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1. Introduction

The paper, Vermeesch and Tian (2014), henceforth referred to as
VT, compares two programs (one developed by each of the current
authors) available for inverse modelling of thermochronological data.
VT states two goals. “First, it provides a ‘glimpse under the bonnet’ of
these two ‘black boxes’ and second, it presents an objective and in-
dependent comparison of both programs”. We were both invited to
review the original manuscript of this paper, but declined, in large part
due to other commitments. Additionally, neither of us uses the other's
software, and we believe we would not have been able to give an
adequately informed opinion on both. We suggest overall that it should
be more productive to have independent reviewers, ideally users fa-
miliar with both pieces of software and the principles underlying each.
However, as published, VT does not consider fundamental aspects of
both modelling approaches, and their comparison highlights both how
not to use the software and how not to approach the inverse modelling
problem. Unsupported anecdotal statements are widespread and many
are unclear, selective, misleading or just wrong. Consequently, the
purpose of this comment is to try to clarify, qualify, or correct some of
the more important of these statements.

We start with two minor examples. The first is on the 2nd line of the
abstract, “QTQt is an alternative program whose name refers to its
ability to extract visually appealing (‘cute’) time–temperature paths
from complex thermochronological datasets”. This is not true. The ac-
ronym refers to Quantitative Thermochronology with a user interface
developed in the Qt programming platform (the latter is acknowledged
in a footnote later in VT). The name has nothing to do with the nature
of the graphical output. A second example is in the caption of VT Fig. 8.
It is stated that differences in the projected track lengths between the
two programs are due to the way the parameter Dpar is used to cal-
culate the projected track length. Dpar does not enter into the calcu-
lation of projected length, nor does any compositional parameter. The
projection is purely a geometrical adjustment based on the orientation
of a measured track to the c crystallographic axis. Any difference in
calculated values would have been due to a typographical error in
Ketcham et al. (2007), where a factor of 2 missing in the equation on

their page 793, 2nd column, end of 1st paragraph. This was originally
implemented in QTQt and has since been corrected. We thank VT for
helping us to identify and rectify this problem.

After a short introduction the paper contains 2 main sections (sec-
tion 2: part 1 and section 3: part II). The first considers a simple re-
gression problem (fitting a polynomial to noisy data) and the second
inverse thermal history modelling using both HeFTy and QTQt on a set
of real data from Tibet. We address parts of these sections in turn.

2. VT section 2: Part I

One of our most important criticisms is that their primary conclu-
sion is due to a basic misunderstanding of the inverse modelling process
and the apparent disregard of whether or not a “suitable model” is able
to fit the input data. A polynomial example is developed using synthetic
data (with noise added), with the data being described as linear with
respect to x (first order polynomial y = a + bx), weakly non-linear or
strongly non-linear, the last two datasets being generated from a second
order polynomial (y = a + bx + cx2, with different values for the
coefficient c). The inverse problem is addressed using (i) the correct
model, (ii) a weakly incorrect model or (iii) strongly incorrect model,
such that the data in cases (ii) and (iii) were modeled with model (i),
the first order polynomial. As noted in VT, this problem is linear for the
model parameters (a,b,c) and solutions can be obtained with standard
linear inverse methods (least squares as implemented in Excel for ex-
ample).

The results are presented in VT in terms of what would be the output
from a random Monte Carlo, Frequentist p-value approach im-
plemented in HeFTy or a Markov Chain Monte Carlo (MCMC) Bayesian
approach implemented in QTQt and these are different. Both ap-
proaches deal with case (i) adequately. The HeFTy approach does not
identify acceptable models for case (ii) and (iii) (acceptable being de-
fined with a user-specified p-value), while the QTQt approach produces
output for (ii) and (iii), but for case (iii) the predictions from the inverse
model are clearly not consistent with the input data. This leads VT to
the conclusion that “the ability of a Frequentist algorithm such as
HeFTy to find a suitable inverse model critically depends on the quality

https://doi.org/10.1016/j.earscirev.2017.11.001
Received 19 March 2017; Received in revised form 18 September 2017; Accepted 1 November 2017

⁎ Corresponding author.
E-mail address: kerry.gallagher@univ-rennes1.fr (K. Gallagher).

Earth-Science Reviews 176 (2018) 387–394

0012-8252/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00128252
https://www.elsevier.com/locate/earscirev
https://doi.org/10.1016/j.earscirev.2017.11.001
https://doi.org/10.1016/j.earscirev.2017.11.001
mailto:kerry.gallagher@univ-rennes1.fr
https://doi.org/10.1016/j.earscirev.2017.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.earscirev.2017.11.001&domain=pdf


and quantity of the input data; while (b) the opposite is true for a
Bayesian algorithm like QTQt, which always finds a suite of suitable
models, regardless of how large or bad a dataset is fed into it”. VT does
not define what is meant by suitable models but surely this would in-
clude fitting the data adequately.

In the words of Sambridge (2006) “inverse problems are as much
about asking the right questions of a data set than building a model that
fits it”. The inverse modelling process involves selecting an appropriate
model structure and finding values for the parameters in that model
structure that can explain the observed data to varying degrees. For the
moment we consider just the first condition, that of model structure.

In cases (ii) and (iii), the wrong model structure is adopted (so the
wrong question is being asked), although for case (ii) the coefficient c is
small enough that the model is not so wrong. This brings to mind the
point made by Box and Draper (1987, page 74) “Remember that all
models are wrong; the practical question is how wrong do they have to
be to not be useful”. Often it will be the subsequent application of a
model that determines whether it is useful or not.

Case (iii) is strongly rejected (no acceptable models found) by the
HeFTy approach, while the QTQt approach produces output showing a
series of results that are the most probable, given the assumed model
structure (i.e. a first order polynomial). Clearly the predictions do not
fit the input data. In our opinion, this is neither a suitable nor useful
model. Note that using the same approach with any software that deals
with such linear regression problems (e.g. Excel) would give effectively
the same answer, as they will find the parameters and presumably plot
the results for a first order polynomial model that will give the
minimum value of a least squares misfit function (e.g. Eq. (3) of VT).

The example prompts several further comments. Firstly, it is not a
bad dataset that was used. These are synthetic data, with some known
noise added. It is the model that is bad, or inappropriate. It is neither
allowed to be complex enough, nor have enough parameters, to capture
the variation in the data. Secondly, the motor under the bonnet of QTQt
is not fixed dimensional MCMC, but transdimensional MCMC, men-
tioned briefly in appendix B of VT, but not implemented in their ex-
ample. The transdimensional MCMC approach treats the number of
model parameters as an unknown (or a model parameter) and poly-
nomial regression is a typical example of its application (e.g. Mallick,
1998; Sambridge et al., 2006). Application of this approach to data
similar to that for case (iii), gives the result shown in Fig. 1. Here we see
that the probability of obtaining the result given in VT (polynomial of
order 1) is 0, while the probability inferred for the polynomial of order
2 is> 98%, while the probability of 3rd order or higher is< 2%. The
transdimensional algorithm implemented in QTQt adapts the com-
plexity of model to improve the fit to the data, but tries to avoid

overfitting the data. Thus, it converges to a second order polynomial
with high probability. Finally, it is clear that a model forced to be a 1st
order polynomial cannot fit the data, based just on visual inspection of
the predictions relative to the observed data. We return to this point
later.

3. VT section 3: Part II

This section addresses differences in the approaches relevant to
thermal history modelling, and follows directly from the previous sec-
tion.

We first consider the application of HeFTy, the purported
“breaking” of which was a consequence of how the software was used
by VT, not of its statistical limitations. HeFTy is not quite such a black
box that it does not require some common sense and thoughtful en-
gagement in the modelling process, and the way VT set their models up
had shortcomings on two fronts.

First, VT used a series of consecutive large constraint boxes that
generate a large proportion of time-temperature (t-T) paths that cannot
possibly work. For example, in VT Fig. 7 the penultimate constraint box
from 15 to 45 Ma allows temperatures of up to 140 °C, which are clearly
out of bounds given the fission-track age of 107 Ma. As a result, at least
a third of the time-temperature paths generated using this box are
impossible – they could never fit the age data, even before considering
the details of the track length distribution. When this effect is extended
across multiple constraints, the set of paths generated includes only a
very small fraction of remotely plausible ones, making the inversion
very inefficient. As larger numbers of confined tracks are included, and
the solution space shrinks, the problem of sampling solutions that can
fit the data is amplified. This is the curse of dimensionality referred to
later in VT.

A common approach when using HeFTy is to run a model briefly
with relatively broad constraints, and then as valid-time-temperature
paths are found to shrink the constraint boxes to more tightly surround
the solution space. Similarly, constraints can be added where t-T paths
are naturally coming together. If done with care, this technique can
greatly speed up the inversion without restricting the range of solutions
(e.g. being trapped in local minima).

The second shortcoming is the indiscriminate use of constraint
boxes with no recognizable motivation for their number, size, or pla-
cement. Users of HeFTy are encouraged to have a purpose for each
constraint box, such as representing a piece of independent information
(e.g., present-day temperature, deposition time and temperature, burial
history indicated by overlying strata, etc.) or testing or exploring a
hypothesis (e.g., was cooling monotonic, or was there reheating; what

Fig. 1. (a) Result of polynomial regression problem using a trans-dimensional MCMC sampler. The data are shown as the open circles, and the colours indicate the relative (marginal)
probability based on the accepted solutions.
(b) Probability distribution for order of the polynomials summarised in (a). Polynomial order 1 has zero probability given the observed data. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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was the timing and temperature of maximum burial, etc.). The output
of HeFTy can then be interpreted as supporting or contradicting the
hypothesis in the context of the thermochronologic data and specified

constraints, and providing the range of possibilities permitted by the
data within that hypothesis.

These concepts are illustrated in Fig. 2, which shows several

Fig. 2. HeFTy inversions of AFT data in files mm1, mm3, and mm4 downloaded from the supplementary data for VT. All models include AHe age 55 ± 5 Ma, with no alpha ejection
effect included, as surmised from comparison with VT modelling results. (a) Sample with 100 lengths, modeled as cooling-only with 2 constraints. (b) Same as (a) with an additional
optimizing constraint. (c) Sample with 821 lengths. (d) Sample with 100 lengths, with a history with constraints arranged to permit reheating, similar to result from VT. (e) Sample with
821 lengths allowing reheating.
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successful runs of HeFTy on the VT data sets. In Fig. 2a, the 100-track-
length data set (with AFT and AHe ages included) is successfully fitted
using only two constraints: an early, high-temperature one representing
an initial condition starting substantially above the closure tempera-
tures and well before the oldest ages, and one for the present. The broad
coverage of the paths before ~120 Ma indicates that the thermal his-
tory is only constrained by the data after that time, at least in this
scenario. Fig. 2b shows the same model, with an additional, optimizing
constraint placed around the region where the paths begin to converge.
The optimization does not affect the solution, but reduces the number
of paths needed to reach the ending condition chosen (finding 50 ‘good’
paths) by an order of magnitude from over 520,000 to about 52,000.
Fig. 2c shows the same inversion as 2b, in which the entire 821-track
data set is used. Here HeFTy does not “break” as claimed by VT, but
instead finds a tighter range of solutions; this increased tightness might
be considered the “reward” VT believe there should be from having
more track-length measurements. Fig. 2d shows a 100-track version of a
model more similar to those shown by VT, which includes the oppor-
tunity for reheating, and Fig. 2e shows the 821-track version of the
same model. Again, the increased number of track measurements does
not eliminate all solutions, but instead tightens the solution space. The
success of the models in Fig. 2c and e indicates that the data support
both the cooling-only and reheating hypotheses, and in fact do not
distinguish between them.

This example demonstrates that the concerns expressed by VT about
the fragility of the statistical methods used by HeFTy are misplaced.
They may be valid in some abstract theoretical limit, but as demon-
strated here HeFTy is able to handle and find solutions for data sets far
larger than are obtained in current standard practice, including the one
gathered by VT with obvious intention of breaking it.

Turning to the use of QTQt in this section, the idea VT puts forward
follows from that proposed in their earlier section on fitting poly-
nomials: i.e. irrespective of the integrity of the data, QTQt will give
output, that will be adopted as an appropriate solution. VT use some of
their own data to demonstrate “Garbage in, Garbage out”, but do not
actually cite examples of such practice from any previously published
work. The output of QTQt is conditional on the input data (and their
assumed uncertainties), and the assumed range or domain of possible
values for the thermal histories themselves, referred to as the prior. The
results also depend on the nature of the forward models that we assume
for fission track annealing, diffusion, etc. (which can also be regarded
as a form of prior information). Given all this, we can obtain a posterior
distribution of thermal histories. Ideally the posterior will be different
to, and more informative than, the prior. If the posterior and the prior
are the same, then the data have told us nothing we did not think we
knew already. The important point is that the inferred posterior is
conditional on the input data and model assumptions, as all Bayesian
inverse solutions are.

Consequently, it is important to assess, even if only visually, how
consistent predictions of the input data are with the observations given
the posterior model. This may typically involve consideration of the
distribution and magnitude of the residuals. So the model should not be
consistently overpredicting or underpredicting relative to the observa-
tions, the residuals ideally should not have systematic trends and a
prediction that lies well outside the uncertainty associated with an
observation may suggest that observation or the relevant predictive
model perhaps should be reassessed.

We would like to make several points concerning the approach
adopted to produce the results summarised in Fig. 8 of VT. First, they
grouped 5 single grain analyses, with an age range of 47 to 66 Ma, into
a single datum with an age of 55 Ma (changed to 102 Ma for 8ii).
However, QTQt has always been capable of dealing with the individual
grain ages, with the grain specific parameters (e.g. grain size), and there
is no need to use some kind of average aliquot age. We would note also
that in the downloaded data files, the apatite grain is defined as a cube
with sides of 62 μm in length, which implies an equivalent spherical

radius of 31 μm. The data files show that no alpha ejection was applied
during the modelling, but it is not clear from the text if the ages are
alpha corrected values or not. However, as we show below, the AHe age
data play a very minor role in the inference of the thermal histories.

Second, the fission-track length data are not the same in the two
examples. The first uses 821 track length measurements, while the
second uses 100 track lengths. Visually, the two track length distribu-
tions look quite different, with the former being relatively symmetrical,
perhaps slightly negatively skewed, while the second is clearly posi-
tively skewed. Third, the data files available in the supplementary
material are not consistent with the data presented in the figure (and it
seems that the website has swapped the identifier of each file so that it
refers to mmc5 as the data used in Fig. 8(ii) but the file has 821 track
length measurements, whereas file mmc6 is referred to as the data used
for Fig. 8(i), but it has only 100 track length measurements).
Additionally, both files have what appears to be a typographical error
in one of the induced counts (Ni), with a value of 38,978, which
probably should be 3898 if the data in the files associated with HeFTy
are correct. This outlier does not change the central age too much, the
data in the files giving 102.3 Ma, while correcting the apparently
anomalous Ni value, gives 104.8 Ma. Neither set of counts data yields a
central age that passes the typical χ2 test (at the p(χ2) = 0.05 level)
and the problem with the bad Ni value is particularly obvious in a radial
plot. Putting these problems aside for the moment, the results presented
in VT Fig. 8, with quite different inferred thermal histories, were used
to argue that QTQt will always give output irrespective of the data. As
mentioned previously, this is because the Bayesian approach will pro-
duce a posterior distribution (of thermal histories) conditional on the
input data and model assumptions.

The differences in the inferred thermal history shown in Fig. 8 are
attributed to changing the AHe age from 55 Ma to 102 Ma, equivalent
to the reported value for the AFT age. We ran the same types of models
using the files directly downloaded from the supplementary material,
and obtained the results given in Fig. 3. We have similar timing of
cooling around 100 Ma, irrespective of the AHe age, in contrast to the
results presented in VT Fig. 8. However, similar to the predictions from
VT Fig. 8b, the fit to the observed data is poor, with both the AHe and
AFT ages being considerably younger than the observed values, and the
track length distribution is poorly fit for the 100 length data. If we
correct the anomalous Ni value then the timing of cooling changes
(Fig. 4) to around 130 Ma, the predicted AHe ages are either older or
younger by 20 Ma, while the AFT ages seem reasonably well re-
produced. The post 130 Ma thermal histories do show some difference
in structure for temperature < 70–80 °C, with more structure evident
in the dataset with 821 track length measurements. Using the original
AHe age of 55 Ma in both of the datafiles with the correct Ni value, we
get much the same thermal history results as Fig. 4, indicating that the
anomalous AHe age has little effect on the difference on the inferred
thermal histories. Removing the AHe age data leads to the results given
in Fig. 5 indicating that the differences in the inferred thermal histories,
and their resolution in terms of the 95% credible intervals, reflect the
differences in the track length data (as the count data are identical in
both cases). Looking more closely at the length data, it seems that the
821 lengths dataset has 44 measured lengths shorter than 10 μm, while
100 lengths dataset has just 5. As shorter track lengths tend to have a
large influence on the inferred thermal history, this may explain part of
the increased structure after the initial cooling around 130 Ma. We
could examine this further by taking out these shorter tracks, but this is
beyond the aim of this comment. The main point is that the comparison
made in VT is based on 2 quite different data sets.

If we accept VT Fig. 8 at face value, then when assessing the quality
of the predictions, there is a problem with the discrepancy between the
predicted and input ages for both AFT and AHe, the predicted values
being about 20 m.y. younger, or nearly 3 times the input error. Such
discrepancies should not be ignored when assessing modelling results
and an assessment of the agreement (or not) between the predicted and
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input data is an important aspect of any inverse modelling study. It may
be that better data fitting models cannot be found, and then the data,
models and assumptions may need to be re-examined. However, the
main conclusions here are that the differences in the thermal histories
in VT Fig. 8 are due to a problem with one outlier value of Ni for Fig. 8i

(but apparently not for 8ii), and the fact that quite different track length
distributions were used for each case. This example does serve to de-
monstrate a practical strategy to assess the fidelity and consistency of
different data sets and data types. We can break the total set into
subgroups (e.g. AFT data and AHe data) and undertake modelling on

Fig. 3. Inferred thermal histories and predictions for the 2 data files mmc5 and mmc6 downloaded from the supplementary material for VT, but both seem to have an anomalous Ni value.
(a) Sample with 821 lengths and AHe age = 55 Ma. (b) Sample with 199 lengths and AHe age = 102 Ma. In contrast to the result presented in VT, these two samples have the initial
cooling period around the same time about 100 Ma.

Fig. 4. Inferred thermal histories and predictions for the 2 data files mmc5 and mmc6 downloaded from the supplementary material for VT, but with the anomalous Ni value corrected.
(a) Sample with 821 lengths and AHe age = 55 Ma. (b) Sample with 100 lengths and AHe age = 102 Ma. In contrast to the results presented in VT, these two samples have the initial
cooling period around the same time (about 130 Ma).
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each subgroup in turn. In this way it can be possible to identify which
features of the overall thermal history solutions are attributable to
different data and so provide different information on the thermal
history and/or the integrity of the predictive models for annealing and
diffusion, for example.

Finally, we acknowledge the good practice demonstrated by VT in
posting their data as an electronic supplement, which enabled us to
conduct these re-evaluations. However, the data files reveal further
irregularities beyond the single spurious Ni value discussed previously.
A number of other counts are off by 1 here and there between the
HeFTy and QTQt files. The zeta values are also different (380 vs. 386),
as are the Nd′s (4000 vs. 5000), affecting the age uncertainties. None of
these would be expected to have a large effect on the inversions, but
such inconsistencies are unfortunate when the intent of the study is to
compare program output given equivalent data input Additionally, the
length data are not calibrated against a standard (e.g., Ketcham et al.,
2015), which in one of the present authors' experience has been a cause
of failing to fit a large number of lengths, but was not in this case. The
point has been underappreciated in the AFT community, but it makes
little sense to think one should be rewarded for measuring 821 track
lengths in an unknown if these are not calibrated against one or two
hundred measurements from a standard. Finally, as mentioned above,
the AFT single-grain ages do not pass the chi-squared test. Strictly, such
a fission track age dataset should perhaps be considered suspect for
thermal history modelling that presumes the ages constitute a single
population.

4. VT section 4

The comment on p. 287 that “the problem is that HeFTy is very
flexible in accepting many different types of data and it is unclear how
these can be normalised in a common reference frame” is bizarre;
normalising different data types to a common reference frame is a re-
quirement for doing multi-thermochronometer modelling in the first
place, whether in HeFTy or QTQt. In HeFTy, for example, this is done
by calculating a probability (whether it is called r or a GOF) that the
data could be drawn from the model for track lengths, or the model

result from the data and estimated uncertainties for ages. It also bears
pointing out that HeFTy already uses a Bonferroni-type correction in its
‘good’ model criteria, specifying that the minimum goodness-of-fit
value be at least 1/(N + 1), where N is the number of data sets, and
that the mean be at least 0.5. This change was reported in Ketcham
et al. (2009), and is described in the program documentation. HeFTy
also allows the user to change the GOF value used to define ‘acceptable’
solutions.

There is another statement, also on p. 287, stating “the MCMC al-
gorithm ... does not care ‘how bad’ the data fit is”. While MCMC does
not explicitly maximise the likelihood, this statement is misleading as
the likelihood ratio appears in the acceptance criterion. Better data
fitting models tend to be preferred, unless the prior weights strongly
against them. If it was not the case then, when using a uniform prior, all
proposed models would be accepted, and the posterior will look the
same as the prior for the thermal histories. Furthermore, it is the in-
terplay between the likelihood and the prior that provides the natural
parsimony implicit in the transdimensional version of MCMC. More
complex models will tend to fit the data better (higher likelihood), but
these will tend to be penalised by having lower prior probability. The
combination of the two can then lead to a lower posterior probability.
As stated earlier, the results from the Bayesian approach are always
conditional on the input data and prior assumptions regarding the
thermal history and the forward model parameters. If one, or all of
these are inappropriate, it is not the fault of the MCMC algorithm, as it
produces a posterior based on the information given to it.

5. VT section 5

Section 5 addresses the selection of time-temperature constraints.
When discussing HeFTy, VT discuss the “curse of dimensionality” ap-
parently while at the same time dealing with it adequately in their
sample, as discussed previously (Fig. 2). Even with only two constraint
boxes and all of their length and AHe data, HeFTy starts finding ac-
ceptable solutions within the first 10,000 paths, or less than ~30 s.
Concerning box size, each box ought to be the size appropriate for the
data or hypothesis behind it; for example, there is absolutely nothing

Fig. 5. Inferred thermal histories and predictions for the 2 data files mmc5 and mmc6 downloaded from the supplementary material for VT, but with the anomalous Ni value corrected
and no AHe age data used. (a) Sample with 821 lengths (b) Sample with 100 lengths The differences in the thermal histories are attributable to the different track length data rather.
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wrong with deposition being represented by as small a box as in-
dependent stratigraphic data indicate.

Subsequently, VT urges users not to use geological constraints with
QTQt. While the philosophy underpinning QTQt is primarily to let the
data determine the thermal history and/or to avoid over-structuring the
thermal history with many constraints, some constraints are obviously
more geologically valid than others. For example, we often have an idea
of the possible range in stratigraphic age for sediments, so we know the
sample should be at surface temperatures some time in a stratigraphic
age range. The duration of an erosional unconformity in a well section
can potentially be estimated within a (possible uncertain) range and
implies the samples immediately below the unconformity were at or
near the surface during some part of that range (they could of course
have been buried and re-exposed during that time too). The presence of
surficial lava flows in contact with basement rocks implies the latter
were at or near the surface at the time of eruption. We may also have
some constraints on the present day temperature, or its range, for a
given sample, either at the surface or in well. This is additional prior
information that can be incorporated as a constraint defined as a box
(similar to HeFTy), defined by ranges on time and temperature. As the
inferred thermal history models will depend on the prior information, it
is straightforward to assess the impact of such constraints by removing
them (e.g. Bernard et al., 2016). In this context, it is then important to
report what prior information has been used when reporting any model
results.

It is appropriate here to address another erroneous statement con-
cerning output from QTQt made in this section at the bottom of page
287, “The crudeness of these models is masked by averaging, either

through the graphical trick of colour-coding the number of intersecting
t–T paths...”. This refers firstly to the fact that individual thermal his-
tories are relatively simple, being constructed as a series of discrete
time-temperature points as model parameters and secondly to the re-
presentation of thermal multiple history models with QTQt in the form
shown in Fig. 8 of VT. In this representation, a thermal history com-
posed of a finite number of t-T points is interpolated between these
points. We can then count how many thermal histories pass through a
given temperature interval at a given time interval (typically defined as
1 °C and 1 m.y.) and normalise these values by the sum over all tem-
peratures for that time interval (so that the sum is 1). This is then
plotted using colour-coding to indicate the appropriate value over the
range of sampled temperatures for the given time interval.

The phrase “graphical trick” implies this is some kind of sleight of
hand with no mathematical foundation. The plots present what is
known more formally as the marginal posterior distribution of tem-
perature. This is not simply the probability distribution of temperature
at say 100 Ma. Rather it is a conditional probability distribution, that is,
the probability of temperature at 100 Ma, given the variation of ac-
cepted temperature values at all other times. When correctly im-
plemented, Bayesian MCMC sampling produces a set of parameters
(time temperature points) distributed according to their joint posterior
distribution. The marginal posterior distribution for a parameter, or a
function of parameters, is given by all the accepted values of that
particular parameter or function values. The hard work of dealing with
the conditional dependence on other parameters is dealt with for us by
the MCMC algorithm in the way it is constructed.

To demonstrate this in practice, we return to the linear regression

Fig. 6. (a) MCMC estimation for the parameters defining straight line or first order polynomial, y = A + Bx, given the data shown as open circles. The colours, show the marginal
posterior probability for y = A + Bx over the range of X using all the accepted combinations of the parameters A and B (see text for details).
(b) The joint distribution, p(A,B|d), of the two parameters a and b. The labelled black ellipses are the analytical solutions for different cumulative probabilities (given as the percentages,
and calculated from a χ2 distribution with 2 degrees of freedom) and in brackets the proportion of the total accepted sample pairs (A,B) obtained using MCMC. The MCMC samples within
each probability band are distinguished by different colours for better visibility. The white ellipse is the 95% region for 1 degree of freedom and is used to estimate the 95% confidence
intervals on each parameter, shown by the black lines projected onto each axis.
(c) The red line is the analytical solution for marginal distribution on parameter A, and the histogram is the distribution estimated from the MCMC samples for the same parameter. The
red and black vertical lines indicate the 95% credible intervals calculated analytically or using the MCMC samples respectively.
(d) The marginal posterior distribution of the predicted value for y = A+ Bx, at x = 5. The red curve is the analytical solution, and the histogram represents the histogram estimated for
y(x = 5), using linear interpolation between the predicted values for y(x = 0) or A, and y(x = 10). This is the same form of interpolation used in QTQt. We obtain the same result if we
sampled A and B from the joint distribution p(A,B|d) and use predicted values for the function A + Bx, at x = 5.
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problem, with a 1st order polynomial, y = A + Bx. There are two
parameters A (intercept) and B (slope) and, given normally distributed
errors on the data (d), we can obtain analytical solutions for the joint
posterior distribution of A and B conditional on the data, p(A,B|d). We
can also obtain analytical solutions for the marginal distributions, p
(A|d) and p(B|d) which are the probability distributions of parameter
A, given the data and allowing for the inferred variation in parameter B,
and the same for parameter B, given the data and the inferred variation
in parameter A. The marginal distribution for A, is obtained by in-
tegrating the joint posterior over all values of B, so it is defined as p
(A|d) = ∫ p(A,B|d)dB. We can also obtain an analytical solution for
the distribution on the predicted value of yi at a position xi, known as
the posterior predictive distribution, p(yi|x) = ∬ p(yi|xi,A,B)p(A,B)
dA dB. This last operation is analogous to interpolating between 2
discrete model time-temperature points in QTQt, where A and B would
be the two time-temperature points, xi would be the time we want to
calculate the marginal, and yi is equivalent to the temperature.

Here we compare the results from the analytical solutions (e.g. Lee,
1989; Denison et al., 2002) to those obtained using the same approach
implemented in QTQt. These are given in Fig. 6, and we can see that
MCMC samples and the analytical solutions agree well for the joint
distribution (Fig. 6b) and the marginal on the intercept, parameter A
(Fig. 6c). We could show a similar plot to 6c for parameter B, showing
similar concordance between the analytical and MCMC solutions. Fi-
nally, we show the analytical and MCMC posterior predictive dis-
tributions for y at x = 5 (Fig. 6d) and we can do this for any value x.
The MCMC approach is the same as the method used in QTQt to pro-
duce the marginal distribution on the temperature at any time by in-
terpolating between discrete time-temperature points. Fig. 6a shows the
result of the same calculation applied to the regression problem and a
vertical slice at x = 5 gives us the result shown in Fig. 6d, which agrees
well with the analytical solution.

So there is no graphical trick involved in producing the marginal
posterior distribution for the thermal history results from QTQt,
However, there may be some confusion about what the marginal dis-
tribution and its scale represent. It is not the probability of a particular
thermal history being correct. It is the distribution of temperature over
a chosen (usually small) interval of time, given the variation in the
accepted thermal histories (or perhaps more easily considered as the
average temperature at different times). The accepted thermal histories
themselves depend on the data, priors, and forward models as stated
above.

6. Conclusions

There are two overriding issues with the critique of Vermeesch and

Tian (2014). The first is that it is uncalibrated. Although the points they
make are reasonable and even obvious – that the predictive models for
annealing and diffusion are not perfect, geological factors can make
systems perform non-ideally, reproducibility of some data can be poor –
they say nothing quantitative about the scale of the effects that these
non-idealities have on thermal history inversion. All the points made in
the final paragraph are indicative of confirmation bias, as they are
unsupported by their analysis.

The second is that their critique is overly simplistic about what
thermal history inversion software should do. It is not intended merely
to find an answer or reward the user, but as a tool to help conduct
science. “Garbage in, Garbage out” does not only refer to faulty data or
incompletely known kinetics, but also to the process of setting up
models, posing and testing hypotheses, and appropriately interpreting
the results. We hope that this comment helps to clarify some of the
misunderstandings in VT and how, in our view, inverse modelling of
thermochronometry data might be approached in general.
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