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A B S T R A C T

To meet burning needs of high-resolution pressure-induced line-shape parameters in the UV/visible regions for
hot-temperature industrial and atmospheric applications as well as current and future space missions, phase-
shift theory is examined in its historical context, tested and revisited using accurate numerical potentials
and advanced trajectory models. First, a general analysis for arbitrary molecular systems is conducted in
terms of the dimensionless parameter 𝛼 determined by the differences of the Lennard-Jones parameters in
the final and initial electronic absorber’s states. Temperature dependence, use of the power law and influence
of Maxwell–Boltzmann averaging over relative velocities are addressed. Then, interaction-potential calculations
are attempted for some representative molecular pairs (NO-Ar, NO-N2, OH-Ar and OH-N2) and the isotropic
parts are fitted using the 12-6 Lennard-Jones form to get room and high-temperature line-broadening and
line-shift coefficients which are compared to available measurements. It is shown that the phase-shift theory
in its standard rectilinear-trajectory formulation provides linewidth and shift estimates accurate within 30%–
40%. Attempted improvements using numerical potentials and curved trajectories lead to closer matches with
measurements for some cases but also worsen the agreement for others. To ensure better theoretical predictions,
introduction of correction terms to the usual phase-shift integral is suggested.
1. Introduction

A spectroscopic transition is specified by three elements: a line
centre, a line intensity and a line shape. Much effort has been expended
characterizing line centres and intensities but the line shape can also
be crucial for determining overall absorption, for example by the key
CO2 molecule in the terrestrial atmosphere [1]. While the theory of
molecular line shapes for rotation–vibration transitions which generally
lie in the infrared is relatively well developed [2–4], significantly
less attention has been paid to rovibronic molecular transitions which
are usually observed at visible or ultraviolet wavelengths. Electronic
transitions of molecules such as OH, NO and O3 are important in the
Earth’s atmosphere while a variety of such transitions are crucial in
technological applications [5], including combustion [6]. Of particular
interest to us is the importance for astronomy, namely for applications
to studies of objects such as brown dwarfs and exoplanets. The standard
transit method of obtaining exoplanet spectra, as currently being em-
ployed, for example, by both the Hubble Space Telescope and the James
Webb Space Telescope, by construction probes line spectra to the point
of optical thickness in the atmospheres of exoplanets. For optically thick
lines it is the line profile that largely determines the overall opacity of
a line. Test models of exoplanets have shown their sensitivity to the
inclusion of line broadening effects [7,8] while at the same time there
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is a general awareness of the lack of line broadening data for such
studies [9]. Transport of visible and ultraviolet radiation in exoplanet
atmospheres is a subject of increasing study and it therefore seems
appropriate to investigate closely the molecular line broadening effects
at these wavelengths.

It is now a well-established fact that the pressure-broadened
linewidths of vibrotational and pure rotational transitions observed in
the infrared (IR) and microwave (MW) frequency regions are mainly
influenced by inelastic collision processes [10] and exhibit (except
for very light collision partners such as helium and hydrogen) a
pronounced dependence on the rotational quantum number 𝐽 . Theo-
retical interpretation of such linewidths and associated shifts includes
adiabatic (molecular axis reorientation and vibrational dephasing) and
non-adiabatic (state change) contributions.

The situation is completely different if the spectroscopically active
molecule jumps from its ground electronic state to an excited elec-
tronic state. Such transitions form bands of rovibronic lines which lie
generally at the ultraviolet (UV) and/or visible wavelengths; however,
we note that some important astronomical species such as TiO, VO,
CrH, FeH and CN have electronic bands which absorb strongly in the
near infrared [11]. In contrast to pure vibrational bands, the pressure-
broadened linewidths of vibronic bands lack observable 𝐽 -dependence
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which argues in favour of the minor importance of rotational energy
transfer.

In this paper we explore use of phase-shift theory for provid-
ing pressure-dependent line-shape parameters for rovibronic spectra.
This simple classical approach is chosen because of intended high-
temperature applications, in particular to exoplanetary atmospheres
where many ‘‘exotic’’ molecular pairs are detected or expected but even
approximate and rotationally-independent collisional line-shape pa-
rameters are completely missing. The next section describes a historical
context of this theory to get clearer for the general reader fundamental
differences and working formulae of theoretical treatments of rovi-
bronic and rovibrational pressure line-broadenings. Section 3 gives the
basic methodology and the results of its testing with traditionally mod-
elled and numerical intermolecular interaction potentials. Section 4
focuses on possible improvements of the trajectory model and Section 5
gives our conclusions.

2. Main steps in theoretical developments

Theoretical descriptions of the rovibronic line-shape parameters
take their roots in primary approaches developed at the beginning of
the twentieth century. The earliest treatment of spectral linewidths
induced by collisions of a radiating atom/molecule with neighbour-
ing particles is due to Lorentz [12] who used a classical radiating
oscillator model with collisions changing the phase by an arbitrary
amount and resulting, via Fourier integral analysis, in the ‘‘dispersion’’
(Lorentzian) line shape. The half-width at half-maximum (HWHM) was
expressed as a function of the mean relative speed of the colliding
molecules, the number of molecules in a unit volume and the molecular
‘‘radius’’ considered as a mere parameter (its value was found to
be very different from the kinetic collision radius). Weisskopf [13]
pushed further Lorentz’ idea of the classical oscillator assuming that
its frequency varies in time during the collision process. However,
his assumption that ‘‘big-magnitude’’ (> 1) phase shifts are equivalent
to arbitrary phase shifts and that smaller phase shifts are negligible
excluded consideration of line-centre shifts.

Another (static) approach was attempted later by Kuhn and Lon-
don [14] and by Margenau [15,16] who considered the active particles
as randomly distributed in fixed positions and simultaneously interact-
ing with all the perturbing atoms. The line shape obtained by Kuhn and
London gave a diverging intensity at the line centre and that obtained
by Margenau resulted in the width and shift proportional to the squared
gas density. A more rigorous approach was given by Jablonski [17–19]
who considered the gas as analogous to a very large molecule and calcu-
lated the stationary states of internal motion. Making an analogy with
the Franck–Condon principle [20] and averaging the expression for a
single perturber over all possible transitions, he obtained a formula
equivalent to that of Kuhn and London. The alternative approaches
explained the asymmetry of line shapes observed at high pressures but
were inappropriate for low pressures.

Jablonski attributed the disagreement of his expression with the
Lorentz–Weisskopf line shape to the non-validity of the Fourier-integral
method, but Lindholm [21] and Foley [20] successfully developed
theories of this type. Namely, Foley showed that the quantum radia-
tion theory with an adiabatic collision approximation and the actual
distribution of phase shifts yields a Fourier-integral expression for
the intensity distribution with both linewidth and shift linearly pro-
portional to the pressure. He also argued that non-adiabatic effects
are small for radiating atoms because of large separations between
their levels, but they can occur for molecular IR spectra due to close
energy gaps between the rotational levels of the active and perturbing
molecules.

The quantum-mechanical adiabatic approach initiated by Jablon-
ski [17,19] was further developed by Baranger [22] and other au-
thors [23–29]. A unified model based on the Franck–Condon principle
2

and yielding both impact (valid for the line core) and quasistatic
(applying in the wings) approximations in the appropriate limits was
suggested by Szudy and Baylis [30]. These authors assumed that the
perturbing particles move independently (the binary collision regime)
in adiabatic potentials 𝑉𝑖(𝑟) and 𝑉𝑓 (𝑟) corresponding to the initial and
final electronic states of the radiating atom and pointed out that in
classical treatments there is uncertainty in the choice of the potential
energy surface (whether it should correspond to the initial state, to the
final state or to some mixture) and that this uncertainty is frequently
avoided using straight-line trajectories independent of the adiabatic
potential. Their results indicated that for a ‘‘reasonable path’’ the radial
velocity at any trajectory point should be ‘‘the average of the initial-
and final-state radial velocities’’ with ‘‘abrupt reversal of radial veloc-
ity’’ at the turning point. It means that the usual phase-shift integral
should be improved by, at least, a first-order correction term, and
significant differences can be obtained with respect to calculations with
straight-line trajectories. In the classical limit the authors recovered
the Lindholm–Foley [20,21] expressions for the linewidth and shift,
and calculated the first-order correction term for an inverse-power
potential with straight trajectories to get the unified line-shape with
an asymmetry effect.

Some authors (see, e.g., Refs. [31–33] for atomic radiators and [34,
35] for absorbing/emitting molecules) also addressed the velocity-
dependence of collisional broadening, closely related to the tempera-
ture dependence of collisional linewidths, and analysed the procedure
for averaging over relative molecular speeds which leads to depar-
tures from the mono-velocity Lorentz shape and the appearance of an
additional linewidth parameter characterizing its speed dependence.

Theories of collisional broadening of Lorentz-shape molecular spec-
tral lines have been developing since the late 1940s in two different
ways. One of them concerned a description of MW/IR lines corre-
sponding to rotational/vibrotational transitions for which the major
effect of inelastic collisions had been evidenced by Anderson [36] and
Tsao and Curnutte [37] (so called Anderson–Tsao–Curnutte theory).
In this semi-classical approach, based on perturbation theory and the
impact approximation, two colliding molecules separated by the time-
dependent distance 𝑟 follow straight-line trajectories in their relative
motion and interact via long-range forces. As the active molecule
remains in its ground electronic state, the same intermolecular po-
tential surface is used for the initial and final states of the observed
transition. Linewidths predicted from a (usually modelled) interaction
potential have much higher values than shifts, in full agreement with
measurements. Non-perturbative treatments employing classical trajec-
tories were suggested also by Neilsen and Gordon [38,39] and by Smith
et al. [40]. A short summary of evolution of different theories up to
1980 was published by Leavitt [41], and updated reviews (including
fully quantum approaches) were given by Boulet [42] and by Hartmann
et al. [4].

Other authors such as Mizushima [43] continued developing the
phase-shift approach (intended at that time also for pure rotational
transitions) with the same assumption of the second-order perturba-
tion, straight-line trajectories and one leading term of 𝑟−𝑛 type in the
interaction potential. The practically important cases of 𝑛 = 3, 5 and
6 corresponding to dipole–dipole, quadrupole–quadrupole and disper-
sion interactions, respectively, were considered for both widths and
shifts (having the same order of magnitude), and, under assumption
of identical shift signs for all collisions, Foley’s relation for the ratio of
absolute shift to width values equal to tan[𝜋∕(𝑛−1)] was retrieved. The
expressions for collisional linewidth and shift derived by Mizushima
contained explicit temperature dependence and served as a basis for
the widely used one-power law for linewidths (a similar law for shifts
has been finally invalidated by measurements). Although Mizushima
obtained qualitative agreement with measured linewidths for some
linear molecules, further studies of microwave and infrared absorp-
tion unambiguously demonstrated the inappropriateness of phase-shift

approaches to collisional broadening and shifting of spectral lines



Journal of Quantitative Spectroscopy and Radiative Transfer 313 (2024) 108843J. Buldyreva et al.

w

𝛿

associated with rotational and vibrotational transitions. An evaluation
of phase-shift theories was given by Breene [44].

It was underlined by Margenau [45] that lines of an electronic
transition, i.e. lines of UV/visible absorption bands, are broadened
and shifted similarly to atomic lines corresponding to the type and
electronic energy jump. Therefore, classical phase-shift theories offer
an alternative to a quantum-mechanical formulation. The hypothesis
of adiabatic collisions, valid for radiating atoms, appears to be well
justified for rovibronic lines of the A 2𝛴+ ← X 2𝛱 (0,0) band (the so-
called 𝛾 band) of NO perturbed by Ar and N2 at 295 and 2800 K [46]
as well as for the B 1𝛴+ ← X 1𝛴+ (0,0) band of CO perturbed
by N2, CO2, CO at 294, 656 and 1010 K [47] which show no 𝐽 -
dependence for either widths or shifts. Also, as pointed out by Di
Rosa and coworkers [48], generally very different upper and lower
electronic states mean that the broadening and shifting of spectral
lines are likely induced only by dispersive forces for neutral and non-
polar (weakly polar) perturbers; the measured red (negative) shifts [48]
argue in favour of the dominance of dispersion forces too. In general,
the magnitudes of linewidths and shifts of rovibronic transitions are
bigger than those of (vib)rotational transitions and cannot be explained
by IR/MW line-broadening theories assuming the major contribution
from inelastic collisions.

However, it should be noted that the application of phase-shift
theories needs care because of important simplifications made: only
isotropic interactions cannot account for orientational dependence of
elastic transitions (no 𝐽 -dependence can be predicted) and inelastic
interactions are excluded. Birnbaum [49] and Thorne [50] pointed out
that inelastic transitions can contribute to the broadening but not to the
shift of rovibronic transitions through either electrostatic interactions
(which include resonance interactions) or inductive interactions or
both. These interactions induce non-radiative transitions and for some
active molecules can create a 𝐽 -dependence: e.g., for the A 2𝛴+ ←
X 2𝛱(0, 0) band of OH perturbed by Ar and N2 in the temperature
range 1400–4100 K [51] the measured linewidths (1.5 ≤ 𝐽 ≤ 17.5)
exhibited nearly negligible 𝐽 -dependence, whereas the R1-branch lines
of the same band influenced by H2O and CO2 pressure over the range
1470–2370 K [52] demonstrated some slight dependence (for H2O-
perturbation the widths are also ‘‘resonantly enhanced’’ because of the
strong dipole moment of this perturber).

Table 1 gives an idea of the magnitude and temperature-dependence
of the parameters measured for molecular systems: linewidth and shift
data as well as associated temperature exponents (extracted using the
standard power law) reported in the literature for rovibronic transitions
of NO, CO and OH perturbed by various gases. The most extensive
data set is for NO due to its chemical stability at room and elevated
temperatures. For the NO case, the data refer to the 𝛾(0,0)-band but
they can be also used for the 𝛾(1,0)-band up to 1700 K [53]. Moreover,
Di Rosa et al. [54] noted that the widths and the temperature exponents
for NO–N2 work well for NO–CO and NO–CO2, so that N2-broadening
parameters are reproduced for CO and CO2 perturbers. The use of
temperature-dependence parameters for NO–N2 furnished successful
simultaneous measurements of velocity, pressure and temperature in
planar laser-induced fluorescence of nitric oxide [55]. Very recent
measurements by Krish et al. [56] for NO–Ar mixtures in the high-
temperature range 2000–6000 K suggest the use of two sets of linewidth
and temperature-exponent parameters for 2000–2500 K and 2500–
6000 K (with the reference temperature of 296 K). According to the
theoretical analysis by Cybulski and co-authors [57], phase-shift the-
ory accounting for both long-range (e.g., dispersive) and short-range
(repulsive wall) explains such influence of the temperature range by
the leading contributions from different (attractive or repulsive) forces.
The absence of any 𝐽 -dependence for the widths and shifts of NO lines
perturbed by N2 and Ar (small oscillator strength makes resonance
effects improbable and the dipole moment of NO is small) but also by
H2O and O2 (with polarizabilities close to that of Ar and N2) makes NO
3

a molecule suitable for the phase-shift theory. For CO, quite extensive
measurements showing no dependence on rotational states were pub-
lished by Di Rosa et al. [47] for self-perturbation and perturbation by
N2 and CO2 at temperatures in the interval 294–1010 K. For OH, the
measurements performed for Ar- and N2-broadenings [51] showed no
pronounced 𝐽 -dependence, with N2 inducing slightly larger linewidths;
the 𝐽 -averaged data [51] are listed in Table 1. Absence of observed
𝐽 -dependence was also reported earlier by Engleman [58] who studied
perturbation by He, Ne, Ar, Kr, Xe, H2, D2, O2, N2, CH4, CO2, N2O, SF6,
CF4 at 293 K and by H2O at 378 K and concluded that linewidths are
independent of 𝐽 for all gases except water and N2O, for which cross-
sections were found to be a decreasing function of 𝐽 . A subsequent
study by Hwang et al. [59] of the P1(5) line of A 2𝛴+ ← X 2𝛱 (0,0)
band of OH perturbed by Ar, N2 and H2O (780–2440 K, 0.7–10.0 atm)
revealed that at high temperatures short-range repulsive interactions
can play a role and the need for quantum-mechanical calculations were
evoked, since the current state of theoretical treatment is not adequate.

Although the validity of the simple power law, at least in limited
temperature intervals, is well established for linewidths, its application
to shifts is questionable because of the sign change observed when
going from low to high temperatures. This effect was observed for IR
transitions (see, e.g., Baldacchini et al. [65] who reported shifts chang-
ing from red at 200 K to blue at 285 and 315 K for two studied lines of
NH3) and MW transitions (see Ulivi et al. [66] who observed changes
from red shifts at 77 K to blue at 195 K and 296 K for HD). For radiating
atoms, a similar change of shift sign (red for 𝑇 < 500 K, small blue
for 𝑇 > 500 K) was observed by Bobkowski et al. [67,68] for Ne; this
change was explained by Findeisen et al. [69] within the framework
of the phase-shift theory as appearing at higher temperature if the re-
pulsive interaction is accounted for. It means that a correct theoretical
description should include both long- and short-range interactions to
properly mimic line-broadening and line-shifting mechanisms from low
to high temperatures. We note also that the phase-shift-theory frame
is approximate, and improvements of the one-power law are out of
interest and scope of the present study.

Given that the line-shape parameters have been generally observed
to be independent of 𝐽 for a large number of molecular systems, below
we revisit basic phase-shift theory as developed by Mizushima [43]
(who accounted for velocity averaging in his leading-interaction-term
approach) and Hindmarsh et al. [70] (who used the mean thermal
velocity but took account of both attraction and repulsive forces in the
form of 12-6 Lennard-Jones potential model). Like these authors, we
start with the common model of straight-line trajectories but consider
both the mean-thermal-velocity approximation (MTVA) and Maxwell–
Boltzmann averaging (MBA) on relative velocities (as did Cybulski
et al. [57] in their general theoretical analysis for Lennard-Jones 12-𝑚
interactions). Then, we develop models of curved trajectories governed
by the isotropic interactions in the initial and final states of the optically
active molecule and discuss the influence of this modified trajectory
treatment on the calculated broadening/shift coefficients and their
temperature dependence for the test systems NO–Ar and NO–N2. Even

ith no 𝐽 -dependence considered, we keep the term ‘‘rovibronic’’ for
the sake of coherence with papers published on this subject and for
underlying the fact that an electronic-state change is accompanied by
a (vibration-)rotation-state change.

3. Phase-shift theory with straight-line trajectories: general anal-
ysis

3.1. Mean-thermal-velocity approximation

Within the MTVA, the phase-shift-theory formulae for collisional
linewidth 𝛾 and shift 𝛿 (in s−1) are

𝛾 = 𝑁𝑣∫

∞

0
[1 − cos 𝜂(𝑏)] 𝑏𝑑𝑏 , (1)

= 𝑁𝑣
∞
sin 𝜂(𝑏)𝑏𝑑𝑏 (2)
∫0
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Table 1
Collisional broadening and shift coefficients (in cm−1 atm−1) and temperature exponents for linewidths (𝑛) and shifts (𝑞) measured for vibronic transitions.

HWHM shift 𝑇 (K) 𝑇ref (K) HWHM 𝑇ref 𝑛 shift 𝑇ref 𝑞 Ref.

NO–N2 0.348 – 295 – – – – – [60]
0.292 −0.180(5) 295–2700 295 0.293 0.75(5) −0.180(5) 0.56 [46]
0.293(20) – ‘‘room’’ – – – – – [61]
0.279 – 300 – – – – – [62]
0.293 – 300 – – – – – [63]
0.291(3) −0.174(2) 296 – – – – – [64]

NO–Ar 0.269 – 295 – – – – – [60]
0.252 −0.159 295–2800 295 0.253 0.65(3) −0.160 0.58(3) [46]
0.25 −0.16 295 – – – – – [48]
– – 2000–2500 296 0.175 0.65 – – [56]
– – 2500–6000 296 0.370 1 – – [56]

NO–CO2 – – – 295 0.293 0.75 – – [54]
0.303(10) – ‘‘room’’ – – – – – [61]

NO–CO – – – 295 0.293 0.75 – – [54]

NO–O2 0.265 −0.16 295 295 – 0.66c – – [48]
273.2 0.105 0.7 −0.063 0.7 [54]

NO–H2O 0.395 −0.21 295 295 – 0.79c – – [48]

NO–NO 0.276 −0.171 295 – – – – – [46]
0.275 −0.17 295 – – – – – [48]

CO–N2 0.36(1) −0.215(2) 294(1) 295 0.365(15) 0.77(7) −0.22(1) 0.53(4) [47]
0.215(5) −0.150(4) 656(15) – – – – –
0.140(5) −0.109(4) 1010(20) – – – – –

CO–CO2 0.39(1) −0.166(9) 294(1) 295 0.385(15) 0.63(7) −0.17(1) 0.75(9) [47]
0.23(1) −0.102(7) 656(15) – – – – –
0.180(5) −0.065(8) 1010(20) – – – – –

CO–CO 0.37(1) −0.211(3) 294(1) 295 0.37(2) 0.65(8) −0.21(1) 0.52(1) [47]
0.230(5) −0.138(3) 656(15) – – – – –
0.160(5) −0.111(1) 1010(20) – – – – –

OH–N2 – – 1500–2500 2000 0.02a 0.67 – – [51]
– – 783–2434 1000 – 0.75 – – [59]

OH–Ar – – 1400–4100 2000 0.018a 0.94 – – [51]
– – 1268–2441 1000 – 1.0 – – [59]

OH–H2O – – 1620, 2370 1620 – [−0.1,1] – – [52]
– – 783–2434 1000 – 0.87 – – [59]

OH–CO2 [0.024,0.054] – 1680 b b [1.2,2.2] – – [52]
[0.012,0.038] – 2290 b b – – –

a Mean value estimated from Figs 4 and 5 of [51].
b Not communicated by the authors [51] because of too large values obtained for 𝑛 and important overall scatter between successive 𝐽 -values.
c Values reported in [53].
a

𝛼

a

𝛾

𝛿

with N denoting the number of molecules per unit volume, 𝑣 standing
for the mean thermal velocity and 𝜂(𝑏) being the phase shift induced
in the radiation by a collision of impact parameter b. The phase shift
𝜂(𝑏) represents an accumulation of the frequency displacements 𝛥𝜔 (in
rad s-1) at time t through the trajectory:

𝜂(𝑏) = ∫

+∞

−∞
𝛥𝜔𝑑𝑡 (3)

and 𝛥𝜔 itself is determined by the intermolecular interactions inversely
proportional to the 𝑛th powers of the intermolecular distance 𝑟.

Whereas only leading terms were considered by many authors thus
resulting in analytic final expressions for 𝛾 and 𝛿 (see, e.g., [43]),
the theoretical approach developed by Hindmarsh and coauthors [70]
suggested a much more realistic treatment via a combination of both
attractive and repulsive forces in a Lennard-Jones 12-6 form:

𝜂(𝑏) = ∫

+∞

−∞

[

𝛥𝐶 ′
12

𝑟12(𝑡)
−

𝛥𝐶 ′
6

𝑟6(𝑡)

]

𝑑𝑡 , (4)

here the parameters 𝛥𝐶12 = ℏ𝛥𝐶 ′
12 and 𝛥𝐶6 = ℏ𝛥𝐶 ′

6 refer to the differ-
nces between the Lennard-Jones intermolecular potential parameters
or the final and initial states of the transition considered (so that both
4

ositive and negative signs are possible for 𝛥𝐶 values).
3.1.1. Trajectory integrals
The use of straight-line trajectories with

𝑟2(𝑡) = 𝑏2 + (𝑣𝑡)2

for the relative molecular motion readily transforms Eq. (4) into

𝜂(𝑏) = 𝛼𝑥−11 − 𝑥−5 , (5)

where the short-hand notations

𝑥 = 𝑏
⎛

⎜

⎜

⎝

8𝑣
3𝜋 |

|

|

𝛥𝐶 ′
6
|

|

|

⎞

⎟

⎟

⎠

1∕5

nd

=
7𝑣6∕5𝛥𝐶 ′

12

27∕531∕5𝜋6∕5 |
|

|

𝛥𝐶 ′
6
|

|

|

11∕5

re introduced. The half-width and shift can therefore be written as

= 2
( 3𝜋

8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
𝑣3∕5𝑁𝐵(𝛼) , (6)

=
( 3𝜋

8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
𝑣3∕5𝑁𝑆(𝛼) (7)

depending on the so-called trajectory integrals

𝐵(𝛼) =
∞
sin2

[ 1 (𝛼𝑥−11 − 𝑥−5)
]

𝑥𝑑𝑥 , (8)
∫0 2
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𝑆(𝛼) = ∫

∞

0
sin(𝛼𝑥−11 − 𝑥−5)𝑥𝑑𝑥 . (9)

By the change of variables 𝑦 ≡ 𝑥−1 the integrals in Eqs. (8) and (9) take
the forms

𝐵(𝛼) = ∫

∞

0
sin2

[ 1
2
(

𝛼𝑦11 − 𝑦5
)

]

𝑦−3𝑑𝑦 , (10)

𝑆(𝛼) = ∫

∞

0
sin(𝛼𝑦11 − 𝑦5)𝑦−3𝑑𝑦 (11)

and can be expressed analytically but their very lengthy expressions
contain special functions. On the other hand, direct numerical integra-
tion of Eqs. (10) and (11) is time-consuming and unstable (incorrect
limits have been found for 𝛼 → 0). One integration by parts can be
erformed for 𝐵(𝛼) and 𝑆(𝛼) of Eqs. (8) and (9) to get more tractable
ntegrals for numerical evaluation:

(𝛼) = 1
4 ∫

∞

0
sin

(

𝛼𝑥−11 − 𝑥−5
)

(11𝛼𝑥−10 − 5𝑥−4)𝑑𝑥 , (12)

(𝛼) = 1
2 ∫

∞

0
cos

(

𝛼𝑥−11 − 𝑥−5
)

(11𝛼𝑥−10 − 5𝑥−4)𝑑𝑥 . (13)

he case of a 12-6 Lennard-Jones interaction corresponds to a leading
= 6 term of the dispersive forces acting between two particles and

ontributing to the isotropic part of the intermolecular potential. The
arly work of Mizushima [43] (dealing with one-term interactions)
onsidered also interactions varying as 𝑚 = 5 and 𝑚 = 3 inverse
owers of the intermolecular distance, as he aimed at the description
f microwave spectra due to dipole–dipole and quadrupole–quadrupole
nteractions. Cybulski and co-authors [57] also addressed the cases

= 5 and 𝑚 = 4 with the goal of checking the applicability of
he one-power law for the temperature dependence of broadening and
hifting coefficients for quadrupole–quadrupole and dipole–quadrupole
nteractions. However, it should be kept in mind that the isotropic
nteractions determining the linewidth and shift in the framework of
hase-shift theory, besides the repulsive wall, come from the dispersive
art of long-range forces which are represented by the sum of 𝑟−6,
−8, 𝑟−10, etc. contributions. Therefore, we do not have to deal with
< 6 for our goal of estimating broadening and shift parameters for

ibronic transitions. Nevertheless, for the sake of comparisons with the
reviously published results [43,57] we provide the bulk of definitions
f 𝛼, 𝑥, 𝐵(𝛼), 𝑆(𝛼) for Lennard-Jones 12-𝑚 interactions (𝑚 = 6, 5, 4)
nd the corresponding expressions for linewidths and shifts (Tables A.1
nd A.2 in Appendix A).

The results of numerical integrations for the trajectory integrals
orresponding to Lennard-Jones interactions 12-6, 12-5 and 12-4 are
lotted in Fig. 1 for possible combinations of 𝛥𝐶 ′

12 and 𝛥𝐶 ′
𝑚 signs. As

an be seen from Fig. 1 for 𝑚 = 6, the trajectory-integrals dependence
n 𝛼 corresponds to the curves reported by Hindmarch et al. [70], and
he two other panels (𝑚 = 5 and 4) show similar behaviour but with
ifferent asymptotic values for 𝛼 → 0 and smaller 𝛼 values needed to
isualize the convergence. (Remember that the definitions of 𝛼 and the
ntegration variable 𝑥 differ for different 𝑚.)

.1.2. Temperature dependence
With the help of trajectory integrals, the linewidth 𝛾 and shift 𝛿

both in s−1) corresponding to the Lennard-Jones 12-6 potential are
iven by Eqs. (6) and (7). However, in practice it is more convenient to
ork with broadening and shifting coefficients per unit pressure (atm).
s 𝑁 = 𝑁𝐴𝑃∕(𝑅𝑇 ), where 𝑁𝐴 is Avogadro number, 𝑃 is pressure and 𝑅

s the universal gas constant, we can get from Eqs. (6) and (7) the ratios
(

v
)

∕𝑃 and 𝛿
(

v
)

∕𝑃 . Moreover, the commonly used wavenumber units
f cm−1 are preferable instead of frequency units s−1, so that additional
ivision by the speed of light 𝑐 should be performed. Finally, the
emperature dependence contained in 𝑁 and in 𝑣 = (8𝑘𝑇 ∕𝜋𝜇)1∕2 (where
𝑘 is Boltzmann constant and 𝜇 is the reduced mass) can be written
5

Fig. 1. Broadening integrals 𝐵(𝛼), 𝐵(−𝛼) and shift integrals 𝑆(𝛼), −𝑆(−𝛼) represented,
espectively, by black, blue, green and red lines for MTVA-calculations and symbols for
BA-calculations as functions of the parameter 𝛼 for Lennard-Jones interactions 12-6

top panel), 12-5 (middle panel) and 12-4 (bottom panel).

own explicitly. We get the broadening and shifting coefficients (in
m−1 atm−1) as functions of temperature:

(𝑇 ) = 1.6444 ⋅ 1014 ||
|

𝛥𝐶 ′
6
|

|

|

2
5 𝜇−0.3𝑇 −0.7𝐵(𝛼(𝑇 )) , (14)

(̃𝑇 ) = 8.222 ⋅ 1013 ||
|

𝛥𝐶 ′
6
|

|

|

2
5 𝜇−0.3𝑇 −0.7𝑆(𝛼(𝑇 )) , (15)

where 𝛥𝐶 ′
6 are in rad s−1 cm6, 𝜇 in Dalton and 𝑇 in K.

Introducing a reference temperature 𝑇ref and the associated �̃�
(

𝑇ref
)

,
𝛿(𝑇ref ) coefficients allows analysis of the temperature dependence for
various sets of Lennard-Jones parameters 𝛥𝐶12, 𝛥𝐶6 (i.e. various 𝛼
values):

𝜁 =
�̃�(𝑇 )

�̃�
(

𝑇ref
) =

(

𝑇
𝑇ref

)−0.7 𝐵(𝛼(𝑇 ))
𝐵(𝛼(𝑇ref ))

=
(

𝑇
𝑇ref

)−0.7 𝐵(𝛼(𝑇 ))
𝐵((𝑇ref∕𝑇 )

0.6𝛼(𝑇 ))
, (16)

𝜉 =
𝛿(𝑇 )

𝛿
(

𝑇ref
)
=
(

𝑇
𝑇ref

)−0.7 𝑆(𝛼(𝑇 ))
𝑆(𝛼(𝑇ref ))

=
(

𝑇
𝑇ref

)−0.7 𝑆(𝛼(𝑇 ))
𝑆((𝑇ref∕𝑇 )

0.6𝛼(𝑇 ))
, (17)

where the definition of 𝛼 leading to

𝛼(𝑇 ) = 𝛼(𝑇ref )
(

𝑇
)

3
5

𝑇ref
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Fig. 2. Reduced broadening (upper panels) and shifting (lower panels) coefficients as functions of temperature obtained with the MTVA (left panels) and MBA (right panels) for
various 𝛼-values (symbols) and their fits to one-power laws (solid lines). Plots corresponding to 𝛼 = 10−4, 10−2, 100, 101, 102 and 104 are depicted, respectively, in black, blue,
green, grey, orange and red.
w

𝐹

a

has been used. Note that our definitions of 𝜁 and 𝜉 differ from those
adopted by Cybulski et al. [57], who got dimensionless broadening
and shifting coefficients by dividing �̃� and 𝛿 by the factors standing
before the products of 𝑇 −0.7 and the trajectory integrals. Small 𝛼-values
(dominant 𝐶6 attraction) lead to unit ratios of trajectory integrals, so
that the power laws

𝛾(𝑇 ) = �̃�
(

𝑇ref
)

(

𝑇
𝑇ref

)𝑛
, (18)

𝛿(𝑇 ) = 𝛿
(

𝑇ref
)

(

𝑇
𝑇ref

)𝑞
(19)

ith 𝑛 = 𝑞 = −0.7 are obtained in this limit case. The validity of this
imple power law with respect to the sign of the line shift is discussed
n detail below. To investigate the applicability of these simple power
aws for increasing 𝛼, we plotted in Fig. 2 (left-hand panels) examples of
he 𝑇 -dependence of the reduced broadening and shifting coefficients
with 𝑇ref = 300 K) for 𝛼 = 10−4, 10−2, 100, 101, 102, 104 over

wide temperature range between 200 and 6000 K and performed
heir linear fits (indicated by solid lines). For the 𝛼-values listed, the
owers 𝑛 = − 0.70033(6), −0.698(2), −0.683(6), −0.5658(2), −0.5794(2),
0.58941(2) were deduced for line broadening, confirming thus the
0.7 value for small 𝛼 and the high-limit value −0.59 characteristic of

he pure 𝑟−12 interaction. For line shifts, the points corresponding to
= 10 do not follow a linear dependence in log–log coordinates,

o that it was impossible to determine the corresponding power. For
he remaining 𝛼-values the powers were found to be 𝑞 = − 0.7002(1),
−0.701(3), −1.044(6), −0.436(4), −0.5791(2), again in agreement with the
limit values −0.7 and −0.59 for 𝛼 → 0 and 𝛼 → ∞, respectively.

The validity of the power law is addressed in more detail in Fig. 3,
where the powers extracted from linear fits in log–log coordinates
are plotted versus 𝛼. Both for linewidth and shift powers, the 𝛼-
dependence is like those reported by Cybulski et al. [57]. The left- and
right-hand sides of the lower-panel plot refer to negative- (red-) and
positive- (blue-) shift domains, where the interactions are dominated,
respectively, by attractive and repulsive forces. For intermolecular
6

interactions corresponding to 𝛼 about 10 the shift-sign change occurs
(the trajectory integral 𝑆(𝛼) becomes equal to zero at 𝛼∗ = 3.9792), but
the exact temperature for which it happens depends on the molecular
system considered through 𝛼’s dependence on 𝛥𝐶 ′

12 and 𝛥𝐶 ′
6. In this 𝛼

region, where a strong competition between attraction and repulsion
takes place, as already pointed out by Cybulski et al. [57], the simple
power law does not apply to the temperature dependence of line shifts
(see also the case 𝛼 = 10 on the lower panel of Fig. 2).

3.2. Maxwell–Boltzmann average over velocities

Following the work by Mizushima [43], the velocity-averaged ex-
pressions for the linewidth and shift (in frequency units) are given by

⟨𝛾⟩ = (2𝜋)−1 ∫ 𝐹 (𝑠) [1 − cos 𝜂(𝑠)] 𝑑𝑠 , (20)

⟨𝛿⟩ = (2𝜋)−1 ∫ 𝐹 (𝑠) sin 𝜂(𝑠)𝑑𝑠 , (21)

here the collision parameter 𝑠 = {𝑏, 𝑣} and

(𝑠)𝑑𝑠 = 8𝜋1∕2
( 𝜇
2𝑘𝑇

)3∕2
𝑏𝑑𝑏𝑣3𝑒−

𝜇𝑣2
2𝑘𝑇 𝑑𝑣𝑁.

Like the MTVA calculations considered in the previous subsection, the
integration on 𝑏 leads to trajectory integrals but now their parameter
𝛼 is velocity-dependent and Maxwell–Boltzmann averaging should be
performed. The natural choice for the dimensionless velocity v is such
that 𝑣 = v𝑣0 with the most probable velocity 𝑣0 =

(

2𝑘𝑇
𝜇

)1∕2
. In terms

of v, the new expression for 𝛼 reads

𝛼𝑀𝐵 = 7
27∕531∕5𝜋6∕5

(

2𝑘𝑇
𝜇

)3∕5 𝛥𝐶 ′
12

|

|

|

𝛥𝐶 ′
6
|

|

|

11∕5
v6∕5 (22)

nd depends explicitly on the temperature. Eqs. (20) and (21) become

⟨𝛾(𝑇 )⟩ = 2
9
5 3

2
5

1

(

2𝑘𝑇
)

3
10

|

|

|

𝛥𝐶 ′
6
|

|

|

2
5

∫

∞
v

13
5 𝑒−v

2
𝐵(𝛼𝑀𝐵(v, 𝑇 ))𝑑v𝑁
𝜋 10
𝜇 0
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Fig. 3. Powers extracted from linear fits in log–log coordinates as functions of 𝛼 for line-broadening (upper panel) and shift (lower panel) coefficients.
≡ 2
9
5 3

2
5

𝜋
1
10

(

2𝑘𝑇
𝜇

)
3
10

|

|

|

𝛥𝐶 ′
6
|

|

|

2
5
⟨𝐵(𝑇 )⟩𝑁 , (23)

⟨𝛿(𝑇 )⟩ = 2
4
5 3

2
5

𝜋
1
10

(

2𝑘𝑇
𝜇

)
3
10

|

|

|

𝛥𝐶 ′
6
|

|

|

2
5

∫

∞

0
v

13
5 𝑒−v

2
𝑆(𝛼𝑀𝐵(v, 𝑇 ))𝑑v𝑁

≡ 2
4
5 3

2
5

𝜋
1
10

(

2𝑘𝑇
𝜇

)
3
10

|

|

|

𝛥𝐶 ′
6
|

|

|

2
5
⟨𝑆(𝑇 )⟩𝑁 , (24)

where the velocity-averaged trajectory integrals ⟨𝐵(𝑇 )⟩ and ⟨𝑆(𝑇 )⟩ keep
parametric dependence on the interacting system via 𝛥𝐶 ′

12, 𝛥𝐶
′
6 and 𝜇.

3.2.1. Trajectory integrals
To get an idea on the influence of velocity averaging on the tra-

jectory integrals, we can rewrite ⟨𝛾(𝑇 )⟩, ⟨𝛿(𝑇 )⟩ with the same factors
2
(

3𝜋
8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
𝑣3∕5𝑁 ,

(

3𝜋
8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
𝑣3∕5𝑁 as in Eqs. (6) and (7):

⟨𝛾(𝑇 )⟩ = 2
( 3𝜋

8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
𝑣3∕5𝑁 ⋅ 2

7
5 𝜋− 1

5

×∫

∞

0
v

13
5 𝑒−v

2
𝐵(𝛼𝑀𝐵(v, 𝑇 ))𝑑v , (25)

⟨𝛿(𝑇 )⟩ =
( 3𝜋

8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
𝑣3∕5𝑁 ⋅ 2

7
5 𝜋− 1

5

×∫

∞

0
v

13
5 𝑒−v

2
𝑆(𝛼𝑀𝐵(v, 𝑇 ))𝑑v . (26)

On the other hand, 𝛼𝑀𝐵 can be expressed in terms of 𝛼:

𝛼𝑀𝐵 = 7
27∕531∕5𝜋6∕5

(

2𝑘𝑇
𝜇

)3∕5 𝛥𝐶 ′
12

| ′ |11∕5
v6∕5
7

|

|

𝛥𝐶6|
|

= 7
27∕531∕5𝜋6∕5

(𝜋
4

)3∕5
𝑣6∕5

𝛥𝐶 ′
12

|

|

|

𝛥𝐶 ′
6
|

|

|

11∕5
v6∕5 =

(𝜋
4

)3∕5
𝛼v6∕5 . (27)

So, the quantities 2
7
5 𝜋− 1

5
⟨𝐵(𝛼𝑀𝐵(𝛼))⟩ and 2

7
5 𝜋− 1

5
⟨

𝑆
(

𝛼𝑀𝐵(𝛼)
)⟩

can be
plotted as functions of 𝛼 and compared to 𝐵(𝛼) and 𝑆(𝛼), respectively.
Because of the double integration required and consequently increased
CPU time, computations were performed for some fixed 𝛼-values (see
symbols in Fig. 1); these results clearly show only negligible differences
with respect to the MTVA-results. The most pronounced differences are
seen for the line-shift integrals 𝑆(𝛼) at 𝛼 = 0.1, where the oscillations
observed for MTVA data are reduced. (This fact was also mentioned for
broadening by Cybulski et al. [57]).

3.2.2. Temperature dependence
The MB-averaged broadening and shifting coefficients are given by

⟨�̃�(𝑇 )⟩ = 3.4516 ⋅ 1014 ||
|

𝛥𝐶 ′
6
|

|

|

0.4
𝜇−0.3𝑇 −0.7

⟨𝐵(𝑇 )⟩ , (28)

⟨

𝛿(𝑇 )
⟩

= 1.7258 ⋅ 1014 ||
|

𝛥𝐶 ′
6
|

|

|

2
5 𝜇−0.3𝑇 −0.7

⟨𝑆(T)⟩ , (29)

where, as previously (see Eqs. (14) and (15)), 𝛥𝐶 ′
6 are in rad s−1 cm6,

𝜇 in Dalton and 𝑇 in K. Introducing the MBA-equivalents of Eqs. (16)
and (17)

⟨𝜁⟩ =
⟨�̃�(𝑇 )⟩

⟨

�̃�
(

𝑇ref
)⟩ =

(

𝑇
𝑇ref

)−0.7
⟨𝐵(𝑇 )⟩
⟨𝐵(𝑇ref )⟩

=
(

𝑇
)−0.7

⟨𝐵(𝛼𝑀𝐵(𝑇 ))⟩
⟨ 0.6 ⟩

, (30)

𝑇ref 𝐵((𝑇ref∕𝑇 ) 𝛼𝑀𝐵(𝑇 ))
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⟨𝜉⟩ =

⟨

𝛿(𝑇 )
⟩

⟨

𝛿
(

𝑇ref
)

⟩ =
(

𝑇
𝑇ref

)−0.7
⟨𝑆(𝑇 )⟩
⟨𝑆(𝑇ref )⟩

=
(

𝑇
𝑇ref

)−0.7
⟨𝑆(𝛼𝑀𝐵(𝑇 ))⟩

⟨

𝑆((𝑇ref∕𝑇 )
0.6𝛼𝑀𝐵(𝑇 ))

⟩
, (31)

we can plot them against temperature for the same 𝛼-values as in
the MTVA case (right panels in Fig. 2) and perform new fits in log–
log coordinates to deduce the temperature-dependence exponents. As
an additional integration on velocity is now needed, the CPU cost
increases significantly, and only 7 temperature points are shown. Very
similar values with respect to those of Section 3.1.2 are obtained for
the temperature exponents of broadening and shifting: 𝑛𝑀𝐵 = −
0.7000040(4), −0.7022(5), −0.69(2), −0.5687(4), −0.5803(6), −0.58954(8)
and 𝑞𝑀𝐵 = −0.69999(2), −0.6987(1), −1.06(2), −0.45(1), −0.5801(7). The
number of points used for the fits was different in the MTVA and MBA
cases, so only leading significant digits in the temperature exponents
can reliably be compared. If we limit the comparison to two decimals,
𝑛 and 𝑛𝑀𝐵 are identical for all 𝛼 values considered except for 𝛼 = 1 (for
which 𝑛 = − 0.68 and 𝑛𝑀𝐵 = − 0.66) whereas 𝑞 and 𝑞𝑀𝐵 differ for
𝛼 = 1 (𝑞 = − 1.04, 𝑞𝑀𝐵 = − 1.06) and for 𝛼 = 102 (𝑞 = − 0.44,
𝑞𝑀𝐵 = − 0.45).

The corresponding one-power laws

⟨�̃�(𝑇 )⟩ =
⟨

�̃�
(

𝑇ref
)⟩

(

𝑇
𝑇ref

)𝑛𝑀𝐵
, (32)

⟨

𝛿(𝑇 )
⟩

=
⟨

𝛿
(

𝑇ref
)

⟩

(

𝑇
𝑇ref

)𝑞𝑀𝐵
(33)

tested for a range of 𝛼-values provide the temperature exponents rep-
resented by empty circles in Fig. 3. In the case of line shifts (lower
panel) the use of Maxwell–Boltzmann average does not significantly
modify the results: just the amplitude of the local ‘‘oscillation’’ (local
maximum) in the left-hand portion of the curve is slightly reduced. In
contrast, for the linewidths (upper panel), the averaging influences in
a non-negligible manner the temperature exponents in the region of 𝛼
values around 0.1–0.5, so for molecular systems corresponding to such
𝛼 values the MBA calculations are preferable.

3.3. Phase-shift theory with straight-line trajectories: applications

The general considerations presented above are supported below
by calculations for some test systems. To choose them, we took into
account the availability of experimental data up to high temperatures
(see Table 1) and representativity of various leading interactions. NO
and OH with the permanent dipole moments differing by an order of
magnitude (0.158 D [71] and 1.668 D [72], respectively) were chosen
as active molecules whereas Ar and N2 — a rare-gas atom and a non-
polar molecule with the quadrupole as its leading multipole — were
taken as perturbers. With these combinations we probe the behaviour
of the active molecule with weak and strong dipoles and the role of
dispersion/induction and electrostatic interactions.

Inter-molecule potential energy surfaces (PES) of the complexes
NO–Ar, NO–N2, OH–Ar and OH–N2 were computed ab initio using
the MOLPRO quantum chemistry package [73] at the coupled-cluster
level of theory CCSD(T): RCCSD(T)/aug-cc-pV(X+d)z (spin-restricted)
or UCCSD(T)/aug-cc-pV(X+d)z (spin-unrestricted), where X = T,Q. [74]
Since CCSD(T) is a single reference theory, the T1 diagnostic [75] for
all ground and excited state calculations was checked against both
the 0.044 and 0.02 criteria (criteria C1 and C2, herein) suggested by
Rienstra-Kiracofe et al. [76] and by Lee and Taylor [75], respectively,
where T1 values larger than this indicate the need for a multirefer-
ence electron correlation procedure. The corresponding inter-atomic
distances were fixed at their equilibrium values, while the distance and
orientation between the radiator (NO or OH) and perturber were varied
over sets of grid points in Jacobi coordinates: {𝑟𝑖, 𝜃𝑗} for collisions with
Ar or {𝑟 , 𝜃 , 𝜃 , 𝜙 } for collisions with N (see Fig. 4).
8

𝑖 1𝑗 2𝑘 𝑙 2
Fig. 4. Collision geometry and Jacobi coordinates for NO perturbed by Ar and N2.

For collisions with Ar, the isotropic parts of the PESs corresponding
to the ground and excited electronic states were extracted with the use
of expansions over series of 𝑙th rank Legendre polynomials 𝑃𝑙:

𝑉 (𝑟, 𝜃) =
∑

𝑙
𝑉𝑙 (𝑟)𝑃𝑙(cos (𝜃)) ,

where 𝑉𝑙 (𝑟) are the radial potential terms with 𝑙 = 0 giving the isotropic
component. For collisions with N2, the approach of limiting geometries
for homonuclear–heteronuclear diatoms (A2-BC) was used [77] and the
isotropic term was

𝑉 (𝑟) = 1
18

{4𝑉𝐻 (𝑟)+𝑉𝐿1
(𝑟)+𝑉𝐿2

(𝑟)+2[𝑉𝑇1 (𝑟)+𝑉𝑇2 (𝑟)+2(𝑉𝑇3 (𝑟)+𝑉𝑋 (𝑟))]} ,

where the indices on the potentials in the rhs indicate the contributing
geometries (see [77] for more details). The isotropic parts were further
fitted by 12-6 Lennard-Jones expressions (see Eq. (4)).

We note here that within the phase-shift theory the accuracy of
the final computed broadening parameters is limited to not the quality
of ab initio PESs but rather the theory itself. Phase-shift theory is an
approximate frame whereby semi-classical methods for modelling the
collision processes are made, such as the notion of a classical trajectory
and the lack of rotation–vibration effects accounted for. Furthermore,
we fit the isotropic interaction potential derived from our ab initio
PESs to a simple Lennard-Jones form, so any inaccuracies introduced
by choice of quantum chemistry theory will not effect the computed
broadening parameters with any appreciable magnitude since errors
introduced by the Lennard-Jones approximation will be greater. What
phase-shift theory allows us to do is derive values for the dimensionless
parameter 𝛼 and in turn the line broadening parameters for a general
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system of active molecule involved in an electronic transition and
perturber.

3.3.1. NO–Ar
The interaction PESs of the NO–Ar complex were computed for

the ground X 2𝛱 and first excited A 2𝛴+ electronic states of NO
approximating the radiator by a rigid rotor with equilibrium bond
lengths 𝑟e = 1.15077 Å and 𝑟e = 1.06434 Å, respectively. Due to the
omputational costs of the RCCSD(T)/aug-cc-pV(X+d)z level of theory
X = T,Q), a grid of 62 intermolecular distances NO–Ar corresponding
o the range 2–15 Å and only 5 angles between the inter-molecular
istance vector and the NO molecular axis equal to 30, 60, 90, 120
nd 150 degrees were considered, providing 310 points in total.

The T1 diagnostic never exceeded values of 0.017 and 0.032 for
he ground- and excited-state calculations, respectively, both less than
he C1 and C2 criteria. This confirms that our computed wavefunctions
re described well by a single reference determinant and that there is
inimal multireference character.

When introducing the Ar atom from non-linear geometries the X
𝛱 ground state of NO is lowered in symmetry, creating a symmetric
′ and antisymmetric 𝐴′′ states of the NO–Ar complex within the C𝑠
oint group. This lowering in symmetry means that NO(A 2𝛴+)–Ar is
o longer the lowest 𝐴′ symmetry state. An advantage of this system
s that its weak interaction does not break the orthogonality of NO’s
olecular orbitals, meaning that one can converge a CCSD(T)/aug-cc-
V(X+d)z (X = T,Q) calculation to the excited NO(A)–Ar state through
otation of the electron orbitals centred on the active molecule. We
otated the outer electron orbital of NO obtained via an initial restricted
artree–Fock (RHF) calculation which was then used in a second RHF
alculation preceding the actual RCCSD(T) calculation. Testing was
one using a CASSCF+icMRCI (Complete Active Space Self-Consistent
ield [78] + internally-contracted Multi-Reference Configuration Inter-
ction [79]) approach and the aug-cc-pV(X+d)z (X = T,Q) basis sets,
owever we often obtained strange results where multiple disconti-
uities are seen over the potential minimum, especially within the
xcited-state PES. The RCCSD(T) calculations, however, produced more
table results with a lower dissociation energy, in accordance with the
alues predicted by Holmes-Ross and Lawrance [80], Tsuji et al. [81],
lexander [82] and Sumiyoshi and Endo [83].

For the ground state’s isotropic part of 12-6 Lennard-Jones, an
verall good fit was obtained, with a correct potential depth (maxi-
al difference ‘‘calculated’’ − ‘‘fitted’’ of 8 cm−1) and a very reliable

epresentation of the repulsive wall up to 3500 cm−1 (5000 K). For
he excited state, the shape of the computed potential differed strongly
rom a 12-6 Lennard-Jones one. Having in mind high-temperature ap-
lications, we performed a first fit (denoted FIT I below) for intermolec-
lar distances corresponding to the repulsive-wall region; this choice
llowed a good representation for energies >2000 cm−1 and a nearly
orrect representation for energies between 1000 and 2000 cm−1, but
uch worse results elsewhere. A second fit (FIT II) was performed on

he attraction region, with a reliable potential representation beyond
.4 Å.

The results of the NO–Ar PESs fits using 12-6 Lennard-Jones expres-
ions are collected in Table 2 together with broadening and shifting
oefficients values calculated at given temperatures. Note that for
he NO–Ar case the shift-sign-change condition 𝛼∗ = 3.9792 is never
ealized with FIT I Lennard-Jones parameters (since 𝛼 is always nega-
ive for our negative 𝛥𝐶 ′

12-value); for FIT II the corresponding critical
emperature 𝑇 ∗ (about 108 K) is unreachable. First, it can be seen that
he intermolecular distance region chosen for fits (repulsive wall for FIT
and ‘‘pure-attraction’’ zone for FIT II) influences strongly the resulting

inewidth and shift. Much better agreement with measurements is
btained for the Lennard-Jones parameters of FIT I (underestimation by
bout 20% or even less for 𝛿 at 295 K), conversely FIT II leads to overes-
imates by nearly 100%. A correct representation of the repulsive wall
9

n the Lennard-Jones potential model therefore appears to be crucial o
or getting reliable line-shape parameters. This is easily understandable
rom the viewpoint of linewidths which are mainly due to short-range
ollisions but is rather surprising for line shifts which are produced for
he most part by distant collisions.

.3.2. NO-N2
Similar to the NO–Ar case, the ground- and first-excited-state PESs

of the NO–N2 complex were calculated at the RCCSD(T)/cc-pV(Q+d)z
level of theory using MOLPRO [73]. The T1 diagnostic never ex-
ceeded 0.022 and 0.017, respectively, both less than the 0.044 cri-
terion [76] for all ground- and excited-state calculations, confirming
minimal multireference character.

Seven leading configurations of NO–N2 geometry were taken into
account: two linear L, three perpendicular T, a parallel H, and the X
configurations. As for NO–Ar, the near linear geometries of the excited
state were the most difficult to converge and the UCCSD(T)/aug-cc-
pV(X+d)z (X = T, Q) level of theory was used.

The results of isotropic PESs fits to 12-6 Lennard-Jones expres-
sions (a full-range fit for the ground state and a repulsive-wall fit
for the excited state) are collected in Table 3 together with the cor-
responding broadening and shifting coefficients values calculated at
different temperatures. In comparison with the NO–Ar results, the
calculated line-broadening coefficients are below measurements by
approximately 30% (instead of 20%) and the underestimation of the
shifts at the high temperature of 2700 K rises to 44%. Therefore, the
case of perturbation by N2 is less well described by the traditional
phase-shift theory. We can evoke a strong sensibility of the calculated
values to the Lennard-Jones-form fits, so that lowering by 10% is not
very meaningful. On the other hand, the repulsion is much stronger
in the excited state for NO–N2 than for NO–Ar (see 𝐶12𝑓 parame-
ters in Tables 2 and 3) but the straight-line trajectories ignore this
fact.

3.3.3. OH-Ar
For all geometries of the OH(X)–Ar complex, the UCCSD(T)/aug-cc-

pVQz (ground electronic state) and MRCI/aug-cc-pV5z (excited elec-
tronic state) levels of theory were used. The T1 diagnostic (both for the
ground and electronic states) on average gave 0.004 and only 9 points
of which exceeded the 0.044 criterion [76] at a value of 0.075. For the
first electronically excited state A2𝛴+, electronic orbitals were rotated
as for NO–Ar. However, convergence to the correct energy was not
reached, which was checked by studying the difference in ground and
excited coupled cluster energies for the complex at a 15 Å separation. A
CASSCF+icMRCI approach was then used to compute the excited state
ES using the larger aug-cc-pV5Z basis sets.

A grid of intermolecular distances corresponding to the range 2–
5 Å and the angles between the intermolecular distance vector and the
H molecular axis equal to 10–180 degrees in 10 degree steps provided
275 points in total. The ground and first excited electronic states of
H are the same as NO, when introducing the Ar atom from non-linear
eometries, we see again the ground X 2𝛱 state of OH lift degeneracy
nd energetically lowered, creating a symmetric 𝐴′ and antisymmetric
′′ state of the OH–Ar complex within the C𝑠 point group.

Among various Lennard-Jones parameter sets obtained for different
itting regions we selected the values corresponding to a reliable fit of
he repulsive wall up to 2000 cm−1 for the ground state and to the range
50–2800 cm−1 for the excited state. These values are given in Table 4
ogether with the corresponding line-broadening and shift coefficients.

.3.4. OH–N2
Unfortunately, all out attempts to produce adequate PESs for the

H–N2 complex were unsuccessful. Initially, the same methodology
sed for the NO–N2 system was tried for OH–N2, but using the
CCSD(T) level of theory. However, this failed to converge for the

ystem’s energy even at a separation of 15 Å. For the EoM (Equation-

f-Motion) coupled-cluster method, the wavefunctions, describing their
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Table 2
NO–Ar Lennard-Jones interaction potential parameters for the initial (𝑖) and final (𝑓 ) electronic states, corresponding differences 𝛥𝐶12 =
𝐶12𝑓−𝐶12𝑖, 𝛥𝐶6 = 𝐶6𝑓−𝐶6𝑖 and other characteristics involved in line broadening and shifting calculations. Pairs of calculated line-shape coefficients
(rounded to 3 decimals, as typical measurements) correspond to MTVA and MBA approaches. Measured coefficients are given as intervals when
multiple data are available in the literature; values marked by an asterisk are calculated by the power law with reference-temperature values
and temperatures exponents determined experimentally [46].

NO–Ar (Fit I) NO–Ar (Fit II)

C12𝑖 (cm−1 Å12) 2 750 936 152 2 750 936 152
C12𝑓 (cm−1 Å12) 384 146 855 170 568 593 745
C6𝑖 (cm−1 Å6) 1 052 272 1 052 272
C6𝑓 (cm−1 Å6) 3920 12 238 050
𝛥𝐶12 (109 cm−1 Å12) −2.36679 167.818
𝛥𝐶6 (106 cm−1 Å6) −1.04835 11.1858
𝑇 (K) 295 2800 295 2800
𝑣 (104 cm−1) 6.03702 18.599 6.03702 18.599
𝛼 −0.00465231 −0.0179502 0.00180467 0.00696304
�̃� (cm−1 atm−1) 0.206/0.202 (calc) 0.043/0.042 (calc) 0.537/0.519 (calc) 0.111/0.107 (calc)

[0.25,0.27] (expt) 0.058 (expt*) [0.25,0.27] (expt) 0.058 (expt*)

𝛿 (cm−1 atm−1) −0.149/−0.146 (calc) −0.031/−0.030 (calc) −0.383/−0.378 (calc) −0.077/−0.078 (calc)
−0.16 (expt) −0.043 (expt*) −0.16 (expt) −0.043 (expt*)
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Table 3
Same as Table 2 but for NO–N2.

C12𝑖 (cm−1 Å12) 2 153 076 015
C12𝑓 (cm−1 Å12) 1 715 292 473
C6𝑖 (cm−1 Å6) 827 259
C6𝑓 (cm−1 Å6) 116 870
𝛥𝐶12 (109 cm−1 Å12) −0.43778
𝛥𝐶6 (106 cm−1 Å6) 0.71039
𝑇 (K) 295 2800
𝑣 (104 cm−1) 6.56549 19.8627
𝛼 −0.00224041 −0.00845771
�̃� (cm−1 atm−1) 0.186/0.181 (calc) 0.039/0.039 (calc)

[0.28,0.35] (expt) 0.056 (expt*)

𝛿 (cm−1 atm−1) −0.135/−0.132 (calc) −0.029/−0.028 (calc)
[−0.17,−0.18] (expt) −0.052 (expt*)

Table 4
Same as Table 2 but for OH–Ar.

C12𝑖 (cm−1 Å12) 124 179 416.6
C12𝑓 (cm−1 Å12) 1 110 474 162.3
C6𝑖 (cm−1 Å6) 95 554.75719
C6𝑓 (cm−1 Å6) 377.7450683
𝛥𝐶12 (107 cm−1 Å12) −1.37053
𝛥𝐶6 (104 cm−1 Å6) −9.5177
𝑇 (K) 295 2000
𝑣 (104 cm−1) 7.23557 18.8398
𝛼 −0.00656329 −0.0206941
�̃� (cm−1 atm−1) 0.088/0.086 (calc) 0.023/0.023 (calc)

– (expt) 0.018 (expt*)

𝛿 (cm−1 atm−1) −0.064/−0.062 (calc) −0.017/−0.016 (calc)
– (expt) – (expt*)

difference to the RHF wavefunctions computed prior, would often
diverge to values > 100 after only 2–3 iterations. Attempts were
lso made using a RMP2 (second-order restricted Møller–Plesset) per-
urbation theory, but correct convergence in the excited state en-
rgy was not possible. Tests were made using the aug-cc-pVXz (X

T,Q,5,6,T+d,Q+d,5+d,6+d) basis sets [84,85] for both UCCSD(T)
nd RMP2 calculations. Finally, icMRCI calculations using molecular
rbitals obtained from state-averaged CASSCF calculations were tried
or the system, but extremely long convergence times were seen, which
s not practical for the number of geometries we need to compute. We
eave the OH–N2 system for a later study, where we aim to use the
FOUR software [86] to employ further coupled cluster methods on
his system.

.4. Numerical potentials for straight-line trajectories

The relatively straightforward formulae for linewidth/shift calcula-
10

ions (see Eqs. (16) and (17)) rely on a simplified representation of
he isotropic intermolecular interaction by a 12-6 Lennard-Jones form,
hich enables analytic integration for the phase shift 𝜂(𝑏) and con-
erged numerical integrations over the collision parameter(s) (𝑏 in the
TVA and 𝑏 and 𝑣 in the MBA) for the linewidth 𝛾 and shift 𝛿. However,

s demonstrated, e.g., by our fits for the excited electronic state of
O interacting with Ar (Table 2), the Lennard-Jones parameters are
xtremely sensitive to the choice of the intermolecular-distance interval
nd strongly influence the computed linewidth and shift. Therefore,
n the frame of the MTVA adopted for simplicity, we attempted a
umerical integration of the computed difference 𝛥𝑉 (𝑟) = 𝑉𝑓 (𝑟) − 𝑉𝑖(𝑟)
f the isotropic interactions NO–Ar in the final and initial electronic
tates of the active molecule (shown in Fig. 5 in comparison with
ennard-Jones-fit curves) to get the phase-shift dependence on 𝑏:

(𝑏) = 2
𝑣 ∫

∞

0

𝛥𝑉 (𝑟)
√

1 − (𝑏∕𝑟)2
𝑑𝑟 . (34)

Contrary to the inverse-power potential models where the unphys-
ical zero value of the lower limit is accounted for by special 𝛤 -
unctions [43], the use of a numerical 𝛥𝑉 (calculated in our NO–Ar
ase for the intermolecular distances from 2 to 15 Å) gives rise to
wo problems: the need to extrapolate the calculated 𝛥𝑉 to the region
–2 Å and the divergence of 𝛥𝑉 at 𝑟 = 0. As extrapolations based
n the full 𝑟-interval of computed 𝛥𝑉 gave unrealistic behaviour,
xtrapolation schemes built from regions near 2 Å were tested. Two
odels — polynomial fits of first (PF1) and second (PF2) orders —

ssued from a ‘‘nearly linear’’ 𝛥𝑉 -dependence region 2–2.3 Å are con-
idered below as examples. The corresponding extrapolated curves
Fig. 6, upper panel) lead to different dephasing functions (Fig. 6,
ower panel) but result in practically identical line-broadening coef-
icients: �̃�𝑃𝐹1 = �̃�𝑃𝐹2 = 0.568 cm−1 atm−1 at 295 K and �̃�𝑃𝐹1 =
𝑃𝐹2 = 0.184 cm−1 atm−1 at 2800 K. (Remember that in the Fourier-
ntegral theory line broadening is determined by small 𝑏-values but
osine function oscillates strongly and cancels to a nearly zero net con-
ributions from both 𝜂𝑃𝐹1 and 𝜂𝑃𝐹2.) The choice of extrapolation model
ppears therefore as not to be crucial for linewidths. However, the
alculated values are overestimated with respect to measurements by
factor of two at both temperatures considered, and this discrepancy

eems to indicate that the straight-line trajectory model is too rough
or the true numerical potential. The line-shifting coefficients 𝛿𝑃𝐹1 =
0.0005 cm−1 atm−1 and 𝛿𝑃𝐹2 = −0.0003 cm−1 atm−1 at 295 K as well
s 𝛿𝑃𝐹1 = −0.00017 cm−1 atm−1 and 𝛿𝑃𝐹2 = −0.00009 cm−1 atm−1

t 2800 K have correct negative signs but are by several orders of
agnitude smaller than the measured values (see Table 1). The shifts

re mainly produced by distant collisions and their contributions, be-
ause of the sine function, can have opposite signs, leading in our
ase to nearly full compensation of positive and negative contributions.
arious improvements of the trajectory model are examined below.
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Fig. 5. Differences of NO–Ar isotropic interactions in the final and initial states of the active molecule calculated from the numerical potential-energy surfaces (solid circles) and
from Lennard-Jones fitted curves (Fit I and Fit II correspond to the excited-state dependency fitted on the repulsive-wall and attraction regions).
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Fig. 6. Extrapolations of 𝛥𝑉 to the region 0–2 Å by polynomials of the first (red curve)
and second (blue curve) order (upper panel) and corresponding dephasing functions
(lower panel).

4. Phase-shift theory with curved trajectories

The model of straight-line trajectories used in the previous section
assumes that the relative molecular motion is not at all influenced by
molecular interactions (the isotropic potential is zero). This assumption
is inconsistent not only with the key role of the isotropic potential in
the broadening and shift formulae but also with the real motion of
11
active and perturbing particles colliding with each other. Refinements
of the model can be attempted considering that this is also the isotropic
interaction potential which governs the relative molecular motion. For
simplicity, MTVA frame (𝑣 = 𝑣) will be assumed.

The use of the isotropic potential to govern the trajectory needs
o handle the fact that the interaction potential energies are different
n the initial (usually, ground) and final (excited) electronic states
f the radiator. While the energy of the absorbed photon excites the
ctive molecule, the energy balance of the translational motion can be
easonably assumed to be not influenced by this change of the internal
tate. Indeed, this corresponds to the common classical-path approxi-
ation (decoupling of translational and internal degrees of freedom)
sed in IR/MW line-broadening theories. However, the relative motion
s influenced since before (𝑡 < 0) the (practically instantaneous) change
f state (assumed to take place at 𝑡 = 0) the trajectory is driven by 𝑉𝑖

corresponding to the initial electronic state and after (𝑡 > 0) this is done
by 𝑉𝑓 related to the final state.

The phase shift given for rectilinear trajectories by Eq. (4) can now
be re-written as (𝑝 = 12 or 6)

𝑝 = 𝛥𝐶 ′
𝑝 ∫

+∞

−∞
𝑟−𝑝(𝑡)𝑑𝑡 = 𝛥𝐶 ′

𝑝[∫

0

−∞
𝑟−𝑝𝑖 (𝑡)𝑑𝑡 + ∫

+∞

0
𝑟−𝑝𝑓 (𝑡)𝑑𝑡] , (35)

here the intermolecular distances 𝑟𝑖 and 𝑟𝑓 cover the respective half-
trajectories. The time dependence of these distances can be further
made explicit through a curved trajectory model. Two such models are
considered below.

4.1. Parabolic trajectories

For parabolic trajectories the time dependence of the intermolecular
distance is given by

(⃗𝑡) = 𝑟𝑐 + 𝑣𝑐 𝑡 +
𝐹𝑐
𝜇

𝑡2

2
. (36)

Here 𝑟𝑐 denotes the distance of the closest approach for a given value of
the impact parameter 𝑏, 𝑣𝑐 stands for the relative velocity at this point
and 𝐹𝑐 represents the force derived from the isotropic potential:

�⃗� = −
( 𝜕𝑉 ) 𝑟𝑐 . (37)

𝜕𝑟 𝑟=𝑟𝑐 𝑟𝑐
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The time dependence 𝑟(𝑡) of Eq. (36) can be re-written in a ‘‘straight-
ine’’ form

(𝑡) = [𝑟2𝑐 + 𝑣′ 2
𝑐 𝑡2]1∕2 , (38)

where the apparent relative velocity 𝑣′𝑐 is determined by 𝑣′𝑐
2 = 𝑣2𝑐 +

(𝐹𝑐 ⋅ 𝑟𝑐 )∕𝜇. This velocity can be related to the relative velocity before
collision 𝑣 with the help of the angular momentum 𝑣𝑐𝑟𝑐 = 𝑣𝑏 and
nergy-conservation 𝜇𝑣2∕2 = 𝜇𝑣2𝑐∕2 + 𝑉 (𝑟𝑐 ) conditions as

′
𝑐 = 𝑣

[

1 − 𝑉 ∗
𝑖
(

𝑟𝑐
)

− 𝑟𝑐𝑉
∗′
𝑖

(

𝑟𝑐
)

∕2
]1∕2 , (39)

where the dimensionless potential is given by 𝑉 ∗ (𝑟) ≡ 2𝑉 (𝑟)∕(𝜇𝑣2) and
𝑉 ∗′
𝑖

(

𝑟𝑐
)

denotes the first derivative. Eq. (39) enables one to replace
the integration on the impact parameter 𝑏 by integration on the more
physical parameter 𝑟𝑐 :

∫

∞

0
… 𝑏𝑑𝑏 → ∫

∞

𝑟𝑐 𝑚𝑖𝑛

… 𝑟𝑐𝑑𝑟𝑐

(𝑣′𝑐
𝑣

)2

= ∫

∞

𝑟𝑐 𝑚𝑖𝑛

… 𝑟𝑐𝑑𝑟𝑐
[

1 − 𝑉 ∗
𝑖
(

𝑟𝑐
)

− 𝑟𝑐𝑉
∗′
𝑖

(

𝑟𝑐
)

∕2
]

(40)

starting at 𝑟𝑐 𝑚𝑖𝑛 corresponding to the head-on collision (𝑏 = 0).
The energy conservation conditions ‘‘before’’ and ‘‘after’’ collision,

respectively, 𝜇𝑣2∕2 = 𝜇𝑣2𝑐∕2 + 𝑉𝑖(𝑟𝑐 ) and 𝜇𝑣2∕2 = 𝜇𝑣2𝑐∕2 + 𝑉𝑓 (𝑟𝑐 ), where
𝑣 is the relative velocity at 𝑡 → ∞, allow relating 𝑣 to 𝑣:

𝑣 = 𝑣
[

1 −
2𝛥𝑉 (𝑟𝑐 )
𝜇𝑣2

]1∕2
(41)

or each distance of the closest approach 𝑟𝑐 (each trajectory).

.1.1. Parabolic half-trajectories for Lennard-Jones isotropic potentials
When the 12-6 Lennard-Jones form 𝑉 (𝑟) = 4𝜀

[

(𝜎∕𝑟)12 − (𝜎∕𝑟)6
]

s assumed for mathematical convenience and in agreement with the
eading term of the dispersion interactions, Eq. (37),(39)–(41) become,
espectively,

�⃗� =
24𝜀
𝜎

[

2
(𝜎
𝑟

)13
−
(𝜎
𝑟

)7
]

𝑟𝑐
𝑟𝑐

, (42)

𝑣′𝑐 = 𝑣

{

1 + 8𝜀
𝜇𝑣2

[

5
(

𝜎
𝑟𝑐

)12
− 2

(

𝜎
𝑟𝑐

)6
]}1∕2

, (43)

∫

∞

0
… 𝑏𝑑𝑏 → ∫

∞

𝑟𝑐 𝑚𝑖𝑛

… 𝑟𝑐𝑑𝑟𝑐

{

1 + 8𝜀
𝜇𝑣2

[

5
(

𝜎
𝑟𝑐

)12
− 2

(

𝜎
𝑟𝑐

)6
]}

,

(44)

𝑣 = 𝑣

{

1 −
8𝜀𝑖
𝜇𝑣2

[

(

𝜎𝑖
𝑟𝑐

)12
−
(

𝜎𝑖
𝑟𝑐

)6
]

+
8𝜀𝑓
𝜇𝑣2

[

(𝜎𝑓
𝑟𝑐

)12
−
(𝜎𝑓

𝑟𝑐

)6
]}1∕2

. (45)

Using Eqs. (38) and (43), the first integral in Eq. (35) can be written as

∫

0

−∞
𝑟−𝑝𝑖 (𝑡)𝑑𝑡 =

√

𝜋
2

𝛤
(

𝑝−1
2

)

𝛤
(

𝑝
2

) 𝑟1−𝑝𝑐 𝑣−1

×

{

1 +
8𝜀𝑖
𝜇𝑣2

[

5
(

𝜎𝑖
𝑟𝑐

)12
− 2

(

𝜎𝑖
𝑟𝑐

)6
]}−1∕2

(46)

and, with the additional use of Eq. (45), the second integral gives

∫

∞

0
𝑟−𝑝𝑓 (𝑡)𝑑𝑡 =

√

𝜋
2

𝛤
(

𝑝−1
2

)

𝛤
(

𝑝
2

) 𝑟1−𝑝𝑐 𝑣−1
{

1 −
8𝜀𝑖
𝜇𝑣2

[

(

𝜎𝑖
𝑟𝑐

)12
−
(

𝜎𝑖
𝑟𝑐

)6
]

+
8𝜀𝑓

2

[

(𝜎𝑓
)12

−
(𝜎𝑓

)6
]

12

𝜇𝑣 𝑟𝑐 𝑟𝑐
+
8𝜀𝑓
𝜇𝑣2

[

5
(𝜎𝑓

𝑟𝑐

)12
− 2

(𝜎𝑓
𝑟𝑐

)6
]}−1∕2

. (47)

Since 4𝜀𝜎12 = ℏ𝐶 ′
12 and 4𝜀𝜎6 = ℏ𝐶 ′

6, we get

𝜂(𝑟𝑐 , 𝑣) =

(

63𝜋𝛥𝐶 ′
12

2 ⋅ 256𝑟11𝑐
−

3𝜋𝛥𝐶 ′
6

2 ⋅ 8𝑟5𝑐

)

1
𝑣

⎧

⎪

⎨

⎪

⎩

[

1 + 2ℏ
𝜇𝑣2

(

5
𝐶 ′
12𝑖

𝑟12𝑐
− 2

𝐶 ′
6𝑖

𝑟6𝑐

)]−1∕2

+

[

1 + 2ℏ
𝜇𝑣2

(

𝛥𝐶 ′
12

𝑟12𝑐
−

𝛥𝐶 ′
6

𝑟6𝑐

)

+ 2ℏ
𝜇𝑣2

(

5
𝐶 ′
12𝑓

𝑟12𝑐
− 2

𝐶 ′
6𝑓

𝑟6𝑐

)]−1∕2⎫
⎪

⎬

⎪

⎭

. (48)

qs. (1) and (2) for linewidth and shift are rewritten now in terms of
𝑐 (𝑣 = 𝑣 in the MTVA frame):

𝛾 = 𝑁𝑣∫

∞

𝑟𝑐 𝑚𝑖𝑛

[

1 − cos 𝜂(𝑟𝑐 , 𝑣)
]

[

1 + 2ℏ
𝜇𝑣2

(

5
𝐶 ′
12𝑖

𝑟12𝑐
− 2

𝐶 ′
6𝑖

𝑟6𝑐

)]

𝑟𝑐𝑑𝑟𝑐 , (49)

𝛿 = 𝑁𝑣∫

∞

𝑟𝑐 𝑚𝑖𝑛

sin 𝜂(𝑟𝑐 , 𝑣)

[

1 + 2ℏ
𝜇𝑣2

(

5
𝐶 ′
12𝑖

𝑟12𝑐
− 2

𝐶 ′
6𝑖

𝑟6𝑐

)]

𝑟𝑐𝑑𝑟𝑐 , (50)

with

𝑟𝑐 𝑚𝑖𝑛 = 𝜎𝑖

⎡

⎢

⎢

⎢

⎣

2

1 +
√

1 + 𝜇𝑣2∕(2𝜀𝑖)

⎤

⎥

⎥

⎥

⎦

1∕6

=

⎡

⎢

⎢

⎢

⎣

𝐶 ′
12𝑖

𝐶 ′
6𝑖

2

1 +
√

1 + 2𝜇𝑣2𝐶 ′
12𝑖∕(ℏ(𝐶

′
6𝑖)

2)

⎤

⎥

⎥

⎥

⎦

1∕6

. (51)

ntroducing further the dimensionless integration variable 𝑦 ≡ 𝑟𝑐∕𝑟𝑐 𝑚𝑖𝑛
and the short-hand notations

𝜉1 ≡
10ℏ𝐶 ′

12𝑖

𝜇𝑣2𝑟12𝑐 𝑚𝑖𝑛

, 𝜉2 ≡
4ℏ𝐶 ′

12𝑓

𝜇𝑣2𝑟12𝑐 𝑚𝑖𝑛

, 𝜉3 ≡
63𝜋𝛥𝐶 ′

12

512𝑣𝑟11𝑐 𝑚𝑖𝑛

,

𝜉4 ≡
3𝜋𝛥𝐶 ′

6

16𝑣𝑟5𝑐 𝑚𝑖𝑛

, 𝜉5 ≡
2ℏ(𝛥𝐶 ′

12 + 5𝐶 ′
12𝑓 )

𝜇𝑣2𝑟12𝑐 𝑚𝑖𝑛

, 𝜉6 ≡
2ℏ(𝛥𝐶 ′

6 + 2𝐶 ′
6𝑓 )

𝜇𝑣2𝑟6𝑐 𝑚𝑖𝑛

, (52)

as well as switching to the broadening/shift coefficients, we arrive at
(for 𝑟𝑐 𝑚𝑖𝑛 in Å)

𝛾 = 0.3561617𝑟2𝑐 𝑚𝑖𝑛𝜇
−0.5𝑇 −0.5

×∫

∞

1

[

1 − cosA (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6, 𝑦)
]

B(𝜉1, 𝜉2, 𝑦)𝑑𝑦 , (53)

̃ = 0.3561617𝑟2𝑐 𝑚𝑖𝑛𝜇
−0.5𝑇 −0.5

×∫

∞

1
sinA (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6, 𝑦)B(𝜉1, 𝜉2, 𝑦)𝑑𝑦 (54)

ith
(

𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6, 𝑦
)

=
[

𝜉3𝑦
−11 − 𝜉4𝑦

−5]

×
[

(

1 + 𝜉1𝑦
−12 − 𝜉2𝑦

−6)−0.5 +
(

1 + 𝜉5𝑦
−12 − 𝜉6𝑦

−6)−0.5
]

,
(

𝜉1, 𝜉2, 𝑦
)

= 𝑦 + 𝜉1𝑦
−11 − 𝜉2𝑦

−5. (55)

.1.2. Parabolic half-trajectories for numerical potential difference
Keeping in mind that the use of Lennard-Jones representations for

he isotropic potentials in the initial and final states is approximate
nd extremely sensitive to the fit region model, we can also consider,
s done in Section 3.4, a numerically calculated 𝛥𝑉 . Note that our
umerical 𝛥𝑉 values are expressed in cm−1 and should be multiplied
y 2𝜋𝑐 to be used in Eq. (56). The equivalent of Eq. (35) then reads

=
0
𝛥𝑉 (𝑟𝑖(𝑡))𝑑𝑡 +

+∞
𝛥𝑉 (𝑟𝑓 (𝑡))𝑑𝑡 (56)
∫−∞ ∫0
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but the intermolecular distance and time are not more related by an
analytical formula. Therefore, a numerical integration over 𝑡 should be
erformed by calculating sets of 𝑟(𝑡) and then sets of 𝛥𝑉 (𝑟 (𝑡)), for each

half-trajectory (a grid of 𝑟𝑐 starting from 𝑟𝑐 𝑚𝑖𝑛 given by Eq. (51)). For
the half-trajectory driven by 𝑉𝑖 𝑟𝑖(𝑡) is calculated via Eqs. (38) and (43):

𝑟𝑖(𝑡) =

(

𝑟2𝑐 + 𝑣2
{

1 +
8𝜀𝑖
𝜇𝑣2

[

5
(

𝜎𝑖
𝑟𝑐

)12
− 2

(

𝜎𝑖
𝑟𝑐

)6
]}

𝑡2
)1∕2

(57)

ith the term 8𝜀
𝜇𝑣2

[…] which can be further detailed as 1.13004𝑇 −1

5𝐶12𝑖𝑟−12𝑐 − 2𝐶6𝑖𝑟−6𝑐
]

, where 𝑇 is in Kelvin, 𝐶12𝑖 is in cm−1 Å12 and 𝐶6𝑖

s in cm−1 Å6. For the second half-trajectory the role of 𝑣 is played by
𝑣 (see Eq. (45)) which can also be rewritten as

𝑣 = 𝑣
[

1 + 1.13004𝑇 −1 (𝛥𝐶12𝑟
−12
𝑐 − 𝛥𝐶6𝑟

−6
𝑐
)]1∕2 , (58)

nd the intermolecular distance is given by

𝑓 (𝑡) =

{

𝑟2𝑐 + 𝑣2
[

1 +
1.13004𝑇 −1(5𝐶12𝑖𝑟−12𝑐 − 2𝐶6𝑖𝑟−6𝑐 )

1 + 1.13004𝑇 −1
(

𝛥𝐶12𝑟−12𝑐 − 𝛥𝐶6𝑟−6𝑐
)

]

𝑡2
}1∕2

.

(59)

he resulting broadening and shift coefficients are determined by

= 0.356162𝜇−0.5𝑇 −0.5
∫

∞

𝑟𝑐 𝑚𝑖𝑛

[

1 − cos 𝜂(𝑟𝑐 , 𝑣)
]

×
[

1 + 1.13004𝑇 −1 (5𝐶12 𝑖𝑟
−12
𝑐 − 2𝐶6 𝑖𝑟

−6
𝑐
)]

𝑟𝑐𝑑𝑟𝑐 , (60)

̃ = 0.356162𝜇−0.5𝑇 −0.5
∫

∞

𝑟𝑐 𝑚𝑖𝑛

sin 𝜂(𝑟𝑐 , 𝑣)

×
[

1 + 1.13004𝑇 −1 (5𝐶12 𝑖𝑟
−12
𝑐 − 2𝐶6 𝑖𝑟

−6
𝑐
)]

𝑟𝑐𝑑𝑟𝑐 . (61)

.2. Exact trajectories

The intermolecular-distance dependence on time can be developed
sing the exact solutions of the classical equations of motion. In this
ase 𝑑𝑡 and 𝑑𝑟 are related by [87]

𝑡 = 𝑑𝑟

𝑣
√

1 − 𝑉 ∗ (𝑟) −
(

𝑟𝑐∕𝑟
)2 [1 − 𝑉 ∗

(

𝑟𝑐
)]

. (62)

.2.1. Exact half-trajectories for Lennard-Jones isotropic potentials
Like the case of parabolic trajectories, the phase shift is given by

q. (35), however the analogues of Eqs. (46), (47) read (in terms of
he dimensionless variable 𝑥 ≡ 𝑟∕𝑟𝑐)

∫

0

−∞
𝑟−𝑝𝑖 (𝑡)𝑑𝑡 = 𝑟1−𝑝𝑐 𝑣−1

× ∫

1

−∞

𝑑𝑥

𝑥𝑝
√

1 −
8𝜀𝑖𝜎12𝑖

𝜇𝑣2𝑟12𝑐 𝑥12
+

8𝜀𝑖𝜎6𝑖
𝜇𝑣2𝑟6𝑐𝑥6

− 1
𝑥2

(

1 −
8𝜀𝑖𝜎12𝑖
𝜇𝑣2𝑟12𝑐

+
8𝜀𝑖𝜎6𝑖
𝜇𝑣2𝑟6𝑐

)

, (63)

∫

∞

0
𝑟−𝑝𝑓 (𝑡)𝑑𝑡 = 𝑟1−𝑝𝑐 𝑣−1

{

1 −
8𝜀𝑖
𝜇𝑣2

[

(

𝜎𝑖
𝑟𝑐

)12
−
(

𝜎𝑖
𝑟𝑐

)6
]}−1∕2

× ∫

∞

1

𝑑𝑥

𝑥𝑝
√

1 −
8𝜀𝑓 𝜎12𝑓

𝜇𝑣2𝑟12𝑐 𝑥12
+

8𝜀𝑓 𝜎6𝑓
𝜇𝑣2𝑟6𝑐𝑥6

− 1
𝑥2

(

1 −
8𝜀𝑓 𝜎12𝑓
𝜇𝑣2𝑟12𝑐

+
8𝜀𝑓 𝜎6𝑓
𝜇𝑣2𝑟6𝑐

)

(64)

nd lead to

(𝑟𝑐 ) = 1
𝑣

⎧

⎪

⎪

⎨

⎪

⎪

𝛥𝐶 ′
12

𝑟11𝑐

⎡

⎢

⎢

⎢

⎢

⎣

∫

1

−∞

𝑥−12𝑑𝑥
√

1 − 𝜉1𝑖(𝑟𝑐 )
12 + 𝜉2𝑖(𝑟𝑐 )

6 −

[

1−𝜉1𝑖(𝑟𝑐 )+𝜉2𝑖(𝑟𝑐 )
]

2

13

⎩

𝑥 𝑥 𝑥
+ 1
√

1 + 𝜉1(𝑟𝑐 ) − 𝜉2(𝑟𝑐 )

× ∫

∞

1

𝑥−12𝑑𝑥
√

1 − 𝜉1𝑓 (𝑟𝑐 )
𝑥12

+ 𝜉2𝑓 (𝑟𝑐 )
𝑥6

−

[

1−𝜉1𝑓 (𝑟𝑐 )+𝜉2𝑓 (𝑟𝑐 )
]

𝑥2

⎤

⎥

⎥

⎥

⎥

⎦

+
𝛥𝐶 ′

6

𝑟11𝑐

⎡

⎢

⎢

⎢

⎢

⎣

∫

1

−∞

𝑥−6𝑑𝑥
√

1 − 𝜉1𝑖(𝑟𝑐 )
𝑥12

+ 𝜉2𝑖(𝑟𝑐 )
𝑥6

−

[

1−𝜉1𝑖(𝑟𝑐 )+𝜉2𝑖(𝑟𝑐 )
]

𝑥2

(65)

+ 1
√

1 + 𝜉1(𝑟𝑐 ) − 𝜉2(𝑟𝑐 )

× ∫

∞

1

𝑥−6𝑑𝑥
√

1 − 𝜉1𝑓 (𝑟𝑐 )
𝑥12

+ 𝜉2𝑓 (𝑟𝑐 )
𝑥6

−

[

1−𝜉1𝑓 (𝑟𝑐 )+𝜉2𝑓 (𝑟𝑐 )
]

𝑥2

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where the dimensionless coefficients

𝜉1𝑖(𝑟𝑐 ) ≡
2ℏ𝐶 ′

12𝑖

𝜇𝑣2𝑟12𝑐
, 𝜉2𝑖(𝑟𝑐 ) ≡

2ℏ𝐶 ′
6𝑖

𝜇𝑣2𝑟12𝑐
, 𝜉1𝑓 (𝑟𝑐 ) ≡

2ℏ𝐶 ′
12𝑓

𝜇𝑣2𝑟12𝑐
,

𝜉2𝑓 (𝑟𝑐 ) ≡
2ℏ𝐶 ′

6𝑓

𝜇𝑣2𝑟12𝑐
, 𝜉1(𝑟𝑐 ) ≡

2ℏ𝛥𝐶 ′
12

𝜇𝑣2𝑟12𝑐
, 𝜉2(𝑟𝑐 ) ≡

2ℏ𝛥𝐶 ′
6

𝜇𝑣2𝑟12𝑐
(66)

are introduced. Re-using the reduced variable 𝑦 we obtain

𝛾 = 0.3561617𝑟2𝑐 𝑚𝑖𝑛𝜇
−0.5𝑇 −0.5

∫

∞

1

[

1 − cos 𝜂(𝑦𝑟𝑐 𝑚𝑖𝑛)
]

B(𝜉1, 𝜉2, 𝑦)𝑑𝑦, (67)

̃= 0.3561617𝑟2𝑐 𝑚𝑖𝑛𝜇
−0.5𝑇 −0.5

∫

∞

1
sin𝜂(𝑦𝑟𝑐 𝑚𝑖𝑛)B

(

𝜉1, 𝜉2, 𝑦
)

𝑑𝑦 . (68)

.2.2. Exact half-trajectories for numerical potentials
Taking account of Eqs. (56) and (62), the resulting phase shift is

ritten as

(𝑟𝑐 ) = 1
𝑣 ∫

𝑟𝑐

−∞

𝛥𝑉 (𝑟)𝑑𝑟
√

1 − 𝑉 ∗
𝑖 (𝑟) − (𝑟𝑐∕𝑟)2(1 − 𝑉 ∗

𝑖 (𝑟𝑐 ))

+ 1
𝑣 ∫

∞

𝑟𝑐

𝛥𝑉 (𝑟)𝑑𝑟
√

1 − 𝑉 ∗
𝑓 (𝑟) − (𝑟𝑐∕𝑟)2(1 − 𝑉 ∗

𝑓 (𝑟𝑐 ))
, (69)

and further use of Eq. (40) leads to

𝛾 = 0.3561617𝜇−0.5𝑇 −0.5
∫

∞

𝑟𝑐 𝑚𝑖𝑛

[

1 − cos 𝜂(𝑟𝑐 )
]

×
[

1 − 𝑉 ∗
𝑖 (𝑟𝑐 ) − 𝑟𝑐𝑉

∗′
𝑖 (𝑟𝑐 )∕2

]

𝑟𝑐𝑑𝑟𝑐 , (70)

𝛿 = 0.3561617𝜇−0.5𝑇 −0.5
∫

∞

𝑟𝑐 𝑚𝑖𝑛

sin 𝜂(𝑟𝑐 )

×
[

1 − 𝑉 ∗
𝑖 (𝑟𝑐 ) − 𝑟𝑐𝑉

∗′
𝑖 (𝑟𝑐 )∕2

]

𝑟𝑐𝑑𝑟𝑐 . (71)

4.3. Applications to NO-Ar and NO-N2

Since the trajectory is curved by the isotropic potential, this cur-
vature is more pronounced at short intermolecular distances. These
distances are probed by collisions of the active molecule with atoms and
non-polar perturbers. Moreover, the quality of the interaction potentials
was better for NO than for OH. Therefore, we performed a comparative
analysis of different models of curved trajectories for two molecular
systems NO–Ar and NO–N2. Calculated �̃� and 𝛿 values are collected in
Tables 5 and 6.

A common feature of calculations with traditional straight-line tra-
jectories is that the attempt to improve results by using a numerical
treatment of the potential difference 𝛥𝑉 only worsens the predicted
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Table 5
Comparison of MTVA line-broadening and line-shift coefficients (in cm−1 atm−1) obtained with straight-line, parabolic and exact trajectories for
NO–Ar. Lennard-Jones parameters from Fit I are used. Experimental values are from Table 2.

Straight Parabolic Exact Expt

𝛥𝑉 LJ 𝛥𝑉 num PF1/PF2 𝛥𝑉 LJ 𝛥𝑉 num 𝛥𝑉 LJ 𝛥𝑉 num

295 K �̃� 0.206 0.568 0.209 0.224 0.207 0.182 [0.25,0.27]
𝛿 −0.149 −0.0005/−0.0003 +0.142 −0.081 −0.147 −0.040 −0.16

2800 K �̃� 0.043 0.184 0.039 0.051 0.043 0.057 0.058
𝛿 −0.031 −0.00017/−0.00009 +0.032 −0.023 −0.031 −0.019 −0.043
Table 6
Comparison of MTVA line-broadening and line-shift coefficients (in cm−1 atm−1) obtained with straight-line, parabolic and exact trajectories for
NO–N2. Experimental values are from Tables 2 and 3.

Straight Parabolic Exact Expt

𝛥𝑉 LJ 𝛥𝑉 num PF1/PF2 𝛥𝑉 LJ 𝛥𝑉 num 𝛥𝑉 LJ 𝛥𝑉 num

295 K �̃� 0.186 0.601/0.613 0.146 0.530 0.142 0.497 [0.28,0.35]
𝛿 −0.135 +0.0032/−0.0019 +0.114 −0.033 −0.152 −0.148 [−0.17,−0.18]

2700 K �̃� 0.039 0.198/0.203 0.034 0.142 0.037 0.144 0.056
𝛿 −0.029 +0.0011/−0.0006 +0.037 −0.040 −0.030 −0.050 −0.052
p
r
s
t
s
f
t
w
r
e
o

linewidths (overestimation by 2.5–4.5 times) and shifts (underestima-
tion by several orders of magnitude). In the NO–N2 case the shift sign
even becomes positive, in disagreement with the measurements.

The use of curved parabolic trajectories for NO–Ar leads to a sub-
stantial improvement in linewidths if the potential difference 𝛥𝑉 is
reated numerically. This numerical 𝛥𝑉 gives also much more realistic
negative) line shifts (although these are still underestimated by a factor
f two), contrary to the Lennard-Jones representations resulting in big
nd unrealistically positive 𝛿-values. The positive shifts obtained with
ennard-Jones model potentials can be ascribed to a bad representation
f the attractive region, i.e. large intermolecular distances providing
he dominant contribution to the line shift. Nevertheless, these ‘‘badly
epresenting’’ the attractive region Lennard-Jones parameters appear
o be quite realistic if coupled to the exact-trajectory model (which
escribes more accurately the time dependence of 𝑟). The use of exact
rajectories and the numerical potentials yields worse shifts but an
xcellent line-width estimate for 2800 K. In the NO–N2 case the use
f curved trajectories does not improve theoretical estimates of line-
hape parameters. In part, this can be ascribed to a lower quality of
he calculated potential energy surfaces.

The attempts to improve the trajectory model within traditional
hase-shift theory show quite fluctuating results. These results confirm
he ‘‘internal coherence’’ rule: a more accurate than straight-line tra-
ectory description should be accompanied by a higher theory level, as
ndicated by Szudy and Baylis [30].

. Conclusion

Given the urgent need for pressure-induced line-shape parameters
f vibronic transitions for hot-temperature diagnostics and current and
uture space missions, we revisited the traditional phase-shift theory
ith the commonly used model of straight-line trajectories. This simple

lassical approach was preferred because of a much lower, with respect
o quantum-mechanical methods, computational cost and sufficiency of
rder-of-magnitude estimates requested for a huge amount of molec-
lar pairs present (or expected) in hot (exo)planetary atmospheres
ut inaccessible via laboratory measurements. We started with a gen-
ral analysis of pressure-induced linewidths and shifts, using mainly
ennard-Jones 12-6 expressions for the isotropic interaction potentials
n the ground and excited electronic states of the active molecule. This
nalysis was conducted for arbitrary molecular systems, in terms of
he dimensionless parameter 𝛼 determined by the differences of the
ennard-Jones parameters in both states and accounted for various
ign sets of the so-called trajectory integrals computed numerically
s functions of 𝛼. We also addressed the temperature dependence of
14

hese line-shape parameters and the validity of the commonly used
ower law, analysing the 𝛼-dependence of the temperature exponents
elated to linewidths and shifts, as was shown previously in a similar
tudy by Cybulski et al. [57]. The shift-sign change (breaking down of
he power law for shifts) observed experimentally for some molecular
ystems with temperature increasing was also evidenced by varying 𝛼
rom small (leading dispersion interactions and/or low temperatures)
o high (leading repulsion and/or high temperatures) values. Moreover,
e demonstrated that performing a Maxwell–Boltzmann average on the

elative molecular velocities reduces the oscillations of the temperature
xponents, i.e. reduces the effects of numerical integration of strongly
scillating functions, in the region around 𝛼 ≈ 0.1 and leads to smoother

and more physically justified curves.
To check the reliability of the phase-shift theory for representative

molecular systems, we chose NO and OH as active molecules (their
dipole moments differ by an order of magnitude) and Ar and N2 as
perturbers (they give leading dispersive and dipole–quadrupole inter-
actions). These systems were also studied experimentally over a large
range of temperatures. To get the Lennard-Jones parameters required in
linewidth/shift calculations, we computed the potential energy surfaces
in the ground and excited electronic radiator’s states at various collision
geometries and extracted the isotropic parts. When the shape of the
extracted interaction potential deviated significantly from a Lennard-
Jones form over the range of intermolecular distances considered, we
emphasized the repulsive-wall regions (which dominates collisions at
high temperatures which are of interest for us) and demonstrated,
with an example of NO–Ar, that such a choice leads to much more
realistic estimates of line-shape parameters than fits performed on the
attraction region (which is important for low temperatures). Generally,
the (absolute) values of line broadening and line-shifting coefficients
at room (295 K) and high (2700/2800 K) temperatures were found to
be underestimated by not more that about 30% (except for 𝛿 of NO–N2
at 2700 K where an underestimate of 44% was obtained). The quality
of predictions was nearly the same for perturbation of NO by Ar and
nitrogen. For OH, there were not enough measurements to draw a defi-
nite conclusion in the OH–Ar case, and, moreover, difficulties with the
potential energy calculations for OH–N2 prevented us from computing
linewidth and shift estimates. On the basis on the molecular systems
considered, we can conclude that the traditional phase-shift theory
provides rather underestimated absolute values of broadening and shift
coefficients with uncertainties better than 50%. This means that for
cases were just an order of magnitude is required, the traditional theory
can be used.

To avoid the fragility of this approach related to the high sensitivity
of the Lennard-Jones parameters to the choice of the intermolecular-
distance region selected for fits, we also tested a numerical repre-

sentation of the potential difference 𝛥𝑉 for NO–Ar, completed by
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Table A.1
Definitions of parameters, integration variables and trajectory integrals for 12-𝑚 Lennard-Jones interactions (𝑚 = 6, 5, 4). Both initial and practically
used for numerical integration expressions are given for 𝐵(𝛼) and 𝑆(𝛼).

Potential form 𝛼 𝑥 𝐵(𝛼) 𝑆(𝛼)

12-6 7
27∕531∕5𝜋6∕5 𝑣

6∕5 𝛥𝐶 ′
12

|
𝛥𝐶 ′

6|
11∕5 𝑏

(

8𝑣
3𝜋
|
𝛥𝐶 ′

6|

)1∕5
∫ ∞
0 sin2

(

1
2
(𝛼𝑥−11 − 𝑥−5)

)

𝑥𝑑𝑥 ∫ ∞
0 sin(𝛼𝑥−11 − 𝑥−5)𝑥𝑑𝑥

≈ 0.5391 𝑣6∕5𝛥𝐶 ′
12
|

|

|

𝛥𝐶 ′
6
|

|

|

−11∕5 1
4
∫ ∞
0 sin(𝛼𝑥−11 − 𝑥−5)(11𝛼𝑥−10 − 5𝑥−4)𝑑𝑥 1

2
∫ ∞
0 cos(𝛼𝑥−11 − 𝑥−5)(11𝛼𝑥−10 − 5𝑥−4)𝑑𝑥

12-5 7𝜋319∕4

227∕2
𝑣7∕4 𝛥𝐶 ′

12

|
𝛥𝐶 ′

5|
11∕4 𝑏

(

3𝑣
4
|
𝛥𝐶 ′

5|

)1∕4
∫ ∞
0 sin2

(

1
2
(𝛼𝑥−11 − 𝑥−4)

)

𝑥𝑑𝑥 ∫ ∞
0 sin(𝛼𝑥−11 − 𝑥−4)𝑥𝑑𝑥

≈ 0.3505 𝑣7∕4𝛥𝐶 ′
12
|

|

|

𝛥𝐶 ′
5
|

|

|

−11∕4 1
4
∫ ∞
0 sin(𝛼𝑥−11 − 𝑥−4)(11𝛼𝑥−10 − 4𝑥−3)𝑑𝑥 1

2
∫ ∞
0 cos(𝛼𝑥−11 − 𝑥−4)(11𝛼𝑥−10 − 4𝑥−3)𝑑𝑥

12-4 7⋅32

213∕3𝜋8∕3 𝑣
8∕3 𝛥𝐶 ′

12

|
𝛥𝐶 ′

4|
11∕3 𝑏

(

2𝑣
𝜋
|
𝛥𝐶 ′

4|

)1∕3
∫ ∞
0 sin2

(

1
2
(𝛼𝑥−11 − 𝑥−3)

)

𝑥𝑑𝑥 ∫ ∞
0 sin(𝛼𝑥−11 − 𝑥−3)𝑥𝑑𝑥

≈ 0.1476 𝑣8∕3𝛥𝐶 ′
12
|

|

|

𝛥𝐶 ′
4
|

|

|

−11∕3 1
4
∫ ∞
0 sin(𝛼𝑥−11 − 𝑥−3)(11𝛼𝑥−10 − 3𝑥−2)𝑑𝑥 1

2
∫ ∞
0 cos(𝛼𝑥−11 − 𝑥−3)(11𝛼𝑥−10 − 3𝑥−2)𝑑𝑥
Table A.2
Linewidth and shift expressions for 12-m Lennard-Jones interactions (m = 6, 5, 4); see
Table A.1 for the corresponding expressions of trajectory integrals.

Potential form 𝛾∕𝑁 𝛿∕𝑁

12-6 2
(

3𝜋
8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
v3∕5𝐵(𝛼)

(

3𝜋
8

)2∕5
|

|

|

𝛥𝐶 ′
6
|

|

|

2∕5
v3∕5𝑆(𝛼)

12-5 2
(

4
3

)1∕2
|

|

|

𝛥𝐶 ′
5
|

|

|

1∕2
v1∕2𝐵(𝛼)

(

4
3

)1∕2
|

|

|

𝛥𝐶 ′
5
|

|

|

1∕2
v1∕2𝑆(𝛼)

12-4 2
(

𝜋
2

)2∕3
|

|

|

𝛥𝐶 ′
4
|

|

|

2∕3
v1∕3𝐵(𝛼)

(

𝜋
2

)2∕3
|

|

|

𝛥𝐶 ′
4
|

|

|

2∕3
v1∕3𝑆(𝛼)

tests of extrapolation to the region of very small 𝑟-values. Finally,
he extrapolation type was found to be not important for linewidths
because of strong oscillations of the cosine function giving nearly
ero contribution from this region), but the broadening coefficient
alues at both temperatures considered were much bigger than the
easurements. For line shifting, although the correct negative signs
ere reproduced, underestimations of absolute values by several orders
f magnitude were observed. Therefore, an ‘‘isolated’’ improvement of
he potential in the frame of the traditional phase-shift theory with
ectilinear trajectories was inefficient to get more realistic line-shape
stimates.

As a next step, we tried (simultaneous with and separate from the
otential description) improvements of the trajectory model, using for
implicity the mean-thermal-velocity approximation. Two types of tra-
ectories curved by the force derived from the isotropic potential were
onsidered: parabolic and exact ones, assuming that the two halves of
ach trajectory are driven, respectively, by the isotropic potentials in
he initial and final radiator’s states. Applications made for the NO–Ar
nd NO–N2 systems demonstrated quite disparate predictions, so we
an also conclude that the trajectory improvements are still insufficient
o match completely the measurements.

The results of our two improvement attempts (numerical potentials
nd curved trajectories) support the conclusion made by Szudy and
aylis [30] that going beyond the straight-line trajectories requires
t least a first-order correction to the usual phase-shift integral and
ignificant differences with respect to the standard approach can be
xpected. Developing such a formalism represents a serious indepen-
ent work and will be addressed in a future study. Another subject of
uture investigations could be the rotational dependence of the line-
hape parameters, which is generally neglected by the theory but still
etectable experimentally for some molecular systems; considering this
ependence will require an account of anisotropic interactions.
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