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Abstract

Parameter inference through the use of bayesian prediction methods, is highly dependent on the
quality of the prior distributions that describe the dataset. Using enzyme kinetic parameter data
collected from the Sabio-RK database, a variety of methods were trialled for grouping and learning
these data, with the goal being to produce high quality prior distributions for any enzyme of interest.
Each level of the enzyme commission hierarchy was investigated, using a variety of statistical tests to
determine which level provided the best trade off between information loss, and accuracy of kinetic
parameter prediction. From our analyses, we have shown that this appears to be at the second level
of the hierarchy (n.n.*.*). Our analyses also suggested that there will be very little difference in
accuracy between the various levels of the hierarchy. The use of a k-nearest neighbours classifier was
also trialled for predicting kinetic parameters from the database. This approach to machine-learning
was ineffective, demonstrating an interesting lack of association between sub-levels of the hierarchy
and their respective parameters, suggesting that sub-subgroups of the hierarchy are poor predictors
of key enzyme kinetic parameters.

1 Introduction

Throughout biology, enzymes are considered to be
essential components of metabolic systems [1, 2, 3].
They are biological catalysts; accelerating the rate
at which molecules, know as substrates, are con-
verted into variants, known as products, via chem-
ical reactions [4].

Enzymes are a type of protein that catalyse re-
actions in a multitude of ways, with the specific
goal of these methods being to lower the activa-
tion energy required to initialise the reaction [5].
For this to occur, an enzyme first needs to bind
the substrate. Enzymes are usually highly specific
for particular substrates through the utilisation of
unique binding sites known as active sites. These
active sites enforce specificity on bound substrates
through shape, charge, and hydrophillic/hydropho-
bic preference. It is in these active sites in-which
the chemical reaction takes place, forming the prod-
uct [4]. These reactions can be represented by the
following general equation:

E + S ⇀↽ ES → EP ⇀↽ E + P

where E represents an enzyme, S represents the
substrate, and P represents the product.

Each specific type of enzyme has a unique three-
dimensional structure associated with it. This

structure is determined by three key variables:
the chain of amino acids that make-up the protein,
the structures (α-helices and β-sheets) formed by
amide (NH2) and carboxyl (COOH) group inter-
actions within this chain, and foldings that occur
from α-helix and β-sheet interactions. This struc-
ture is essential for informing the function of the
enzyme [6], and determining an enzyme’s affinity
for its substrate, along with its rate of catalysis.
Given this, it is therefore inviting to use enzymatic
structural data as a predictor of functional param-
eters. Three of these key values can immediately
be suggested as targets for this prediction: Vmax,
which gives the maximal velocity of a reaction at
a point where the substrate concentration is high
enough to saturate all active sites, the Michaelis
Constant or Km, which describes substrate con-
centration at which half of the enzyme’s active
sites are occupied by substrate, and the turnover
rate or kcat, which gives the number of substrate
molecules each active site converts to product per
unit of time.

The efficiency of these enzymes can be highly
variable when comparing one specific type of en-
zyme to the next and is largely dependent on the
specific enzyme’s structure and optimal working-
conditions[7]. This variation in efficiency is often
misrepresented within the literature base, with pa-
pers focusing on highly efficient enzymes over the
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unrepresented ’average’ enzyme [8].
When classifying enzymes, enzyme commission
(EC) numbers are the foremost system used within
biosciences. This nomenclature scheme was first
published in 1961[9], and is now on the 6th version.
The basic structure of an EC number takes on the
form *.*.*.*, where * represents all values in a cat-
egory, and n represents a specific value. Within
the EC hierarchy, n.*.*.* donates the uppermost
group of enzymes, n.n.*.* donates a subcategory
(i.e. what bonds the enzyme acts on), n.n.n.* do-
nates a further sub-subcategory of the enzymes,
and n.n.n.n gives the final subclassifications of the
enzymes and refers to a specific reaction that is
catalysed[10]. All enzymes that catalyse a specific
reaction are returned by the EC number, resulting
in an effective method for grouping enzymes based
upon their function.

Parametrising the aforementioned key-values repre-
sents a current challenge within biology. Measuring
these parameters experimentally for an unknown
enzyme is hindered by several limitations. It is lim-
ited by the equipment available to the researcher,
by the time that it takes to complete the necessary
experiments, and by the cost of doing so. This pro-
hibitive environment surrounding parametrisation
often leads to investigators searching the literature
for these parameters, which can result in introduc-
ing other unexpected errors. For enzymes where
this information exists, it is often parametrised
in an unrepresentative environment. For exam-
ple, if a human enzyme is parametrised ex vivo,
it is often under ideal conditions which can result
in unrepresentative parameter estimates, and for
many enzymes, this information is not yet available.

Where these parameters are correctly estimated,
they allow us to model the behaviour of enzymes
through a selection of well-established models, such
as the Michaelis-Menten kinetics model. This
commonly-used equation considers the following ir-
reversible reaction system:

E+S
k1−−⇀↽−−
k−1

ES
kcat−−→ P+S =⇒ v =

d[P ]

dt
=

Vmax[S]

Km + [S]

where:

Km =
(kcat + k−1)

k1
Vmax = kcat.e0

Here k1 and k−1 give their respective associa-
tion/dissociation constants, and e0 gives the total
concentration of enzyme in the system.

The key problem with modelling enzymatic be-
haviour is, as eluded to earlier, the reliance on ac-

curate parameter estimation for descriptors of en-
zyme function, i.e. Km. When first investigating an
unknown enzyme, accurate information on the en-
zyme’s complete three-dimensional structure may
be unavailable, or it may be difficult to experimen-
tally measure parameters for it. One solution for
this issue is to utilise bioinformatics tools for pre-
dicting these parameters when access to enzyme-
specific kinetic data is limited. These predictors are
often Bayesian in nature and utilise an incarnation
of Bayes’ theorem relating conditional probability
of a given parameter value θ given data D:

p(θ|D) =
p(D|θ)p(θ)
p(D)

where p(θ|D) represents the posterior distribution,
p(D|θ) the likelihood function, p(θ) the prior dis-
tribution, and p(D) the evidence.

As can be seen above, predictors that utilise this
variation on Baye’s theorem rely on accurate prior
distributions for producing representative posterior
distributions, yet the choice of these priors is too
often arbitrary. Uniform distributions across the
range of potential values are commonly used as
substitutes for accurate and descriptive prior dis-
tributions. One of the most promising predictive
methodologies, approximate Bayesian computation
(ABC)[11], is reliant on these priors, yet there is
currently a lack of tools to approach this issue with.

ABC refers to a set of computational methodolo-
gies that utilise Bayesian statistics to predict val-
ues within complex systems, with ABC rejection
sampling being the most commonly used of these
methodologies[12]. This algorithm works by sam-
pling points from a prior distribution [13], where
given a sampled parameter point θ, a data set, D̂,
is then simulated under the chosen statistical model
M , specified by the sampled θ. If the generated D̂
is too different from the observed data D, then θ is
rejected, and a new θ generated. D̂ is accepted with
a user defined tolerance that meets the requirement
ε ≥ 0 if:

p(D̂,D) ≤ ε

where the distance p(D̂,D) determines the dis-
crepancy between D̂ and D, assuming use of the
Euclidean distance metric, where the distance be-
tween two points a and b is the length of the line
connecting them (ab).

While the algorithm is computed, D is replaced
with a set of lower dimension summary statistics
S(D), which are selected to describe all relevant
information in D. Given this alteration, the accep-
tance criterion becomes:

p(S(D̂), S(D)) ≤ ε
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For example, with an enzyme dataset selected,
the observed dataset µ is given a prior distribu-
tion θ, from which a series of samples are taken
θ1, θ2, θ3...θn. Given the model M , n simulations
are then performed using the sampled prior distri-
bution θi, in which a summary statistic µi is com-
puted for each simulation such that the following
statement is either accepted or rejected:

p(ui, u)
?
≤ ε

where based on the tolerance ε and the distance
p(·, ·), the summary statistic is checked against the
observed data to see how close it is. The posterior
distribution of θ is then approximated from the
distribution of accepted parameter values θi.

Figure 1: Visualisation of the ABC rejection al-
gorithm.

It is therefore apparent that a focus on develop-
ing realistic prior distributions for enzyme kinetic
measurements has clear potential benefits. If open-
access data is combined with the enzymatic struc-
tural information available to the researcher, than
producing these realistic distributions becomes a
very real possibility. Previously, a log-normal dis-
tribution has been shown to fit each branch of the
first level of EC kinetic measurements (n.*.*.*),
where the log-normal probability density function
is given as:

f(x, u, σ) =
1

xσ
√

2π
e−

(lnx−u)2

2σ2

This distribution, although significantly more rep-
resentative than a uniform distribution over the
potential range of kinetic values, only describes
and utilises the very upper level of enzyme func-
tional/structural differences to separate them into

categories. This begs the question, can we inves-
tigate deeper into the EC classification system to
produce prior distributions that are more represen-
tative of a specific enzyme in question?

Through utilising the information currently avail-
able in enzyme kinetic databases such as Sabio-
RK, it may be possible to produce realistic pri-
ors with high specificity for any enzyme that is
needed, resulting in a personalised prior distribu-
tion for each specific unknown entity. This un-
dertaking would therefore have the potential to al-
low quantitatively minded biologists to model the
behaviour of their enzymes before any large body
of experimental work has been completed, signifi-
cantly reducing potential associated financial and
time limitations.

2 Materials & Methods

Retrieval of values from the Sabio-RK database was
achieved with Python (version 3.3) scripts, calling
the RESTful interface. Analysis of the data was
achieved with Matlab (version R2014b), Python
(version 2.7) using the Pandas module, Mathe-
matica (version 10.0.1.0), and R (version 3.1.2).
Machine learning scripts were written using the
Python Scikit-learn, Numpy, and Scipy modules.

Databases used for information retrieval in-
clude the Sabio-RK database (open access,
available from http://sabio.villa-bosch.de/)
for enzyme kinetic parameter measurements,
the UniProt database (open access, avail-
able from http://uniprot.org/) for protein se-
quence data and functional information, and the
KEGG database (open access, available from
http://www.genome.jp/kegg/pathway.html) for re-
action pathway information.

The complete dataset of enzyme kinetic parame-
ters linked to Michaelis-Menten reaction systems
was first downloaded from the Sabio-RK database
and sorted by top-level EC association. This was
then stored in a simple ’.csv’ format to simplify
future analysis efforts.

The first approach to analysing this dataset in-
volved determining whether groups of enzymes
lower than the first level of the EC hierarchy
(n.n.*.* - n.n.n.n) were still best represented by a
log-normal distribution. This task was approached
by writing a data grouping script with the format
visible below (algorithm 1). This script was then
used as the basis for many of the following analysis
methodologies, with the grouped data now able to
be iterated over to produce Q-Q plots, determining
how well a log-normal distribution fit the data.
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for ni in n.*.*.* do
if group ni exists then continue;
else group data by ni;
for nj in ni.n.*.* do

if group nj exists then continue;
else group data by nj ;
for nk in ni.nj.n.* do

if group nk exists then continue;
else group data by nk;
for nl in ni.nj.nk.n do

if group nl exists then continue;
else group data by nl;

end

end

end

end
Algorithm 1: Data Grouping

Summary statistics, including the mean, standard
deviation, and number of entries per EC number,
were then computed for each level of the EC hier-
archy, and the distributions were analysed.

At this point, a k-nearest neighbours classifier im-
plementation into the dataset was attempted in the
hope that it would predict enzyme kinetic param-
eters based on the enzymes that were closest to it
within the EC hierarchy. Each value within this
hierarchy was determined as being a separate point
in parameter space, with each entry for a specific
EC value occupying that same position, and there-
fore having an equal chance of being chosen. For
example, if enough information was known about
our enzyme to narrow it down to the third level
(n.n.n.*), then if k = 15, that amount of neigh-
bours would be randomly selected and averaged
from n.n.n.* to predict the parameters for the un-
known enzyme. If enough information was known
about the enzyme to assign a full EC number to
it (n.n.n.n), then k neighbours would be selected
from its group and averaged. Many of these groups
do not contain enough entries to satisfy the value
of k, and therefore until k is satisfied, neighbours
are selected based on the minimisation of the Eu-
clidean distance from the EC value of k (i.e. if
our target had an EC value of n.n.n.1, then n.n.n.2
would be preferable over n.n.n.16).

Figure 2: Visualisation of the k-nearest neigh-
bours algorithm in the context of the EC hierarchy.

After some issues were encountered with the k-
nearest neighbours methodology, a variety of sta-
tistical tests were then conducted to determine
how distinct each branch of the EC hierarchy was
in-terms of the values of its kinetic parameters.
For this, analysis of variance (ANOVA) tests were
predominantly used, along with pairwise Student’s
t-tests of the mean of each individual parameter for
each branch of the hierarchy. From these analyses,
the distance between these mean values was also
investigated to determine whether it grows from a
given point of origin.

Lastly, in-order to follow-up on the results from the
previous tests, the root-mean-square error was in-
vestigated while using the values contained within
each level of the EC hierarchy from n.*.*.* to
n.n.n.n as a predictor for every given reaction pa-
rameter. To do this, a script was written to calcu-
late the mean of a given parameter from each level
and permutation of the EC hierarchy. To compare
that result with a specific reaction, the error value
was stored and averaged across all reactions within
a group. For example, for a given reaction (i.e. EC
number: 1.4.7.16), the averageKm value for 1.*.*.*,
1.4.*.*, and 1.4.7.*, would be used as a predictor for
one of the Km entries within 1.4.7.16. The error
between the predicted value, and the actual value,
would then be stored and averaged against all other
calculations for all other reactions, determining the
most effective level of the EC hierarchy as a pre-
dictor for enzymatic kinetic parameters. The equa-
tion for this measure (the root mean-square error)
is given as: √√√√ 1

n

n∑
j=1

(yj − ŷj)2

where n gives the number of observations, yj gives
the value of the data-point of interest, and ŷj gives
the observed value to be compared with yj .

Unless otherwise stated in the results section, find-
ings are in relation to the Km parameter. This is
primarily due to the amount of data available for
each parameter, with Km having the most available
entries, kcat having the second-most, and Vmax hav-
ing the fewest.

3 Results & Discussion

The EC data series takes on a branched tree hierar-
chical organisation, with each node on the 4 levels
producing a varied number of branches. The mod-
erate complexity of this dataset is best visualised
as a tree diagram, pictured below (figure 3).
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Figure 3: EC hierarchy from n.*.*.* to n.n.n.*.

The dataset itself was surprisingly varied, with lit-
tle consistency in either the amount of reactions
present per category, or the amount of entries per
EC number.

EC Class 1:
Oxidoreductases

EC Class 2:
Transferases

1555 1654

EC Class 3:
Hydrolases

EC Class 4:
Lyases

1291 582

EC Class 5:
Isomerases

EC Class 6:
Ligases

253 183

Table 1: Summary table containing the number
of enzymes in the top level of the EC hierarchy
(n.*.*.*).

The distribution of kinetic parameter entries for
Km and kcat were plotted against their individual
EC value and then sorted by the amount of entries
they had. The resulting figure (figure 4), demon-
strates a steep inverse exponential curve for both
of the parameters. This result strongly demon-
strates the issue that plagues many modelling ef-
forts. Enzymes that are popular, either because
of their function or ideal parameter values, have

lots of entires describing their kinetic parameters;
yet the vast majority of enzymes have very few en-
tires. This leads to a lack of reliability for the vast
majority of entries in databases such as Sabio-RK,
and therefore provides support for the use groups
of functionally similar enzymes for the production
of realistic prior distributions.

Figure 4: Number of kinetic parameter entries per
individual EC number.

As mentioned previously, work completed prior to
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this report demonstrated the feasibility of fitting
a log-normal distribution to the six classes within
the first level of the EC hierarchy (n.*.*.*). For
this study, this assumption was tested against EC
n.n.*.*, n.n.n.*, and n.n.n.n. At n.n.*.* the as-
sumption holds true, with enough data-points to
satisfy the distribution. These data-points appear
to be reasonably well aligned with a log-normal
distribution as can be seen in the Q-Q plots below
(figure 5). This result supports the use of smaller
groups that are more closely related to the enzyme
of choice when selecting distributions in comparison
with the top level of the EC hierarchy. For example,
if enough information was known about an enzyme
to narrow it down to the second level within the
EC hierarchy, then an appropriate prior distribu-
tion for this enzyme could be produced using data
from the enzymes within its specific sub-subgroup,
provided that they give a better prediction than is
available at n.*.*.*.

Figure 5: Representative Q-Q plots of n.n.*.* Km

entries against a fitted log-normal distribution.

Below EC n.n.*.* the log-normal distribution
doesn’t appear to fit the data due to a lack of
data points in many of the groups, see below for a
representative example (figure 6). Although some
groups contain a larger amount of entries, many
do not, and so when considering the possibility
of dynamically producing a prior distribution for
any given enzyme, a safer assumption given this
result is to use EC n.n.*.* and above. This issue
could potentially be circumvented with a dynamic
algorithm that selected a prior distribution from
n.n.n.* if there were enough data points to warrant
so, and from n.n.*.* if not, but given the scope
and time limitations of this project, this was not
achievable.

At the fourth level of the hierarchy (n.n.n.n), no
examples could be found to satisfy a log-normal
distribution. As this level specifies a specific reac-

tion, some of them contain hundreds of entries per
kinetic parameter, yet as many of these entries are
identical in value, a true log normal distribution
was not achievable. Also, as shown previously in
figure 4, the number of n.n.n.n entries that contain
a sizeable amount of values per parameter are lim-
ited to a small subsection of the overall enzymes.
At the n.n.n.n level of knowledge about an enzymes
structure, there is arguably little need for parame-
ter estimation, as the enzyme values are likely al-
ready known and can be looked up, or alternatively,
are unknown and therefore are not likely to be pre-
dicted from other entries within the same reaction
group.

Figure 6: An example Q-Q plot of an n.n.n.* Km

entry against a fitted log-normal distribution.

Given the encouraging finding of a log-normal dis-
tribution fitting n.n.*.* groups, a k-nearest neigh-
bours machine learning approach was attempted
on the dataset. This approach assumed a linear
relationship between n.n.*.* groups, where 1.1.1.15
would be closely related to 1.1.1.16 and 1.1.1.14,
and groups that are numerically further from the
EC number of interest are less likely to be picked
as neighbours.

n.n.n.n and n.n.n.* values were determined to be
the most appropriate for this machine learning
classifier due to the ’neighbour-like’ relationship
they share with the groups around them. When
using n.n.*.* values as input, there were gener-
ally far more entries to satisfy the value ofkthen
were required, leading to a technique akin to tak-
ing small random samples from large data-pools,
adding no benefit to the predictive power of the
technique. When using n.n.n.n and n.n.n.* values
to find neighbours, the predictive power of this
technique proved to be very poor. With n.n.n.*
EC values given to the predictor, and the num-
ber of neighbours (k) set between 15 and 50, the
average precision value (calculated as the ratio of
true-positive to false positive predictions) was as
low as 2%, and as high as 12% depending on the
size of the training set given. Higher precision val-
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ues could be achieved by overfitting the dataset,
however this is artificial and would likely not be
useful within a research setting. Accuracy values
were similarly disappointing.

This poor output was primarily due to the nature
of the algorithm in combination with the assump-
tions we had placed on the dataset. In assuming
that there was a linear relationship in kinetic pa-
rameter difference, increasing the further that you
were from the starting EC value, we would there-
fore sample from around the given EC number.
The issue with this was that if the value ofkwas
too small, then the sample size wasn’t represen-
tative of the surrounding enzymes, and therefore
was ineffective at predicting the true value, yet if a
largerkvalue was given then you risk sampling from
structures that are dissimilar from the starting en-
zyme. Picking an appropriate static value forkgiven
the dynamic nature of the task was difficult, and
assuming that the need for realistic prior distri-
butions will most likely originate from researchers
with little knowledge on their enzyme of choice, it
was decided that a change in approach would be
necessary.

From this point in the project, we began to inves-
tigate the relationship between different levels of
the EC hierarchy, examining the statistical signifi-
cance between their respective values and querying
the possibility that the relationship between these
values wasn’t as linear as was first assumed. We
began by conducting a pairwise Student’s t-test
for each element on each level of the EC hierar-
chy. The results for levels EC n.n.*.* - n.n.n.n
were mixed, primarily due to the amount of vari-
ables in each of the many groups. Unsurprisingly,
some of these groups demonstrated a significant
difference (P ≤ 0.05) when paired against others,
however there was little correlation in each groups
perceived distance from its pair and the likelihood
that it would demonstrate a significant difference.
When the test reached EC n.n.n.n, the test was
severely limited by the lack of parameter values
and variation. For the 6 groups within EC n.*.*.*,
the pairwise Student’s t-test demonstrated a dis-
tinct lack of significant parameter value variation
between groups, with no tests giving significant
differences, and only 2 giving borderline significant
results (1.*.*.* in comparison with 2.*.*.*, and
2.*.*.* in comparison with 3.*.*.*). For the full
comparison, see below (table 2).

This lack of significant results provides a clear
explanation for why our k-nearest neighbours ap-
proach failed, as our assumptions regarding intra-
group differences were incorrect.

A follow-up ANOVA test of the n.*.*.* parameter
means produced a P-value of 0.09 for Km param-
eter values, and 0.18 for kcat. Although arguably
borderline signifiant for the Km parameter, it could
also be argued that an ANOVA test is less represen-
tative of the variation between groups as it investi-
gates the central tendencies of all groups. Although
the groups as a whole have a borderline significant
difference in their mean values, this doesn’t neces-
sarily support our assumption of a distance-based
difference in parameter values. What this result
does support however, in combination with the dis-
tribution findings, is the use of data within EC hi-
erarchy groups to predict kinetic parameter values
and produce realistic prior distributions.

n.*.*.* Set 1 n.*.*.* Set 2 P-value

1.*.*.* 2.*.*.* 0.057
1.*.*.* 3.*.*.* 0.274
1.*.*.* 4.*.*.* 0.872
1.*.*.* 5.*.*.* 0.746
1.*.*.* 6.*.*.* 0.563
2.*.*.* 3.*.*.* 0.080
2.*.*.* 4.*.*.* 0.428
2.*.*.* 5.*.*.* 0.226
2.*.*.* 6.*.*.* 0.365
3.*.*.* 4.*.*.* 0.664
3.*.*.* 5.*.*.* 0.522
3.*.*.* 6.*.*.* 0.523
4.*.*.* 5.*.*.* 0.936
4.*.*.* 6.*.*.* 0.409
5.*.*.* 6.*.*.* 0.325

Table 2: Results of the Pairwise Student’s t-test
for all n.*.*.* pairs of the Km parameter values.

In support of our pairwise t-test findings, the root
mean-square-error (RMSE) between each value of
an example Km EC dataset was plotted. The EC
values used for this plot were 1.1.*.* to 1.99.*.*
Based on our previous assumption of a linear in-
crease in difference between parameter values the
further the samples were from the EC value of ori-
gin, we would expect a linear increase in RMSE
from group 1.1.*.* to 1.99.*.* (16 data-points
when using appropriately large Km data from the
groups). Our expectations and our findings can be
seen below (figure 7).
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Figure 7: Root mean-square-error of ascending
EC group Km values against the group 1.1.*.*

Based on the results outlined previously, it was
decided that using the mean and standard devia-
tion of the closest EC group to the enzyme of choice
would be most accurate for fitting a log-normal dis-
tribution to for each prior distribution. In order to
determine which level of the EC hierarchy (*.*.*.*
- n.n.n.*) would be the best overall predictor for
the production of realistic prior distributions, we
calculated the RMSE of each relevant groups’ pre-
dictions against the true value of the parameter.
For the Km parameter value, EC *.*.*.* gave a
RMSE value of 0.1245, n.*.*.* gave a RMSE value
of 0.1241, n.n.*.* gave a RMSE value of 0.1227,
and n.n.n.* gave a RMSE value of 0.1242.

This finding suggests that the second level of the
EC hierarchy (n.n.*.*) provides the strongest pre-
dictive ability for the most abundant parameter
entry in the dataset, balancing the amount of data
within each group against the structural/functional
relationships that the associated enzymes share. At
this level of the hierarchy, the data in each group is
filtered by the specific action of the enzyme, with
the second level dictating what molecule, or group
of molecules, the enzyme acts on. When consid-
ering this biological information, this result is un-
surprising given that any further subclassifications
of the enzyme’s function is less likely to alter the
central tendency measure that dictates the group’s
predictive ability. Further subclassifications will
also significantly diminish the availability of data
within each group, potentially skewing the measure
of central tendency with outlying values measured
in non-ideal circumstances.

This project has produced some interesting results,
and beckons for future work to build on the infor-
mation that has been derived from it. The first
step in any future work to be conducted, would be
to measure whether prior distributions produced
from the second layer of the EC hierarchy influence
the outcome achieved with the predictive ABC
methodologies outlined previously. The log-normal
prior distributions calculated from the mean and
standard deviation of the selected EC group could
be easily fed into an ABC program and sampled

from to predict the posterior distributions. If these
realistic priors proved to produce better outputs
than the alternative uniform distributions, then
the findings can be said to be useful. They may
also help by reducing the computation time when
using the ABC rejection algorithm by creating a
smaller parameter space to sample from. If this
is shown to work, then it could potentially be im-
plemented into an easily accessible graphical user
interface (GUI), where a user can submit the infor-
mation they know about the enzyme and receive
a realistic prior based on the EC classifications
of the information that they provide the program
with. The program itself could take on the form of
a lookup table, where if the data provided fits up
to the second level of the EC hierarchy, then the
program retrieves the mean and standard deviation
of the group and returns this as a log-normal dis-
tribution to the user. The program could regularly
update its database of parameter values from the
large amount of easily accessible databases, includ-
ing Sabio-RK, which we already have data retrieval
scripts for.

The codebase and theory demonstrated in this
project, and in previous work, also has the poten-
tial to be applied to similar systems, where realistic
prior distributions can be used in the prediction of
parameter values. For example, if a transcriptomics
dataset containing various transcription rates for
specific genes was obtained, then it could be used
to predict the transcription rates of structurally
similar genes through the use of ABC in combi-
nation with realistic prior distributions, using the
techniques outlined above to classify and investi-
gate the dataset. Unfortunately, no open-access
databases could be found that contained this in-
formation, but nonetheless this technique is not
strictly limited by the biological context and could
conceptually be applied to quantitative modelling
efforts in fields such as evolutionary biology, cancer
modelling, and interactome analysis.

This project, like many others, is well balanced by
its strengths and weaknesses. The strengths of this
project lie in the depth of the analysis carried out
on the EC hierarchy, and the data contained within.
Throughout this study, a multitude of statistical
tests and analyses were conducted on various as-
pects of the data, and we feel that the results,
although occasionally unexpected, do represent the
data effectively. Our findings are supportive of
the predictive capabilities of this dataset, and we
feel that this result is positive in-the-sense that it
further supports the use of approximate bayesian
computation. This groundwork that we have con-
ducted effectively provides an information base to
build-upon and explore, and leaves a clear direction

8



for future work.

When looking at the weaknesses of this project, the
key one to highlight is the false assumption that
we placed on the dataset and maintained for some
time. By assuming a linear distance between EC
groups and the difference between parameter val-
ues, we spent far too much time trialling predictive
methodologies that were ineffective without this as-
sumption being true. It would have been beneficial
to the work had we tested this assumption before

investigating specific machine learning techniques.
Also, due to the size of the datasets available to us,
some of the analyses were left unfinished as large
gaps in the data for parameters such as kcat and
Vmax were difficult to overcome. This limitation,
although unavoidable, will likely affect future ef-
forts to produce realistic prior distributions for spe-
cific groups of enzymes, but will also likely reduce
in scale as more data on enzyme kinetics become
available.

4 Conclusion

To conclude, this study has investigated the potential of using the EC hierarchy to produce realistic prior
distributions of enzyme kinetic parameters. We found through the relationship between groups within
the hierarchy, that the value of parameters varied less between groups then was expected, and that the
second level of the hierarchy provided the greatest amount of predictive power for the dataset in question.
Attempts to ’learn’ the dataset using machine-learning methodologies were ineffective, suggesting that
the production of realistic prior distributions was most effective using the mean values obtained from
enzyme groups associated with the enzyme of interest.

From these findings, we have provided a strong base to work from, and a clear direction for future work.
Further research will focus on implementing these realistic prior distributions within ABC programs
such as ABC SysBio to test their feasibility in improving the predictive power of Bayesian approaches
to parameter inference.
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