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a b s t r a c t 

The discovery of super-Earth and mini-Neptune exoplanets means that atmospheric signals from low- 

mass, temperate exoplanets are being increasingly studied. The signal acquired as the planet transits its 

host star, known as the transit depth , is smaller for these planets and, as such, more difficult to analyze. 

The launch of the space telescopes James Webb (JWST) & Ariel will give rise to an explosion in the quality 

and quantity of spectroscopic data available for an unprecedented number of exoplanets in our galaxy. 

Accurately extracting the information content, thereby permitting atmospheric science, of such data-sets 

will require robust models and techniques. We present here the analysis of simulated transmission spec- 

tra for water-rich atmospheres, giving evidence for non-negligible differences in simulated transit depths 

when self-broadening of H 2 O is correctly accounted for, compared with the currently typically accepted 

standard of using H 2 and He-broadened cross-sections. Our case-study analysis is carried out on two 

super-Earths, focusing on water-based atmospheres, ranging from H 2 -rich to H 2 O-rich. The transit depth 

is considerably affected, increasing values by up to 60 ppm, which is shown to be detectable with JWST 

and Ariel. The differences are most pronounced for the lighter (i.e. μ ∼ 4 ) atmospheres. Our work illus- 

trates that it is imperative that the field of exoplanet spectroscopy moves toward adapted cross-sections, 

increasingly optimized for high- μ atmospheres for studies of super-Earths and mini-Neptunes. 

Crown Copyright © 2022 Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

The field of exoplanet atmospheric spectroscopy relies heav- 

ly upon accurately derived cross-sections, generated for particular 

ressure and temperature ranges as well as for specific molecules. 

s the number of known exoplanets continues to increase rapidly, 

e are witnessing an influx of small, more temperate worlds ( ≤ 10 

 

⊕ , ≤ 50 0 0 K). The range of super-Earths and mini-Neptunes dis- 

overed has opened up the field of possibilities for observable at- 

ospheres on these planets. Prime examples include the TRAPPIST- 

 system, [1] , 55 Cnc e [2,3] , GJ 1132 b [4,5] , GJ 1214 b [6] , K2-18 b

7] and LHS 1140 b [8] . 

Small planets of increasing interest in the field are those that lie 

ithin the radius valley [9–11] , i.e. between 1 . 5 − 2 . 0 R ⊕ , whereby

he dearth of planets in this region is theorized to be consistent 

ith the intersection between super-Earths and sub-Neptunes or 

ater-worlds. Planets smaller than 1 . 8 R � could have thinner, pos- 

ibly H -depleted atmospheres (e.g. [12–14] ), whilst planets with 
2 
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adii larger than this threshold could possess volatile-rich atmo- 

pheres, H 2 /He or H 2 O-rich in particular (e.g. [15,16] ). However, 

bservational constraints, in the form of atmospheric transmission 

pectra, are needed to confirm these hypotheses and therefore the 

ature of these transitional planets. Furthermore, this population 

f small planets deviates from our understanding of planet atmo- 

pheres which has been mostly built upon our knowledge of hot- 

upiters and the solar system. For example, cross-sections that are 

tilized in the exoplanet field (based on the line lists provided by 

xoMol [17] , HITRAN [18] , MoLLIST [19] and HITEMP [20] ) are typ-

cally generated for atmospheres which are either dominated by 

 2 and He, or air for Earth-like planets, in the case of HITRAN 

see recent works, such as [21–24] ). Whilst this is appropriate 

or gas giant planets or Earth-like planets, such cross-sections do 

ot include effects such as the self-broadening of heavy molecules 

ike H 2 O. When considering atmospheres heavier than H 2 /He, such 

s is expected to be prevalent on super-Earths and water worlds 

16,25–28] , this provides a non-negligible difference in the simu- 

ated (wavelength-dependent) atmospheric signal obtained during 

ransit, knows as the transit depth . 

H 2 and He are light molecular species which only interact 

eakly with other molecules at long range and are therefore very 

https://doi.org/10.1016/j.jqsrt.2022.108146
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2022.108146&domain=pdf
mailto:lara.anisman.18@ucl.ac.uk
https://doi.org/10.1016/j.jqsrt.2022.108146


L.O. Anisman, K.L. Chubb, Q. Changeat et al. Journal of Quantitative Spectroscopy & Radiative Transfer 283 (2022) 108146 

i

p

i

i

a

p

l

e

H

w

s

o

a

h

m

b

o

s

l

1

2

2

a

g

A

t

c

s

�

p  

w

�

w

b

w

s

w

g

r

t

d

i

m  

a

w

s

t

a

t

t

f  

e

c

u

m

t

L

I  

w

s

�

w

2

w

b

d

p

m

i

g

t

p

s

o

[

2

e

t

d

L

(

γ

H

γ
s

p

b

t

b

i

t

s

b

f

p

n

i

P

V  

u  

s

1 https://www.exomol.com/data/data-types/broadening _ coefficients/H2O/ . 
nefficient line broadeners. Water, conversely, is both heavier and 

ossesses a significant dipole which leads to enhanced long-range 

nteractions. Broadening by water vapour is known to be signif- 

cant in the Earth’s atmosphere even though it is generally only 

 trace species. As transit spectroscopy probes regions of an exo- 

lanet atmosphere as it approach optical thickness, the increased 

ine broadening by water can be expected to lead to significantly 

nhanced overall absorption compared to the case where only 

 2 and He are considered. 

Previous works have investigated the effects of various choices 

hen computing cross-sections for modelling exoplanet atmo- 

pheres, such as [29–32] . These investigations included the choice 

f broadening parameters, although these typically focus on H 2 / He 

tmospheres and associated broadening parameters. Recently there 

as been some work more focused on cross-sections for heavier at- 

ospheres, such as [28,33] . 

In this work we investigate the effects of including H 2 O self- 

roadening, in addition to H 2 /He-broadening, in the calculation of 

ur water cross-sections which we use to model exoplanet atmo- 

pheres. We find that the transit depth is considerably affected; the 

argest difference being found for one of our case-study planets GJ 

214 b, a 6.26 M 

⊕ , 2.85 R ⊕ super-Earth. 

. Methodology 

.1. Transmission spectroscopy 

If the orbital plane of a planet around its host star is aligned 

pproximately parallel to our line of sight with the system (analo- 

ous to 90 ◦ inclination), the planet will transit in front of its star. 

ssuming that there is no atmosphere, and that the planet is to- 

ally opaque to its incoming starlight, this transiting motion will 

ause a drop in the amount of stellar flux we receive from the host 

tar. This change in detected light is known as the transit depth , 

F , which is equal to the ratio between the surface area of the 

lanet (as we view it, in 2D) and the surface area of the star. Since

e assume both objects to be totally symmetrical, this reduces to: 

F = 

F out − F in 
F out 

= 

(
R p 

R ∗

)2 

(1) 

hich gives a measure of the relative change in flux as the planet 

locks its starlight. This provides us with an observable quantity 

ith which we can quantify the size of the planet, if we know the 

tellar properties, which can be derived from models. 

Now, if the planet possesses an atmosphere, an envelope of gas 

hich surrounds the planet which is maintained by the planet’s 

ravitational force, the molecules present will absorb, scatter and 

eflect incoming starlight, in addition to thermally emitting pho- 

ons. Owing to the varied and distinct spectral characteristics of 

ifferent molecules, how opaque a certain atmosphere is to incom- 

ng stellar flux will vary significantly with wavelength. This infor- 

ation is described by the quantity τ (λ) , given in Eq. (2) , known

s the optical depth . Overall, regarding transmission spectroscopy, 

e can treat the atmosphere as a purely absorbing and single- 

cattering medium as a good (first-order) approximation for radia- 

ive transfer through the planetary atmosphere. 

Given an arbitrary path through the atmosphere for which radi- 

tion transmits with wavelength-dependent initial intensity I λ, the 

ransmitted radiance will be attenuated by absorption and scat- 

ering processes. We can denote this reduction in intensity as a 

unction of path ds as dI λ/ds = −I λσλρ , where σλ is the total mass

xtinction cross section (the sum of the absorption and scattering 

ross sections) and ρ is the density of the medium. Integrating 

p and using the fact that the optical depth as a function of at- 

ospheric height is determined by summing the opacity contribu- 
2 
ions of all molecular species present, we recover the Beer-Bougert- 

ambert Law : 

 λ(z) = I λ(0) e −τλ(z) with τλ(z) = 

∑ 

m 

∫ z ∞ 

z 
σm,λ(z ′ ) χm 

(z ′ ) ρ(z ′ ) dz ′ ,

(2) 

here χm 

and ρ are the column density of a given molecular 

pecies and the number density of the atmosphere, respectively. 

We may now rewrite Eq. (1) as: 

F = 

F out − F in 
F out 

= 

(
R p + h λ

R ∗

)2 

≈ R 

2 
p + 2 R p h λ

R 

2 ∗
O (h λ) (3) 

here we may describe the atmospheric height function as: 

 R p h z = 2 

∫ z max 

0 

(R p + z)(1 − e −τλ(z) ) dz, (4) 

here z max denotes the height of the atmosphere. 

Using this formalism, the transit depth of an atmosphere- 

earing planet for any given wavelength may be calculated, using 

erived cross-sections (temperature, pressure, and wavelength de- 

endent) for a given molecular species. If we populate a model at- 

osphere with a given temperature profile, pressure profile, chem- 

cal species abundances and a specified cloud distribution we may 

enerate a transmission spectrum ( �F vs. λ) for the atmosphere, 

hereby forward-modelling it. To date, there is extensive literature 

ertaining to the collection of transmission data, alongside analy- 

is of the generated transmission spectra, for a wide variety of ex- 

planets; from hot-Jupiters [34–36] to habitable-zone super-Earths 

1,7,8] . 

.2. Broadening parameters 

The Voigt profile is commonly used to represent line broad- 

ning in exoplanet atmospheres, which is a convolution of the 

emperature-dependent Gaussian line profile and the pressure- 

ependent (and therefore dependent on broadening species) 

orentzian profile. The equation for the Lorentzian line width 

HWHM) for a given pressure P and temperature T , is given by: 

L = γ
(

T 0 
T 

)n P 

P 0 
. (5) 

ere, T 0 and P 0 are the reference temperature and pressure, whilst 

and n are the reference HWHM and temperature exponent, re- 

pectively. The latter two terms are known as pressure-broadening 

arameters, and are dependent primarily on the molecular species 

eing broadened and the species inducing it. Therefore these are 

he parameters which, upon variation, enable us to study the self- 

roadening effects of water considered in this study; consider- 

ng atmospheres comprising varying levels of H 2 O with respect 

o H 2 and He. The self-broadened H 2 O cross-sections used in this 

tudy were computed using ExoCross [37] , as were the H 2 /He- 

roadened cross-sections for H 2 O. The latter are similar to those 

rom the ExoMolOP database [21] but with J-dependent broadening 

arameters (where Jis the rotational angular momentum quantum 

umber) from the ExoMol website 1 used for H 2 and He broaden- 

ng [38,39] . All H 2 O cross-sections presented here use the ExoMol 

OKAZATEL line list [40] . We computed the line wings out to 500 

oigt widths in all cases, out to a maximum of 25 cm 

−1 . The val-

es of γ and n for the self-broadening of H 2 O used in the present

tudy are detailed below . 

https://www.exomol.com/data/data-types/broadening_coefficients/H2O/
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Table 1 

a) stellar and planetary parameters for two small plan- 

ets, for input into TauREx 3.0, derived from [61] , [62] , 

b) list of the forward-modeled parameters, their values 

and the scaling used. 

a) stellar & planetary parameters 

parameter GJ 1132 b GJ 1214 b 

T ∗ [K] 3270 3026 

R ∗ [ R �] 0.207 0.220 

M ∗ [ M �] 0.181 0.176 

M p [ M 

⊕ ] 1.66 6.26 

R p [ R ⊕ ] 1.13 2.85 

P orbital [days] 1.63 1.58 

b) forward model parameters 

parameter GJ 1132 b GJ 1214 b type 

P clouds None None opaque 

T [K] 500 600 iso. 

log 10 V H 2 O ∈ [-2, 2] [-2, 2] fill 

V He 1 e − 7 1 e − 7 trace 

Table 2 

Average values of γ and n for various species where pa- 

rameters are available from HITRAN-2020 [42] . The cus- 

tom data search from HITRANonline as described in [79] 

was used in order to extract the relevant parameters. 

Where ExoMolOP [21] is labelled as the source (where 

only H 2 and He-broadening was considered), the cita- 

tions used to find the averaged values are listed in the 

footnote to this table. 

Species Broadener γ n Source 

CO 2 H 2 O 0.14 0.79 HITRAN 

Self 0.09 0.64 HITRAN 

Air 0.07 0.71 HITRAN 

H 2 0.11 0.58 HITRAN 

He 0.06 0.3 HITRAN 

H 2 0.09 0.59 ExoMolOP 

He 0.04 0.44 ExoMolOP 

CO H 2 O 0.09 0.68 HITRAN 

Self 0.06 - HITRAN 

Air 0.05 0.7 HITRAN 

CO 2 0.06 0.66 HITRAN 

H 2 0.07 0.58 HITRAN 

He 0.05 0.54 HITRAN 

H 2 0.07 0.65 ExoMolOP 

He 0.05 0.6 ExoMolOP 

CH 4 H 2 O 0.07 0.85 HITRAN 

Self 0.07 - HITRAN 

Air 0.05 0.67 HITRAN 

H 2 0.06 0.6 ExoMolOP 

He 0.03 0.3 ExoMolOP 

H 2 O Self 0.35 - HITRAN 

Air 0.07 0.62 HITRAN 

H 2 0.06 0.2 ExoMolOP 

He 0.01 0.13 ExoMolOP 

CH 4 : [80–88] CO: [89–94] H 2 O: [38,95–102] CO 2 as- 

sumed parameters of C 2 H 2 : [103] 

[

a

i  

b

a

a

o

b

t

t

w

r

.2.1. Self-broadened half-width, γH 2 O 

There are many literature sources with broadening parame- 

ers for self-broadening of H 2 O. For example, Gamache and Hart- 

ann [41] compiled and compared various parameters related to 

 2 O line shape, including values for the half-width γ for self-H 2 O 

roadening. There are over 47,0 0 0 lines in their database, with val- 

es of γH 2 O 
ranging from 0.108 - 0.805 cm 

−1 atm 

−1 . The 2020 

elease of the HITRAN database [42] , who follow a “diet” proce- 

ure [43] , provide an update of this 2004 broadening measurement 

atabase of [41] . A simple average of all values of the main iso-

opologue of H 2 O (with no weighting) from HITRAN2020 for γH 2 O 

ields a value of 0.35 cm 

−1 atm 

−1 . There are many other works 

ith available broadening values: for example, [44] and [45] both 

resent a number of values for γH 2 O 
for a few thousand lines each. 

hey report average values of γH 2 O 
= 0.4 and between 0.1 and 

.5 cm 

−1 atm 

−1 , respectively. 

As noted above, for the present study we extract the broadening 

arameters from the HITRAN2020 [42] database as a function of 

otational angular momentum quantum number J, computing an 

verage value of γ for each value of J. The data extends up to a 

aximum of J= 26, and vary between 0.1 cm 

−1 atm 

−1 for high J to 

.5 cm 

−1 atm 

−1 for low J. 

.2.2. Temperature exponent n H 2 O for self-broadened half-width 

HITRAN2020 [42] currently only include γself and not n self val- 

es for H 2 O, due to the large effort required to validate and pop-

late such parameters into their database. For now we use aver- 

ged J-dependent values for γself from HITRAN2020 [42] , and an 

pparently typical value of n self = 0.7 for H 2 O.The focus of some 

ngoing and future work is to update the ExoMol [46] and Exo- 

olOP [21] databases to include broadening parameters in a more 

omprehensive way. This is not a simple undertaking: the H 2 O 

ine list used in this work, for example, ExoMol POKAZATEL [40] , 

ontains 6 billion transitions between 80 0,0 0 0 energy levels, with 

ven larger line lists required to describe larger species, see Table 

3 of [21] . 

Although it is beyond the scope of the current study to per- 

orm a comprehensive assessment of available temperature expo- 

ents for self-broadening of H 2 O, there are a number of studies in 

he literature which have focused on analysing water vapor spec- 

ra at various temperatures in order to determine the temperature 

ependence n of the self-broadened half-width γ . Here, we sum- 

arize the results from a selection of works, but note that this 

s not a comprehensive sample. Grossmann and Browell [47] ana- 

yzed spectra of water vapor in the 720 nm region, finding an aver- 

ge value of n = 0.75. Studies such as [48–50] all analyzed particular 

otational lines in the low-wavenumber region of the spectra, be- 

ween around 250 - 390 K. They find values of n self of 0.62, 0.89,

nd 0.85, respectively. Both [49,50] look at various broadeners, in- 

luding self. They find that both γ and n are generally larger for 

he cases where H 2 O is the broadener, in comparison to N 2 , O 2 or

r as broadeners ( n is 0.52, 0.64, 0.49 for those cases, respectively 

or example in [49] ). Alder-Golden et al. [51] analyzed low- J lines 

f H 2 O close to 12,200 cm 

−1 in the 330 - 540 K temperature range.

hey find an average value of γself at 296 K of 0.456 cm 

−1 atm 

−1 

compared to 0.095 cm 

−1 atm 

−1 for air-broadening). The temper- 

ture coefficient n for self-broadening of H 2 O was found to be 

.9 on average across the spectral region measured. Podobedov 

t al. [52] analyzed several lines of H 2 O in the region around 12 -

2 cm 

−1 for temperatures between 263 - 340 K and over a pres- 

ure range from 0.0 0 03 - 0.014 bar. The J- and T -dependent values

f γ were found to vary between 0.67 - 1.07 cm 

−1 atm 

−1 . They 

ound J-dependent values of n self between 0.56 and 0.81. 

Table 2 gives some average values extracted from the HITRAN 

020 [42] database for various molecules and broadeners. The H 2 - 

nd He-broadened average values used in the ExoMolOP database 
3 
21] (a database tailored for modelling “hot Jupiter”-type exoplanet 

tmospheres) are also included for reference. It can be seen that 

n general that the largest γ and n values occur when H 2 O is the

roadener, which for γH 2 O 
is an order or magnitude larger than H 2 - 

nd He-broadening. The contrast between H 2 - or He-broadening 

nd H 2 O-broadening, however, does not appear to be so large for 

ther species as for water vapor. A similar observation was noted 

y [28] , who highlight that self-broadening for H 2 O is typically up 

o 7 times larger than H 2 / He broadening based on their compila- 

ion of literature values. 

We note that the power law for temperature dependence which 

e assume in this work may not work well over large temperature 

anges, including those temperatures of the atmospheres we are 
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Fig. 1. Cross-sections computed using the self - broadening parameters for H 2 O, for the abundances of water vapor given in the legend. We compare the self-broadened 

cross-sections (orange, pink) with the H 2 / He-only broadened cross-sections (blue). Left: atmospheric pressure of 1 bar and right: atmospheric pressure of 10 −1 bar. In an 

atmosphere with 10% H 2 O, we assume the remaining 90% atmosphere is comprized of H 2 /He in solar abundances, and that the broadening is therefore 90% dominated by 

H 2 /He and the remaining 10% from H 2 O self-broadening. 

Fig. 2. The contribution function, dτ
dP 

, is defined as the wavelength-averaged variation in the optical depth, τ with pressure, P. On the LHS, τ is plotted in μ − P space; for 

which the contribution dτ
dP 

is normalized and displayed in the central panel; whilst on the RHS this contribution is plotted for varying water vapor abundance; illustrating 

that deeper pressures can be probed in lighter atmospheres. 

m

d
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f

s

W
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b

c
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s

odelling. This has been demonstrated by works such as [53] , who 

eveloped the more advanced Gamache–Vispoel double power law 

DPL) model. Other works such as [54] highlight non-Voigt ef- 

ects to line broadening. We will consider updating our cross- 

ections using these more robust line-shape models in the future. 

e also expect to have more robust values for the self-broadening 

arameters of H 2 O, and other molecular species, as a result of on- 
4 
oing work from projects such as ExoMol [46] and HITRAN [55] , 

nd others [56,57] , which we would like to incorporate into our 

ross-sections in the future. In Fig. 1 we present our derived H 2 O- 

roadened cross-sections at T = 600 K for various pressures, in 

omparison to the standard H 2 /He-broadened ones; in both cases 

t is clear that H 2 O self-broadening widens the profiles of each ab- 

orption peak. 
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Fig. 3. Individual over-plots of the (resolution 200) spectra produced with both H 2 and H 2 O-broadened cross-sections for each planet, for varying water abundance, with 

absolute differences beneath. Top: GJ 1132 b (500 K), bottom: GJ 1214 b (600 K). 
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.3. Simulating transmission spectra 

Equation (5) exhibits a linear relationship for γL with atmo- 

pheric pressure, P. Hence, we anticipate the strongest broadening 

ffect to contribute deeper in the atmospheres we wish to model. 

onsequently, the abundance of water vapor in the atmosphere 

hould affect our results, since although a decrease in molecule 

umber density ought to minimize the overall opacity contribution 

nduced by self-broadening, lighter atmospheres with low-mean- 

olecular weight allow us to probe deeper pressures; this is il- 

ustrated in Fig. 2 , where the contribution function, dτ
dP 

, is defined 

s the wavelength-averaged variation in the optical depth, τ with 

ressure, P . This informs our implementation of atmospheric mod- 

ls endowed with a variety of water vapor abundances, in order to 

xamine for which abundances the self-broadening effects of H 2 O 

re both most prominent, and, most observable with future space 

issions. 

In order to simulate forward models of transmission spectra 

or GJ 1132 b and GJ 1214 b, this analysis was performed using 

he publicly available retrieval suite TauREx 3.0 [58–60] . For the 

tellar parameters and the planet mass, we used the values from 

61] and [62] as given in Table 1 a). In our runs we assumed

hat the planets possess a range of different water-based atmo- 

pheres, with fill gas abundance ratio given by V H O = x , with the

2 a

5 
hosen values of x given in Table 1 b), and the remainder of the 

olecular abundance made up of H 2 and He, as specified. Addi- 

ionally, we included the collision induced absorption (CIA) from 

 2 -H 2 [63,64] and H 2 -He [65] , as well as Rayleigh scattering for 

ll molecules. Finally, our simulated atmospheres are cloud-free, 

sothermal and have molecular abundance profiles which are con- 

tant with altitude. The assumptions of isothermal and isochem- 

cal atmospheres hold for interpreting current data [8,66] . While 

hese approximations might be too simplistic to interpret accu- 

ately JWST and Ariel data [67,68] , they will not change the con- 

lusions of our paper. For each of the two planets two sets of 

pectra were generated: one using the standard H 2 /He-broadened 

ross-sections, and another with the H 2 O-broadened opacities, as 

escribed in Section 2.2 . 

. Results 

.1. Forward-modelling of transmission spectra 

We generate transmission spectra at a native resolution of 

5,0 0 0 for all three planets, before binning down to a nomi- 

al resolution and signal-to-noise ratio of 200 and 10, respec- 

ively, with TauREx 3.0 (enabling eventual comparison with Ariel 

nd JWST errorbars). We utilize both the H /He- and the H O- 
2 2 
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Fig. 4. Comparison of simulated error bars for observation of a) GJ 1132 b, and b) GJ 1214 b with future-missions Ariel and JWST with the absolute wavelength-dependent 

differences in transit depth on the simulated transmission spectra, using H 2 - vs. H 2 O-broadened cross-sections. In both cases these broadening-induced differences should 

be directly observable in the near-future. 
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roadened cross-sections described in Section 2.1 , yielding the 

pectra given in Fig. 3 , with planetary and stellar parameters de- 

cribed in detail in Table 1 . In comparison with spectra produced 

sing H 2 /He-broadened cross-sections, it is evident that by using 

ross-sections calculated for the water-dominated atmospheres the 

pectral features are amplified due to the additional absorption 

chieved by including self-broadening of H 2 O. In order to quan- 

ify these wavelength-dependent differences, these sets of spec- 

ra which are over-plotted the top panels of Fig. 3 have been 

ubtracted to obtain the results presented in the lower panels, 

rom which we determine maximum absolute differences in tran- 

it depth for the lightest secondary-type atmospheres (10% H 2 O); 

f 60 and 20 ppm for GJ 1214 b and GJ 1132 b, respectively. 

.2. Ariel & JWST error-bars 

During its primary mission, Ariel will survey the atmospheres 

f 10 0 0 exoplanets [69,70] and many of these targets could be 

n the Super-Earth and Sub-Neptune regime [71] . Meanwhile, dur- 

ng the Guaranteed Time Observations (GTO) and first cycle of 

he General Observing (GO), around 70 planets will be observed 

ith JWST [72] . Nearly half of these JWST targets have a radius of 
6 
2 . 5 R � and, therefore, may not have a H 2 -dominated atmosphere. 

uring its lifetime, JWST is expected to observe a couple of hun- 

red exoplanets [e.g. 73 ]. 

To investigate the detectability of broadening-induced differ- 

nces with future instruments, we generated error bars for the 

imulated spectra. We then compared the size of these uncer- 

ainties to the absolute differences between the H 2 - and H 2 O- 

roadened spectra. For Ariel, we generated error bars using Ariel- 

ad [74] while, for JWST, we used a modified version of the radio- 

etric tool described in Edwards and Stotesbury [75] which uti- 

izes the JWST instrument parameters from Pandeia [76] . 

For JWST we modeled observations with NIRISS GR700XD (0.8 - 

.8 μm ) and NIRSpec G395M (2.9 - 5.3 μm ), whilst for Ariel, which

rovides simultaneous coverage from 0.5 - 7.8 μm , we simulated 

rror bars at tier 2 resolution. Presented in Fig. 4 , for GJ 1132 b

nd GJ 1214 b, we observe that both instruments will be sensitive 

nough to reveal such differences when integrating multiple tran- 

its, specifically 45 and 40 in the case of Ariel (tier 2), and 10 and

 in the case of JWST for GJ 1132 b and GJ 1214 b, respectively. We

ote that both these planets will be studied by JWST in the first 

ycle of observations. 
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. Discussion 

In all spectra, an increase in μ, corresponding to increased vol- 

me mixing ratio of water, corresponds to reduced scale height, 

ince H = 

kT 
μg , (where μ is the mean molecular weight of the at- 

osphere, g is the planet gravity and k is the Boltzmann constant). 

or the individual atmospheres we observe a saturation of features 

s the atmospheric mean-molecular-weight gets larger. In tandem, 

n increase in mean-molecular weight of the atmosphere results in 

 decrease in the atmospheric pressure at which we can probe, as 

llustrated in Fig. 2 . Thus, the largest observed differences in tran- 

it depth vs. wavelength are found in the lightest secondary-type 

tmospheres, namely those with 10% water vapor, for all employed 

emperatures. As for the two planets considered, the largest tran- 

it depth increases are observed in GJ 1214 b, with an equilibrium 

emperature of 600 K, as opposed to HAT-P-11 b, which possesses 

n equilibrium temperature of 900 K. 

Although the Lorentzian line profile for H 2 O self-broadening is 

pproximately inversely proportional to the atmospheric tempera- 

ure, low-temperature planets have smaller global transit depths, 

ue to the reduction in scale height the temperature induces. 

ence, there is a trade-off between the strength of the broadening 

ffect and detectability of such effects. Our work finds that the at- 

ospheric temperatures for such differences to become detectable 

ith future missions, as discussed, is thus ∼ 600 K. 

Thus, consideration and utilization of self-broadening effects in- 

uced by not just H 2 O, but all large- μ molecules should have 

 stronger impact on the medium-cool atmospheres of temper- 

te planets, as well as those with low-mean-molecular-weight sec- 

ndary atmospheres, namely those closer to the threshold abun- 

ance of around 10% non-H 2 or -He which we define to the bound- 

ry between primary and secondary type atmospheres; precisely 

hose planets which sit in the transition region between super- 

arths and sub-Neptunes, whose atmospheres remain illusive and 

ut-of-reach with current telescopes, due to known limits on both 

he signal-to-noise and resolution [8] . The next generation of tele- 

copes will widen and deepen our spectral view, both in terms 

f signal-to-noise and resolution, but also in wavelength cover- 

ge; hence these problems should be easily tackled with Ariel and 

WST. It is therefore especially imperative for the accuracy of cross- 

ection data to compete with the level of precision obtainable with 

hese future facilities. 

Standard H 2 /He-broadened cross-sections which are in 

idespread use by the exoplanet community are simply non- 

ptimal for the study of secondary-type, heavy atmospheres 

ominated by non-H 2 /He species due to the fact that these opaci- 

ies are calculated with respect to a nominal atmosphere which is 

ominated by H 2 and He. At present, due to the computationally- 

ntensive nature of numerically evaluating absorption strengths 

or molecular transitions and interactions for a given atmospheric 

pecies, specifying a grid of temperature and pressure values is 

ecessary to obtain computable opacities for input into forward 

odels and atmospheric retrieval algorithms. It is well known that 

xtrapolating opacities above the temperature or pressure grid 

n which they were computed can be problematic (e.g. [77 , 78] ),

argely due to the dominance of transitions that originate in en- 

rgy levels above the ground-state in higher temperature regimes. 

n this work we demonstrate that including self-broadening ef- 

ects into the calculation of the absorption cross-section of water 

arkedly affects the simulated transit depth of small-planet ex- 

planet atmospheres. Moreover, we are the first in the exoplanet 

eld to illustrate that these generated differences are detectable 

ith the near-future space missions JWST & Ariel, by explicitly 

imulating spectra with error bars for these instruments. We prove 

hat self-broadening is necessary to account for in these calcula- 

ions. As a community, our long-term goal should be to develop 
7 
ross-section functions, explicitly derived for pressure-temperature 

rids and as a function of molecular abundances, with all intra- 

nd inter-molecular effects, like self-broadening, included. 

. Conclusion 

In summary, it is evident that accounting for previously 

hought-to-be negligible absorption contributions, such as the self- 

roadening exhibited by H 2 O in our opacity functions, will alter 

imulated transit depths by as much as 60 ppm. These differences 

it above the noise level for a reasonable number of transit obser- 

ations with the near-future space telescopes JWST and Ariel for 

he two small planets considered: GJ 1132 b and GJ 1214 b. Our 

uantification of the transit depth differences found by producing 

nd utilising cross-sections which include the absorption contribu- 

ion induced by H 2 O self-broadening motivate further progress in 

ot only refining such broadening parameters, but also developing 

pacities for a variety of molecular species expected to be found in 

he atmospheres of small planets, which may also be dominated 

y more than one heavy molecule. This is not an easy undertak- 

ng, due to the vast amount of work done and ongoing in the 

eld of line shapes (including half widths γH 2 O 
and temperature 

ependence n H 2 O ; see, for example, [41,42,44,55] , and references 

herein). It is paramount that the field of exoplanet spectroscopy 

oves towards the use of more adaptive cross-sections, built as 

unctions not only of temperature and pressure but also of molec- 

lar abundance, as we have illustrated specifically for the case of 

 2 O. 
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