 1c is
used, but now colour coded in terms of posterior probability, relative to
the maximum value equated to 100%. In the Bayesian approach im-
plemented in QTQt, acceptance of proposed thermal histories is
strongly based around the posterior probability, which can be thought
of as a combination of the data fit and the model complexity. We see
these higher posterior probability models fall into a relatively well
defined band similar to non-blue parts of the marginal distribution, and
which contain the maximum posterior and maximum mode model in
Fig. 1a. Relative to Fig. 1c, many models with high likelihoods translate
to lower relative posterior probability as a result of their complexity
and so lower prior probability. This behaviour is briefly explained in
the appendix.

In the final lines concerning QTQt, there are statements in VT2
concerning the marginal distributions that give “false confidence in this
over-simplified thermal history”, reflecting “the tight clustering of the simple
models which graphically dominate the more accurate but less precise
models”. Here more accurate is being taken to mean closer to the true

solution (which we never know in practice), and less precise pre-
sumably meaning more scattered, less well resolved or with greater
uncertainty. As mentioned above, if simpler models can explain the
data adequately they are preferred. Any graphical dominance then
comes from the fact that proportionally more simple models are re-
presented in the final distribution. This distribution will be more re-
stricted than that containing all models, irrespectively of their com-
plexity, that can fit the data. It is worth emphasising again that the
credible intervals reflect the preference for simpler models that can fit
the data adequately, rather than the sampling of all possible (including
very complex) models that could fit the data similarly. In this sense,
confidence may be false if we forget that the credible intervals are
conditional on preferring simpler models.

As we never know the true solution in practice, the motivation for
preferring simpler models to more complex ones, provided both can
explain the data, is that we have a lower bound on the complexity of the
thermal history. In the example of VT2, this could also be expressed as:
the “true thermal history” is not ruled out, but the potential for re-
covering it is low as there is relatively little information in the data
about the details. Other sampling algorithms, such as the Metropolis
algorithm which uses just the likelihood ratio to accept or reject
models, will always accept more complex models if they fit the data
equally or better than a simpler model. The distribution of accepted
models in this case will generally be broader than that in Fig. 1, but will

MTL = 13.41MTL = 13.41
MTL = 13.43 (true)MTL = 13.43 (true)

N = 821
MTL = 13.38MTL = 13.38
MTL = 13.38 (true)MTL = 13.38 (true)

N = 100

(a) (b)

(c) (d)

Fig. 1. (a) Projected length distributions using the 821 track length data set from fig. 8 in VT1. The red histograms are produced using the erroneous projection
equation while the blue histograms represent the correct equation.
(b) As (a) but using the 100 track length data set in VT1.
(c) The expected thermal histories using the two sets of projected track length data from (a), and the count data from VT1 (corrected for the typographical error
mentioned in GK). The same colour coding as (a) applies. For clarity we show only the 95% credible bounds for the blue curve. Note the thermal histories starting in
the partial annealing zone (approximately defined by the two horizontal lines) implies rapid cooling from above total annealing temperatures just before the start of
the thermal history as illustrated.
(d) As (c) but for the data in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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contain many models with structure unconstrained by the data. The
question then is how to choose a preferred thermal history and which
parts of it are actually constrained by the observations.

When using QTQt, the four individual thermal history models
shown in Fig. 2a, together with the credible intervals and the marginal
distributions, allows a user explicitly to assess the consistency of the
results. Here we note that only the maximum likelihood and maximum
posterior models are sampled as part of the inversion process. The ex-
pected and maximum mode models are constructed from the popula-
tion of accepted models.

When the 4 models are similar and the data are adequately

predicted, then we can assume that we have solutions that are coherent
and well constrained (but always subject to all the uncertainties in the
predictive models for annealing and diffusion, and in the data them-
selves). When these individual models are different, then the results
need to examined more closely. In some cases, such as Fig. 1 of VT2 and
Fig. 2 here, we see there are effectively two groups of solutions. Typi-
cally, these are represented by the general form of the maximum like-
lihood (with multiple reheating events) and a group of simpler solu-
tions, often represented by the form of the simpler maximum posterior
model. The two groups of models can generally predict the data more or
less equally well. However, depending on the relative proportions of

Fig. 2. (a) Output from QTQt showing the maximum likelihood (ML), maximum posterior (MP), maximum mode (MM) and expected (Exp) models, together with the
95% credible interval (the region between thinner black lines) and the marginal posterior distribution. The maximum likelihood solution is that which has the highest
likelihood, equivalent to the thermal history that best fits the data. The maximum posterior solution is the thermal history that has the maximum posterior
probability, and is sometimes considered the best model in the Bayesian sense. The posterior probability combines the likelihoods and prior probabilities for each
model, attempting to balance fitting the data with model complexity. The maximum mode solution is constructed at 1 m.y. intervals by running along the peak of the
marginal distribution, while the expected model is the average of the marginal distribution. Consequently, these two do not represent individual thermal histories
sampled during the inversion process, but summaries of the posterior distribution.
We also show the values of the observed fission track age and mean track length and their predictions for each of the 4 individual models. SP represents sampled
predicted, which summarises the mean and standard deviation of the predicted ages and mean track lengths for all accepted models (from a total of 100,000 post-
burn-in iterations, after 200,000 burn-in). LL is the log likelihood for each of the 2 models.
(b) The predicted length distributions for the 4 models described for Fig. 1a, while the 2 grey lines define are the 95% credible interval on the predicted distributions
for 100,000 models.
(c) Representative thermal histories from the posterior distribution, colour coded by the relative likelihood, calibrated against the maximum likelihood with a value
of 100%. The black line is the expected thermal history model with the 95% credible interval defined by the two grey lines. The higher likelihood heating-cooling
thermal histories are relatively complex and the timings of reheating events are dispersed, as are the pre-reheating temperatures. Simpler models similar to the
maximum posterior model in 1a, also have relatively high likelihoods. Most of the accepted models fall into one of these two groups, effectively defining two local
maxima in the likelihood.
(d) Representative thermal histories from the posterior distribution, colour coded by the relative posterior, calibrated against the maximum posterior probability with
a value of 100%. The black line is the expected thermal history model with the 95% credible interval defined by the two grey lines. In comparison with Fig. 1c, we see
the simpler models define the higher posterior probability, while the complex models have moderate to low posterior probability. This reflects limited information in
the data on the form of the true thermal history.
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these two groups in the overall population, the expected model, being
the average of all accepted models, can fall between the two groups.
Similarly, the maximum mode model, representing the peak of the
marginal distributions at typically 1m.y. intervals, can oscillate be-
tween the two groups. In such cases, the predictions for the expected
and mode models can be relatively poor, as they do not represent either
group well.

Overall, it is recommended to show at least the 4 individual solu-
tions described above, together with the credible intervals and the
marginal posterior, to give the most complete summary of the solutions.
In general cases, it may be that we are happy to recognise there are
multiple groups of possible solutions. In this case, independent in-
formation can help in the choice of model. It is up to the user to choose
a particular solution, if so desired, but this choice should be justified in
the geological context.

Finally, it is not clear quite what is implied by the phrase “inherited
from Sambridge et al. (2006)”. Firstly, Sambridge et al. (2006) show
distributions of the predictions for different dimensional polynomial
models (known as posterior predictive densities), rather than marginal
distributions on the actual model parameters. These are very different
things. However, in an earlier paper, Stephenson et al. (2006) do show
marginal distributions on model parameters in 2D (their Figs. 1 and 4).
Moreover, similar approaches had been used in geophysics for some
time (Malinverno and Briggs, 2004; Mosegaard and Tarantola, 1995,
2002). The approach of extracting marginal density distributions is
general, having well established analytical solutions (e.g. Lee, 1989, as
used in fig. 6 of GK). The sampling approach to estimate marginal
distributions in 1-D goes back to at least Gelfand and Smith (1990) and
the 2-D case follows from this.

4. VT2 conclusions

We agree it is important to examine (visually and statistically) the
data before any modelling exercise is undertaken. However, this is
followed by a statement that contradicts what is implied in the section
on QTQt. Arriving at the conclusions, one paragraph later, it now seems
that a typical thermochronological data set3 “does not contain enough
information to reliably constrain all but the simplest thermal histories”. Yet,
just one paragraph earlier, recovering these simple thermal histories
was deemed to be misleading and imparting false confidence.

VT2 continues with a statement that QTQt supports only crude V
shaped thermal histories, yet the earlier section criticises QTQt for
producing linear cooling histories. Hopefully, any modelling approach
will produce thermal histories that are consistent with the observed
data, but will always be conditional on the model assumptions. These
may be variably complex, but if the data are consistent with a simple V-
shaped or linear thermal history, this is what we would hope to obtain
with QTQt. As mentioned previously, this may not be as complex as the
true thermal history, but if the data do not justify more complexity,
what would we expect?

It is not clear to us why thermal history modelling with more data is
“hampered by the non-uniqueness of forward models”, presumably
meaning different thermal histories can predict much the same thing. In
fact, more data may well increase the possibility of recovering a more
complex thermal history, but this will depend on how much in-
dependent information is provided by additional data. A corollary of
this is that inconsistent data may lead to simple thermal histories but
poor data fits, as increasing complexity can not resolve the incon-
sistency. For example, data from multiple samples and/or multiple
thermochronometers may lead to conflicting interpretations depending
on how the data are dealt with. Again looking at how well the data are
predicted by resulting thermal history models can help identify if such
problems exist.

Finally, VT2 states that estimating unconstrained thermal histories
may not always be the right question. We were surprised to read this,
given that VT1 explicitly proposes that constraints should not be used
with QTQt (section 5 VT1, “we would urge the user to refrain from using
this facility”). According to VT1, the rationale for not using constraints is
that QTQt cannot be used to disprove geological constraints. If the
constraints do not allow thermal histories that can explain the data then
surely that should be enough proof the constraints are not valid (or
there is a problem with the data or predictive models for annealing or
diffusion). However, if the constraints do not contradict the observed
data, then all we know is that the data are consistent with the con-
straints, but not that they prove them. Assuming here that un-
constrained means adopting a general prior in QTQt and using no ad-
ditional (geologically based) constraints, asking for the form of such
unconstrained thermal histories is just one question that should be
asked. As explained above, QTQt should provide thermal histories with
simple structure and any additional complexity needs to be justified. If
reliable geological constraints are available, they should be in-
corporated, and perhaps even less reliable constraints can be in-
corporated. In both cases, however, the significance of their in-
corporation or not should be explored as part of the modelling process.
This is perhaps best achieved by a combination of inverse model results
and forward modelling (e.g. Ketcham, 2005; Cogné et al., 2012), in-
corporating appropriate geological information. Irrespective of the
modelling approach and assumptions, the results should always be as-
sessed. As in the case with data, this may be addressed both statistically
and by visual inspection.

5. Conclusion

We agree that there are differences between the algorithms and
outputs of HeFTy and QTQt, and that the thermochronological com-
munity may benefit from a well-constructed independent comparison
and assessment. In our opinion, VT1 and VT2 fall short of that. However
these contributions do serve to reinforce the fact that modelling soft-
ware should not be treated as a black box and the results should not be
blindly accepted at face value.

Appendix

Why simpler models are preferred over more complex ones in transdimensional Bayesian Markov chain Monte Carlo
As shown in Fig. 1 of Sambridge et al. (2006), which is actually inherited (from MacKay, 2003), more complex models have the potential to make

a wider range of predictions relative to a simpler model. That is the potential posterior predictive data distribution is wider and so flatter, or lower
amplitude (as probability distributions must integrate to 1 by definition). Then, if we consider a complex model and a simple model that both explain
the observed data to the same degree, the posterior probability on the more complex model is lower than the simpler one in the region around the
actual observed data. This means that, given similar likelihoods or data fits, simpler models will be naturally preferred over more complex ones.

Another way to consider this is that in Bayes' theorem, the posterior probability is proportional to product of the prior and the likelihood. If we
consider uniform independent priors on time and temperature, given as

3 Actually more of just a typical apatite fission track data set.
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where Δn≥ 1 is the difference in number of time temperature points between the complex and the simpler models. If we take Δt=300Ma, and
ΔT=140 °C, then the value of the prior for 1 time-temperature point is 2.4× 10−5. Therefore to be sure of accepting a model with an extra time-
temperature point (Δn=1), the likelihood needs to increase by at least this much, relative to the simpler model. Note that the calculations are
generally made in using the logarithm of all the terms above, so this corresponds to an increase in log likelihood of about 10.65. Alternatively, if the
likelihoods of the two models are equal, this implies a probability of accepting the complex model over the simple one of 2.4× 10−5, i.e. rarely.

In practice, there are additional terms, such as the proposal functions, that are considered for the acceptance criterion in the transdimensional
Markov chain Monte Carlo algorithm implemented in QTQt. These modify the probability of accepting more complex models relative to the de-
scription above, but the basic principle is the same. This also demonstrates the well known dependence of the behaviour of any Bayesian approach to
the choice of prior. In simple terms, the wider (or weaker) the prior, the more likely we will accept simpler models. This is also dependent on the
nature of the data, and the information contained in the data concerning the thermal history. Adding many constraints is equivalent to very strong
prior information and can restrict the sampler of a wider model space defined by the general prior of QTQt Therefore, it is always worthwhile
exploring the sensitivity of the results to the choice of prior and constraints.
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