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ABSTRACT
We present a unified variational treatment of the electric quadrupole (E2) matrix elements, Einstein coefficients, and linestrengths for
general open-shell diatomic molecules in the general purpose diatomic code DUO. Transformation relations between the Cartesian rep-
resentation (typically used in electronic structure calculations) to the tensorial representation (required for spectroscopic applications) of
the electric quadrupole moment components are derived. The implementation has been validated against accurate theoretical calculations
and experimental measurements of quadrupole intensities of 1H2 available in the literature. We also present accurate electronic struc-
ture calculations of the electric quadrupole moment functions for the X1Σ+ electronic states of CO and HF, as well as for the a1Δg–b1Σ+g
quadrupole transition moment of O2 with the MRCI level of theory. Accurate infrared E2 line lists for 12C16O and 1H19F are provided.
A demonstration of spectroscopic applications is presented by simulating E2 spectra for 12C16O, H19F, and 16O2 (Noxon a1Δg–b1Σ+g
band).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0063256

I. INTRODUCTION

The electric dipole approximation is often used to treat the
spectra of diatomic, or small polyatomic, molecules. For most sys-
tems, this is a valid approximation that produces good results.
For homonuclear diatomic molecules, however, electric dipole (E1)
selection rules forbid pure rotational and vibrational transitions as
well as parallel electronic transitions As a result, electric quadrupole
(E2) transitions and magnetic dipole (M1) become important.1–14

This has implications for the spectra of several important
molecules. The most famous example is the hydrogen molecule,
which despite being the most abundant molecule in the universe
has no infrared electric dipole spectrum. The three lowest lying
electronic states of another important molecule, O2, all have the
same (gerade) symmetry, and transitions between them are therefore

electric dipole forbidden.5,15,16 Oxygen’s significant absorption in
the visible region comes from the electric quadrupole and magnetic
dipole moments.

Even when electric dipole transitions are weakly allowed
through interactions with other electronic states, E2 and M1 tran-
sitions may still be detectable, and their consideration is necessary
for an accurate description of the molecule’s spectrum,17–20 such
as for the Cameron bands (a3Π–X1Σ) and fourth positive system
(A1Π–X1Σ) of CO.18,21,22

E2 and M1 transitions prove difficult to measure experimen-
tally owing to their weak intensity and the long path lengths
required for appreciable absorption. Electric quadrupole transition
intensities are on the order of 106–109 times smaller than elec-
tric dipole transition intensities.19,20,23 Nevertheless, they are often
present in atmospheric spectra, where sufficiently long path lengths
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are regularly achievable, and play an important role in geophysical
and astrophysical applications.3,5,22,24,25

In spectroscopic applications as used in, e.g., the HITRAN
database,26 the E2 intensities are usually represented by expres-
sions in terms of effective electric quadrupole moment constants
with the rotational line intensities modeled via Hönl–London
factors.5,27 Examples of variational methodology used for electric
quadrupole intensities of open-shell diatomic molecules include ear-
lier works by Chiu;28 Balasubramanian, D’Cunha, and Rao;29 and
Balasubramanian and Narayanan.30

Exoplanetary atmospheric retrievals require high resolution
molecular opacities across a wide spectral range for a variety of tem-
peratures. This has been the ongoing focus of the ExoMol database,
and to date, molecular line lists have been produced for more than
80 molecules and 190 isotopologues.31 However, several important
homonuclear molecules, including N2,32 S2, and the crucial biosig-
nature molecule O2,33–37 have evaded rigorous treatment due to the
dipole-forbidden nature of their spectra. As a result, these molecules
are currently missing from analyses of atmospheric spectra of hot
exoplanets, representing a significant obstacle to the characteri-
zation of exoplanet atmospheres or indeed any high temperature
environments.

Here, we present a formulation of the electric quadrupole line
intensities for a general (open-shell) diatomic molecule and an
implementation of these E2 matrix element and linestrength expres-
sions in the DUO program38—a powerful rovibronic variational pro-
gram developed as part of the ExoMol project to solve the time-
independent Schrödinger equations and compute rovibronic spectra
of diatomics. To the best of our knowledge, this work represents the
first general computational methodology for generating quadrupole
spectra of arbitrary diatomic systems from first-principles, which
lays the foundations for future work to produce a complete molecu-
lar line list for O2 and other homonuclear diatomics.

This paper is structured as follows: Sec. II introduces the rovi-
bronic basis used by the DUO program before presenting expres-
sions for the electric quadrupole matrix elements, linestrengths,
and Einstein coefficients for a general case of an arbitrary diatomic
molecule. We also show how the matrix element components in the
Cartesian representation, commonly employed in electronic struc-
ture calculations, are related to the tensorial representation used by
DUO and outline the approach taken to reconstruct the transforma-
tion between the two. In Sec. III, we provide demonstrations for
the DUO implementation of electric quadrupole linestrength calcula-
tions, including a validation against accurate theoretical and exper-
imental linestrengths for H2. We also present accurate quantum
chemistry calculations of the electric quadrupole moment functions
for CO and HF molecules, as well as infrared transition linestrengths
for CO and HF molecules calculated using DUO. These line lists are
included into the ExoMol database (www.exomol.com), which aims
to provide molecular spectroscopic data for studies of exoplanetary
and other atmospheres. More challenging nuclear motion applica-
tions of electronic E2 spectra of open-shell diatomic molecules are
under way. As an illustration of an open-shell application, an E2
spectrum for the electronic system a1Δg–b1Σ+g (Noxon band) of
O2 is presented and compared to an experimental spectrum from
the literature. The spectroscopic model for each molecule, includ-
ing ab initio electric quadrupole moment functions Θ(r), is made
available in the supplementary material via DUO input files. We also

provide a list of calculated state energies and quantum numbers, as
well as cross sections and line positions in the form of ExoMol line
lists.31

II. THEORETICAL BACKGROUND
A. Matrix elements and linestrengths
1. Rovibronic wavefunctions

We consider the calculation of electric quadrupole spectra for
an arbitrary diatomic molecule between some generic rovibronic
states. Our aim is to implement an E2 spectra module as part of
the general diatomic code DUO.38 The original DUO program and its
methodology are detailed extensively by Yurchenko et al.38 For the
purpose of defining the matrix elements here, it suffices to simply
introduce the definition of the quadrupole moment, the basis func-
tions, and the final eigenstates used by the DUO program. DUO uses
Hund’s case (a) basis set in the following form:

∣φi⟩ = ∣ξΛ⟩∣SΣ⟩∣ξv⟩∣JΩM⟩, (1)

where J is the total angular momentum, M is a projection of J on the
laboratory Z-axis in units of h, S is the total electronic spin angu-
lar momentum, Σ is the projection of the spin of electrons on the
molecular z-axis, ξ are indices of the ξth electronic state, Λ is the
projection of the electronic angular momentum on the molecular z-
axis, Ω = Λ + Σ (projection of the total angular momentum on the
molecule z-axis), and v is the vibrational quantum number.

The eigenfunctions corresponding to the final rovibronic eigen-
values are expressed as linear combinations of the basis functions in
Eq. (1),

∣ψJMτ⟩ = ∑
ξΛSΣvΩ

CJτ(ξΛSΣvΩ)∣ξ,Λ⟩∣SΣ⟩∣ξ, v⟩∣JΩM⟩, (2)

where CJτ(ξΛSΣvΩ) = CJτ(φ) are the expansion coefficients
obtained by solving a system of coupled rovibronic Schrödinger
equations variationally and τ is the symmetry of a rovibronic eigen-
state. In the case of a heteronuclear diatomic, τ is a parity τ = − (odd)
or + (even),39 which reflects how ∣ψJMτ⟩ transforms upon inversion
or, equivalently, reflection through the molecule-fixed xz plane. For
a homonuclear molecule, the symmetry τ includes the parity with
respect to the permutation of the nuclei and is traditionally repre-
sented by the combinations ± (xz-reflection) as well as the g/u par-
ities (molecular-fixed inversion), where g and u stand for “gerade”
and “ungerade.” Generally, the good quantum numbers are the total
angular momentum J, the symmetry τ, and the g and u parities
(homonuclear molecules). It is also common to assign other quan-
tum numbers according to the largest coefficient CJτ(φ) in the basis
set expansion.38

2. Electric quadrupole matrix elements
The Einstein A coefficient for an E2 transition between a lower

state i and an upper state f is given in SI units by

A f i =
8π5ν5

f i

5ε0hc5
1

(2Jf + 1)
S f i, (3)

where ν fi (s−1) is the transition frequency, ε0 (Fm−1) is the permit-
tivity of free space, h (J s) is Planck’s constant, c (m s−1) is the speed
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of light in a vacuum,

S f i = ∣M
(E2)
f i ∣

2
= ∑
α,β=x,y,z

∣⟨ψf ∣Qαβ∣ψi⟩∣
2 (4)

is the transition linestrength (C2 m4
), and the matrix elements are

those of the quadrupole operator Qαβ (α,β = x, y, or z) are defined
relative to the nuclear center of mass by

Qαβ = −
3
2∑i

ei(ri,αri,β − δαβ
1
3

r2
i ), (5)

where the sum runs over the nuclei and electrons with ei being
the charge of the particle and ri being its position vector in the
molecule-fixed frame. We use the common convention of Buck-
ingham,40 used in many quantum chemistry programs such as in
the work of Werner et al.41 Different sources employ definitions of
the quadrupole moment with varying constant pre-factors, such as
Truhlar.42

The DUO rovibronic wavefunctions ∣ψJMτ⟩ and the transition
linestrength in Eq. (4) are defined in the laboratory-fixed frame.
Meanwhile, the electric quadrupole moments in Eq. (5) are defined
in the molecule-fixed frame. For the convenience of calculating
matrix elements, the relationship between the molecule-fixed and
laboratory-fixed components of tensor operators is best established
using the algebra of irreducible tensors. The traceless symmetric
quadrupole tensor of rank 2 can be expressed in terms of three irre-
ducible tensors Q(0), Q(1), and Q(2) with ranks zero, one, and two,
respectively. The components Q(k)m with −k ≤ m ≤ k are expressed in
terms of the Cartesian Qij via the following standard relations:23,43

Q(0)0 = −
1
√

3
(Qxx +Qyy +Qzz), (6)

Q(1)0 =
i
√

2
(Qxy −Qyx), (7)

Q(1)
±1 = −

1
2
[Qxz −Qzx ± i(Qzy −Qyz)], (8)

Q(2)0 =
1
√

6
(2Qzz −Qxx −Qyy), (9)

Q(2)
±1 =

1
2
[∓(Qxz +Qzx) − i(Qyz +Qzy)], (10)

Q(2)
±2 =

1
2
[(Qxx −Qyy) ± i(Qxy +Qyx)] (11)

and transform under rotation between the two frames as follows:39

Q(k)m =∑
m′
(−1)m−m′Q(k)m′ D(k)

−m,−m′ , (12)

where D(k)
−m,−m′ are the Wigner D-matrices. The traceless definition

of the components Qαβ [Eq. (5)] and the property of being symmetric

under interchange of the indices α,β imply that Q(0)0 = Q(1)m = 0 such
that only the second rank components of the quadrupole moment
are non-zero. This allows one to write the transition linestrength
using the DUO eigenfunctions [Eq. (2)] as

S f i = gns ∑
Mi ,M f

2

∑
m=−2
∣⟨ψJ f M f τ f ∣Q

(2)
m ∣ψJiMiτi⟩∣

2
, (13)

where gns is a nuclear statistical weight that accounts for the degen-
erate nuclear spin components of the total nuclear-rovibronic wave-
function (see, e.g., Bunker and Jensen).44

Long43 provided expressions that allows one to construct labo-
ratory frame matrix element expressions for the electric polarizabil-
ity tensor—also of rank two. Adapting the treatment, one can write
the transition quadrupole moment matrix elements as

S f i = gns(2Ji + 1)(2Jf + 1)
RRRRRRRRRRRR

∑
φ f

C∗Jiτi(φf )∑
φi

CJ f τ f (φi)

×∑
m′
δS f SiδΣ f Σi(−1)m′+Ωi⟨vf ∣⟨ξfΛf ∣Q

(2)
m′ ∣ξiΛi⟩∣vi⟩

×

⎛
⎜
⎜
⎜
⎝

Ji Jf 2

−Ωi Ωf −m′

⎞
⎟
⎟
⎟
⎠

RRRRRRRRRRRRRRRRR

2

, (14)

where Eq. (12) was used to transform from the laboratory frame to
the molecular frame. Here, m and m′ index the components of the
irreducible representation in the laboratory and molecular reference
frames, respectively, and the following properties of the Wigner D-
matrices, D(k)

−m,−m′ , have been used to express the rotational matrix
element in terms of 3-j symbols,39

∣JMΩ⟩ = (−1)M−Ω
(

2J + 1
8π2 )

1
2
D(J)
−M,−Ω, (15)

⟨JMΩ∣ = (
2J + 1

8π2 )

1
2
D(J)M,Ω, (16)

∫ DC
cc′D

A
aa′D

B
bb′ sin βdβdαdγ = 8π2

⎛
⎜
⎝

A B C

a b c

⎞
⎟
⎠

⎛
⎜
⎝

A B C

a′ b′ c′,

⎞
⎟
⎠

(17)

with α, β, and γ being the Euler angles. Additionally, the following
standard property of the 3-j symbols implies that the 3-j symbols
containing Mi, Mf, and m, which arise as a result of Eq. (17), can be
summed over Mf, Mi, and m and eliminated from Eq. (13),

k

∑
m=−k

J′

∑
M′=−J′

J′′

∑
M′′=−J′′

⎛
⎜
⎝

J′′ k J′

M′′ m −M′
⎞
⎟
⎠

2

= 1. (18)

If required, e.g., for use with molecular dynamics programs such
as RICHMOL,45 DUO can explicitly calculate the laboratory frame com-
ponents of the matrix elements. Note also that the 3-j symbols are
invariant under cyclic permutations of their columns and have the
properties ∣A − B∣ ≤ C ≤ ∣A + B∣ and a + b + c = 0. Together with the
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Kronecker deltas in Eq. (14), this implies the following selection
rules for E2 transitions:

ΔJ = Jf − Ji = 0,±1,±2 (19)

and ΔS = ΔΣ = 0 such that

ΔΛ = Λf −Λi = −m = 0,±1,±2 (20)

for all ⟨ξfΛf ∣Q
(2)
m ∣ξiΛi⟩ with −2 ≤ m ≤ 2 in Eq. (14). These quantum

number selection rules should be supplemented by the symmetry
selection rules,

+↔ +, −↔ −, (21)

g ↔ g, u↔ u, (22)
which arise as a result of the symmetric property of the quadrupole
moment under coordinate inversion [Eq. (5)], and the requirement
that the total matrix element is also symmetric under coordinate
inversion such that the integral over spatial coordinates is non-zero.

3. Representation of ab initio coupling curves
In this section, we outline the procedure used by the DUO pro-

gram to transform coupling curves, specifically including the inde-
pendent components of the quadrupole moment tensor, from the
Cartesian representation commonly obtained from electronic struc-
ture calculations to the tensorial, Λ-representation required by DUO.
The (transition) quadrupole moments in Eq. (14) are r-dependent
curves (r is the vibrational coordinate) averaged over electronic
coordinates,

Q(2)m (r; ξf , ξi) = ⟨ξfΛf ∣Q
(2)
m (r)∣ξiΛi⟩, (23)

where ∣ξiΛi⟩ and ∣ξfΛf ⟩ are the corresponding electronic wave-
functions. These curves are often obtained empirically by fitting
analytical functions to experimental measurements of energies and
linestrengths or computed ab initio using electronic structure pro-
grams such as those used in the present work (MOLPRO41,46 or
the open-access software CFOUR47). In electronic structure cal-
culations, the representations of the infinite symmetry groups for
diatomic molecules C∞v and D∞h are commonly represented in
terms of their Abelian subgroups C2v and D2h in order to facili-
tate the computation of physically realized energy levels. For the
practical purpose of transforming the electronic properties from
the output of quantum chemistry programs to the representation
required for the DUO input, we also employ the representation of
C∞v and D∞h in terms of the Abelian subgroups in the following
derivation.

The irreducible Abelian representation of a matrix element of
a given operator coupling electronic states i and f , each with irre-
ducible Abelian representations Gi and Gf , respectively, must be
contained within the Abelian group given by the direct product
Gi ×Gf .23 Moreover, it can be shown that there exists only one inde-
pendent Cartesian quadrupole component that couples a given pair
of irreducible representations within an Abelian symmetry group.
Tables I and II establish the correlations between the products of
Cartesian vectors rx, ry, rz , corresponding to the components of the
quadrupole moment operator in Eq. (5), and the products of dif-
ferent irreducible representations for C2v and D2h point groups,
respectively.

TABLE I. Product table for the quadratic functions of the Cartesian components
and the isotropic function s, which transform as the product of different irreducible
representations for the C2v point group.

A1 A2 B1 B2

A1 s xy xz yz
A2 xy s yz xz
B1 xz yz s xy
B2 yz xz xy s

Equation (14) uses the tensorial representation of all electronic
properties, including the electric quadrupole moments Q(2)m (r). It
is also convenient to represent the electronic basis functions ∣ξΛ⟩
corresponding to the doubly degenerate Λ > 0 states in the tenso-
rial representation with ±∣Λ∣ as a good quantum number. These are
related to the Cartesian components ∣α⟩ and ∣β⟩ by38

∣ξ,±∣Λ∣⟩ =
1
√

2
[∣α⟩ ± i∣β⟩], (24)

where ∣α⟩ and ∣β⟩ are, for example, ∣Πx⟩ and ∣Πy⟩ (∣Λ∣ = 1), ∣Δxx⟩ and
∣Δxy⟩ (∣Λ∣ = 2), etc., as typically produced by electronic structure
methods.

We now consider the unitary transformation from the Carte-
sian (electronic structure) representation of the matrix elements
⟨ξ′′γ′′∣Qij(r)∣ξ′γ′⟩ (γ ∈ [α,β]) to their tensorial (DUO) representa-
tion ⟨ξ′′Λ′′∣Q(k)m (r)∣ξ′Λ′⟩ in Eq. (23).

To construct this transformation and also to keep track of the
relative phases of “electronic structure” wavefunctions, DUO makes
the use of the Cartesian matrix elements of the electronic angu-
lar momentum operator L̂z . We choose the Cartesian components
∣α⟩, ∣β⟩ such that for wavefunctions with ∣Λ∣ > 0 the L̂z matrix is given
(up to an arbitrary phase factor) by

Lz =
⎛
⎜
⎝

⟨α∣L̂z ∣α⟩ ⟨α∣L̂z ∣β⟩

⟨β∣L̂z ∣α⟩ ⟨β∣L̂z ∣β⟩

⎞
⎟
⎠
=
⎛
⎜
⎝

0 −ih̵∣Λ∣

ih̵∣Λ∣ 0

⎞
⎟
⎠

, (25)

where Lz is the Cartesian matrix representation of L̂z with the ele-
ments ⟨ξγ′′∣Lz∣ξγ′⟩ and the index ξ is dropped for simplicity. The
wavefunctions ∣ξ,±∣Λ∣⟩ in Eq. (24) can be formed as eigenfunctions

TABLE II. Product table for the quadratic functions of the Cartesian components
and the isotropic function s, which transform as the product of different irreducible
representations for the D2h point group.

Ag B1g B2g B3g Au B1u B2u B3u

Ag s xy xz yz
B1g xy s yz xz
B2g xz yz s xy
B3g yz xz xy s
Au s xy xz yz
B1u xy s yz xz
B2u xz yz s xy
B3u yz xz xy s
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of the operator L̂z in the Cartesian representation by diagonaliz-
ing the 2 × 2 matrix Lz with the eigenvalues h∣Λ∣ and −h∣Λ∣.38 The
corresponding unitary matrix that diagonalizes Lz ,

U =

⎛
⎜
⎜
⎜
⎜
⎝

1
√

2
i
√

2
1
√

2
−i
√

2

⎞
⎟
⎟
⎟
⎟
⎠

, (26)

provides the transformation between the Cartesian and tensorial
representations for any electronic structure property, including the
electric quadrupole,

Qtens.
= U−1QCart.U. (27)

Together with the 3-j symbol in Eq. (14), which implies that
each component Q(2)m′ couples electronic states with Λ f −Λi = m′,
this allows for the following additional relations to be made:

⟨±∣Λ∣∣Q(2)0 ∣±∣Λ∣⟩ =
3

2
√

6
[⟨α∣Qzz ∣α⟩ + ⟨β∣Qzz ∣β⟩]

=
3
√

6
⟨α∣Qzz ∣α⟩, (28)

⟨Σ+∣Q(2)
±1 ∣∓Π⟩ = ∓

1
√

2
[⟨Σ+∣Qxz ∣Πx⟩ + ⟨Σ+∣Qyz ∣Πy⟩]

= ∓
√

2⟨Σ+∣Qxz ∣Πx⟩, (29)

⟨Σ−∣Q(2)
±1 ∣∓Π⟩ = −

i
√

2
[⟨Σ−∣Qxz ∣Πy⟩ + ⟨Σ−∣Qyz ∣Πx⟩]

= −i
√

2⟨Σ−∣Qxz ∣Πy⟩, (30)

⟨Σ+∣Q(2)
±2 ∣∓Δ⟩ = +

1
√

2
[⟨Σ+∣Qxx∣Δxx⟩ + ⟨Σ+∣Qxy∣Δxy⟩]

= +
√

2⟨Σ+∣Qxx∣Δxx⟩, (31)

⟨Σ−∣Q(2)
±2 ∣∓Δ⟩ = ±

i
√

2
[⟨Σ−∣Qxx∣Δxy⟩ + ⟨Σ−∣Qxy∣Δxx⟩]

= ±i
√

2⟨Σ−∣Qxx∣Δxy⟩, (32)

⟨∓Π∣Q(2)
±1 ∣∓Δ⟩ = ∓

1
2
[⟨Πx∣Qxz ∣Δxx⟩ + ⟨Πx∣Qyz ∣Δxy⟩

− ⟨Πy∣Qyz ∣Δxx⟩ + ⟨Πy∣Qxz ∣Δxy⟩]

= ∓2⟨Πx∣Qxz ∣Δxx⟩. (33)

The initial expressions in Eqs. (28)–(33) are obtained from
Eqs. (9)–(11) by substituting the symmetric components Qzx = Qxz ,
Qzx = Qyz , Qxy = Qyx, and Qxx = −Qyy. The second line in each
expression is obtained by setting the matrix elements that do not sat-
isfy the selection rule in Eq. (20) (e.g., ⟨Σ+∣Q(2)

∓1 ∣∓Π⟩, ⟨Σ
+
∣Q(2)
∓2 ∣∓Δ⟩,

etc.) equal to zero and rearranging to obtain relations between differ-
ent Cartesian components of the matrix elements. In the case of the
D2h symmetry, the corresponding equations [(28)–(33)] are identical
except for the addition of the relevant g/u parity label.

III. DEMONSTRATIONS
In this section, we provide a demonstration of the DUO electric

quadrupole program for the simple 1Σ systems of H2, CO, and HF.
In particular, we choose H2 as the initial proof of the program due
to the highly accurate spectroscopic data available for this molecule,
which we aim to reproduce. The demonstrations for CO and HF
exemplify heteronuclear systems with large molecular quadrupole
moments in which the consideration of E2 transitions is necessary
to obtain accurate cross sections. An application to a more complex
system involving interstate transitions with a non-Σ electronic state
is illustrated by way of simulating the Noxon electronic (E2) band
a1Δg–b1Σ+g of the O2 molecule. The spectroscopic models detailed
in this section are provided as supplementary material in the form of
DUO input files, and the DUO program itself is open-source and can be
obtained from the ExoMol public repository at github.com/Exomol.

A. Molecular hydrogen
Molecular hydrogen is the simplest diatomic molecule, con-

taining just two electrons and two protons. It is the most
abundant molecule in the universe and plays an important
role in star formation,48–51 interstellar physics,52–54 (exo)planetary
atmospheres,55–58 and investigations of fundamental physics.59,60

Owing to its molecular symmetry, the homonuclear
H2 molecule has no permanent electric dipole moment, and
thus, rovibrational transitions are forbidden in the electric dipole
approximation. The availability of highly accurate electronic
potential energy curves (PECs) and electric quadrupole moment
curves (QMCs) makes H2 an ideal candidate for validating the
implementation of E2 transitions in DUO. The simplicity of the
H2 molecule makes it an extremely tractable quantum mechanical
problem—indeed, it was the model molecule for many early calcu-
lations of molecular dynamics on the world’s first mass-produced
computers.61–63 Even for these early calculations, linestrength accu-
racies within a few percent were attainable.64–66 As a result, there
is a wealth of accurate spectroscopic data available with which the
DUO implementation can be validated. Most recently, Roueff et al.12

calculated a highly accurate (order 10−6 cm−1) infrared spectrum for
the H2 molecule including several higher order correction terms.67

The calculations of Roueff et al.12 are based on an extensive
series of earlier works by Pachucki68 and Pachucki and Komasa,69–71

in which the H2 Born–Oppenheimer PEC was obtained with
10−15 relative numerical precision using 22 000 exponential basis
functions and explicit electron correlation calculations.68,72 They
also compute non-adiabatic,69,71 adiabatic,70 and high-order rela-
tivistic73 corrections to the Born–Oppenheimer potential energy.
The quadrupole moment function employed in their calcula-
tions is obtained using the Born–Oppenheimer wavefunction
and is in agreement with the values reported by Wolniewicz,
Simbotin, and Dalgarno,10 who employed a 494-term correlated
basis representation of the wavefunction to obtain the quadrupole
moment function with an estimated accuracy on the order
of 0.001%.

For the validation of the DUO implementation, their original
Born–Oppenheimer potential is retrieved using the V(DR) func-
tion made available via the H2SPECTRE program.67 The contri-
bution of the adiabatic and non-adiabatic corrections computed
by Roueff et al.12 is in the range of 5–20 and 0.4–4.0 cm−1,
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respectively, increasing the total state energy. The higher order rel-
ativistic corrections are on the order of 0.01 cm−1 or less. Since
the Born–Oppenheimer PEC provided does not include adiabatic or
non-adiabatic corrections, significant deviation is expected between
the calculated state energies for high v and J states. Typically, these
deviations could be corrected in DUO via an empirical fit to experi-
mentally accurate state energies. Such refinement is not performed
in this work, as the aim here is to illustrate the implementation of E2
transition strengths rather than providing an accurate or improved
line list for H2. The quadrupole moment function of Wolniewicz,
Simbotin, and Dalgarno10 is also employed, given as a grid of 253
electric quadrupole moment values between 0.2 and 20.0 a0, which
DUO interpolates using quintic splines.

The vibrational grid is defined by 501 equally spaced points in
the range of 0.38–18.90 a0. After solving the vibrational Schrödinger
equation using the sinc-DVR method, the first 30 vibrational states
are selected to form the contracted vibrational basis and the rovibra-
tional Schrödinger equation is solved for rotational states with total
angular momentum quantum numbers 0 ≤ J ≤ 200 at 296 K.

Figure 1 illustrates the results of a line-by-line comparison of
the DUO results to the accurate line list of Roueff et al.12 (including all

corrections). As expected, significant differences between the ener-
gies calculated by DUO (E) and the accurate energies provided by
H2SPECTRE (Ē) for high v, J states are observed. We also expect
to see a significant deviation in the Einstein coefficients obtained for
transitions involving these states due to the factor of ν5

f i present in
Eq. (3) coupled with vanishingly small Einstein coefficients for tran-
sitions to states with a large v quantum number. Thus, states with
v ≥ 10 are excluded from the analysis.

For the 3027 remaining transitions between the remaining
vibrational levels, 99.0% of the Einstein coefficients (A fi) lie within
1% of the values calculated by Roueff et al.12 (Ā f i). The 99th per-
centile is ∣1 − A f i/Ā f i∣ = 0.0672. Note that all Einstein coefficients
with errors greater than 5% correspond to weak transitions with
absorption intensities I fi < 1 × 10−35 cm molecule−1. For example,
the largest discrepancy A f i/Ā f i = 2.45 corresponds to the v = 9← 0
transition with A fi = 5.27 × 10−15 s−1 and I fi = 5.45 × 10−36 cm
molecule−1.

Table III compares the results of the calculation to the experi-
mentally measured intensities and line position of Bragg, Brault, and
Smith74 (T = 296 K) and Table IV to more recent measurements of

FIG. 1. Agreement between the Einstein A coefficients (bottom-left) and state energies of H2 calculated by DUO (Aif, E) and by Roueff et al.12 (Āif, Ē). The energy
differences E − Ē in the upper panels are plotted as functions of the level of rotational J and vibrational v excitations. The energy and A-coefficient differences in the lower
panels are plotted as functions of (upper) state energy. The colors in each plot correspond to the (upper) vibrational quantum number of the state.
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TABLE III. Comparison of various H2 v′ ← 0 transitions (positions and intensities),
measured experimentally by Bragg, Brault, and Smith74 to the values predicted by
DUO calculations at T = 296 K. The line positions are in cm−1.

v′ Branch ν̃obs. − ν̃Duo
calc. Iobs./I Duo

calc.

1 Q(3) −1.158 1.080
1 Q(2) −1.165 1.027
1 Q(1) −1.171 1.040
1 S(0) −1.181 1.158
1 S(1) −1.185 1.648
1 S(2) −1.185 1.594
1 S(3) −1.187 1.013
2 O(3) −2.121 0.852
2 O(2) −2.138 0.915
2 Q(3) −2.121 0.949
2 Q(2) −2.136 0.973
2 Q(1) −2.147 1.624
2 S(0) −2.152 0.984
2 S(1) −2.147 0.988
3 S(0) −2.923 0.816
3 S(1) −2.912 0.911
3 S(2) −2.887 1.017
3 S(3) −2.858 0.878
4 S(0) −3.480 0.606
4 S(1) −3.469 0.874
4 S(2) −3.432 0.727
4 S(3) −3.382 0.831

Campargue et al.,75 as well as their theoretical predictions based on
the effective quadrupole moment method. The DUO calculated inten-
sities reproduce closely the accurate experimental measurements
of Campargue et al.75 and match their theoretical predicted values
to within 0.1%. Agreement with the older measurements of Bragg,
Brault, and Smith74 is less consistent but generally agrees, partic-
ularly for the Q-branch transitions of the first overtone band. In
both cases, the line positions differ considerably, but by a roughly
constant value across each vibrational band. This is due to the fact
that no DUO refinement procedure is performed and no adiabatic
or non-adiabatic corrections are included in the calculations. Also
illustrated in Fig. 2 are (left) direct comparisons of the Einstein coef-
ficients obtained via DUO to those of Roueff et al.12 and (right) the

TABLE IV. Comparison of various H2 v′ = 2← 0 overtone lines, measured experi-
mentally and computed via an effective quadrupole moment by Campargue et al.75

(ν̃calc.), and the values predicted by DUO calculations (ν̃Duo
calc.) for T = 296 K. The line

positions are in cm−1.

Branch ν̃obs. − ν̃calc. Iobs./Icalc. ν̃obs. − ν̃Duo
calc. Iobs./I Duo

calc.

O(5) −0.0019 0.924 −2.061 0.924
O(4) −0.0040 0.931 −2.093 0.930
O(3) −0.0033 1.008 −2.115 1.007
O(2) −0.0031 1.001 −2.132 1.000
O(5) −0.0030 1.020 −2.067 1.020

absorption intensities via the EXOCROSS program, as compared to tran-
sitions listed in the HITRAN26 database. Here and in the following,
we use the HITRAN intensity units cm/molecule.

B. Carbon monoxide
Carbon monoxide is a heteronuclear diatomic molecule, and

thus, electric dipole transitions are allowed within its ground X
1Σ+ state. However, it also possesses a strong electric quadrupole
moment,77 and as a result, the electric dipole infrared spectrum is
accompanied by weaker electric quadrupole lines. We show that
many of the E2 spectral lines at room temperature lie higher in inten-
sity than the minimum spectroscopic cutoff of 10−30 cm/molecule at
the HITRAN reference temperature of T = 296 K, typically applied
to E1 spectra. As a result, their inclusion or emission in spectro-
scopic databases has significant implications for applications where
accurate cross sections are required.

Numerous experimental and ab initio studies have been per-
formed for the electric dipole moment spectra of the CO molecule,
including recent accurate calculations by Li et al.78 Li et al. sought to
resolve a long-standing uncertainty in the line intensities of CO E1
spectra, namely, significant differences observed between the inten-
sities predicted by the calculations of Goorvitch79 and those of Huré
and Roueff.80 The former used Chackerian’s81 semi-empirical dipole
moment function, obtained from a nonlinear least-squares fit to
vibrational states up to v = 38. The latter uses a purely ab initio
electric dipole moment curve (DMC), computed by Langhoff and
Bauschlicher via ACPF calculations on a 5Z basis set.82 Li et al. per-
formed new CRDS measurements in order to produce an accurate
DMC via a direct fit. At long bond lengths, where experimental data
are not attainable, they reproduce the calculations of Langhoff and
Bauschlicher82 but with a finer grid and determine that the interpo-
lation used on the original grid was insufficient to capture the full
shape of the DMC. Their PEC of choice is the analytical MLR3 func-
tion obtained by Coxon and Hajigeorgiou83 via a direct fit to 21 559
spectroscopic lines.83

Studies of the quadrupole moment of CO are somewhat
sparser. Although several experimental measurements exist for the
equilibrium molecular quadrupole moment, only a single study
presents a QMC across a range of geometries. The early work
by Truhlar42 presents simple Hartree–Fock calculations of the
quadrupole moment at just six internuclear geometries. The accu-
racy of the vibrational matrix elements calculated is low, particularly
for weaker transitions corresponding to higher vibrational quan-
tum numbers. In particular, the methodology struggles to accurately
describe the quadrupole moment at intermediate and long internu-
clear distances, which are necessary for calculating the vibrational
overtones. Coriani et al.84 compared the results of coupled-cluster
single double (CCSD) and CC3 calculations on the CO molecule
with a variety of basis sets. The results show that the CCSD level
of theory is insufficient to correctly describe the electric properties
of the CO molecule, and that the consideration of triple excitations
is vital. They also studied the convergence of such calculations with
increasing basis set size and found that the results converge quickly
for bases larger than DZ.

In the present work, following the success of Coriani et al.,84 the
coupled-cluster single double triple [CCSD(T)] method is employed
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FIG. 2. Comparison of the DUO calculated Einstein A coefficients with the target values predicted by Roueff et al.12 (left) and of the DUO calculated absorption intensities
(T = 296 K) with the intensities listed in the HITRAN database10,26,76 (right).

with an aug-cc-pwCVQZ basis as implemented in the CFOUR pro-
gram47 to calculate the strength of the non-zero quadrupole com-
ponent Qzz for 100 nuclear geometries in the range of 1.50–3.78
a0. Divergent behavior at large internuclear separations is attributed
to CCSD(T)’s inability to account for multireference effects. The
curve is therefore truncated at 3.0 a0. The QMC obtained from these
calculations is shown in Fig. 3.

The value of the electric quadrupole moment curve at equilib-
rium separation Qzz = −1.45 a.u. (a.u. = ea2

0) agrees reasonably well
with the Hartree–Fock calculations of Truhlar,42 which obtain Qzz
= −1.33 a.u. Note that Truhlar42 chose a definition of the quadrupole
moment that is a factor of two larger than the definition employed
by MOLPRO and DUO, and the value quoted here is adjusted accord-
ingly. Importantly, we obtain very good agreement with experimen-
tal values of the ZPE-averaged quadrupole moment from the lit-
erature. From the CCSD(T) quadrupole moment shown in Fig. 3,
DUO calculates ⟨v = 0∣Qzz ∣v = 0⟩ = −1.4522 a.u., which agrees closely

FIG. 3. Electric quadrupole moments in a.u. (ea2
0) for CO obtained in this work via

CCSD(T) calculations compared to Hartree–Fock calculations by Truhlar.42

with the accurate MBERS measurement of Meerts, Leeuw, and
Dymanus;85 the CC3 calculations of Coriani et al.;84 and EFGIB
measurements from other sources. These comparisons are presented
in Table V.

Nuclear motion calculations are performed using the semi-
empirical PEC of Meshkov et al.89 This accurate analytical rep-
resentation of the PEC is chosen for the DUO solutions in order
to improve the quality of the wavefunctions used to calculate the
linestrengths. The DUO vibrational grid used for the calculation con-
sists of 501 equally spaced points in the range of 1.50–3.00 a0, and the
first 21 vibrational states are selected to form the contracted basis.
These excitations correspond to energies within the spectroscopi-
cally relevant region (E/hc < 40.000 cm−1) for the room temperature
applications.

After solving the Schrödinger equation for rotational quan-
tum numbers 0 ≤ J ≤ 50, with a vibrational transition quadrupole
moment, ⟨ξf vf ∣Q

(2)
0 ∣ξivi⟩ < 1 × 10−5 a.u. are discarded. It was found

by Medvedev et al.90 that numerically computed transition dipole
moments of high overtones corresponding to large changes in vibra-
tional quanta can suffer from numerical instabilities and lead to
unphysically large intensities. In the case of electric quadrupole

TABLE V. Comparison of various electric quadrupole moment values for CO in a.u.
[ea2

0 = 4.486 484(28) × 10−40 C m2 86] from the literature. All values are averaged
over the vibrational ZPE and are given in the molecular center of the mass reference

frame, Q(CM)
zz = 2Rzμ + Q(EQC)

zz with the displacement between the center of mass
and the electric quadrupole center given by Rz = −5.96 a.u. and a dipole moment of
μ = −0.043 159 a.u.77,84

Qzz (a.u.) Method References

−1.4522 CCSD(T) This work
−1.445 (2) CC3 84
−1.43 (3) MBERS 85
−1.440 (69) EFGIB 77
−1.382 (31) EFGIB 77 and 87
−1.18 (22) EFGIB 77 and 88
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transitions, however, the intensity of these high overtone vibra-
tional bands is sufficiently weak that absorption lines with transition
quadrupole moments ⟨ξf vf ∣Q

(2)
0 ∣ξivi⟩ < 1 × 10−5 a.u. (correspond-

ing to high overtone bands) can simply be excluded from the line list
altogether.

The calculated state energies are substituted for those obtained
by Li et al.78 in a simultaneous direct-fit to experimentally deter-
mined energy levels. This improves the accuracy in the line positions
of the final stick spectrum, obtained via EXOCROSS,91 but has no effect
on the quadrupole Einstein coefficients or linestrengths. The energy
level data of Li et al.78 are made available through the HITRAN or
ExoMol (exomol.com) databases.31

The resultant room temperature (T = 296 K) line list for 12C16O
with a cutoff intensity of 10−35 cm molecule−1 consists of 6474 elec-
tric quadrupole transitions between rotational states up to Jmax = 48
and vibrational states v = 7. A synthetic room temperature E2 spec-
trum is illustrated in Fig. 4, where it is compared to the E1 spec-
trum of Li et al.78 The difference is approximately eight orders of
magnitude. Nonetheless, many E2 lines—particularly for the
v = 0← 0 and v = 1← 0 bands—lie above the typical cutoff inten-
sity used in many spectroscopic databases (∼10−30 cm2 molecule−1

at T = 296 K).
The computed electric quadrupole Einstein A coefficients of

12C16O are combined with the ExoMol E1 line list Li2015 for CO
in the form of an E2 transition file (see an extract in Table VI). Apart
from the Einstein A E2 coefficients (s−1), the transition file contains
the upper and lower state counting numbers of the Li2015 state file,
as illustrated in Table VII, which presents an extract from the Exo-
Mol state file of the 12C16O line list Li2015. For more details on the
ExoMol line list structure, see the work of Tennyson et al.31

C. Hydrogen fluoride
Like the CO molecule, HF possesses a strong permanent elec-

tric dipole moment,93 and it also possesses a strong permanent
electric quadrupole moment.94 Numerous studies provide elec-
tronic structure calculations for properties of HF, including several
which produce QMCs for the ground X 1Σ+ electronic state.95–97

Piecuch et al.95 used the orthogonally spin-adapted linear-response

TABLE VI. Extract from the 12C16O electric quadrupole transition file. It contains the
upper (f) and lower (i) states counting numbers, Einstein A coefficients (s−1), and
transition wavenumbers (cm−1).

f i A fi ν̃ f i

94 10 1.0587 × 10−17 10.591 935
93 9 1.1546 × 10−17 10.696 876
92 8 1.2569 × 10−17 10.801 832
91 7 1.3657 × 10−17 10.906 802
90 6 1.4815 × 10−17 11.011 786
89 5 1.6043 × 10−17 11.116 781
88 4 1.7346 × 10−17 11.221 787
87 3 1.8725 × 10−17 11.326 802
86 2 2.0183 × 10−17 11.431 825
85 1 2.1722 × 10−17 11.536 856
136 52 1.7502 × 10−16 17.652 735

coupled-cluster (LRCC) theory with singly and doubly excited clus-
ters (CCSD) and obtained quadrupole moments at 15 internuclear
geometries in the range of 1.126 32–12.1296 a0. Their basis set of
choice is that introduced by Sadlej for correlated calculations of
molecular electric properties,98 which they compare to standard
basis sets at the TZ level. They also provide the results of full CI
calculations on a DZ basis set. Maroulis96 presented all-electron
CCSD(T) calculations of the quadrupole moment at nine internu-
clear geometries in the range of 0.9328–2.5328 a0. For comparison,
the quadrupole moment for the X1Σ+ state is computed via the
multi-reference configuration interaction (MRCI) method and an
aug-cc-pVQZ basis set at 501 internuclear geometries in the range
of 1.32–6.99 a0 using MOLPRO.

The electric quadrupole moments of HF obtained via these var-
ious methods are illustrated in Fig. 5. Although the four curves have
the same general shape, significant variation is apparent between
the value of Qzz computed at intermediate bond lengths close to
3.8 a0. Here, the strength of the quadrupole moment is greatest,
and a difference of more than 0.5 a.u. is apparent between the full
CI and CCSD methods. Table VIII shows the differences in the

FIG. 4. Vibrational bands (left) and rotational v = 0–1 transitions (right) of the E1 and E2 rovibrational spectra in the ground X 1Σ+ state of the 12C16O molecule. The E1
intensities are those of Li et al.78 via the ExoMol database.
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TABLE VII. Extract from the Li2015 state file for 12C16O. i: State counting number; Ẽ:
state energy in cm−1; gi : total statistical weight, equal to gns(2J + 1); J: total angular
momentum; v: state vibrational quantum number; and τ: rotationless parity e/ f .92

i E g J v τ

1 0.000 000 1 0 0 e
2 2 143.271 100 1 0 1 e
3 4 260.062 200 1 0 2 e
4 6 350.439 100 1 0 3 e
5 8 414.469 300 1 0 4 e
6 10 452.222 200 1 0 5 e
7 12 463.768 600 1 0 6 e
8 14 449.181 300 1 0 7 e
9 16 408.534 600 1 0 8 e
10 18 341.904 400 1 0 9 e
11 20 249.368 200 1 0 10 e

value of the quadrupole moment at the equilibrium internuclear dis-
tance for the four ab initio methods presented. All four calculations
produce similar values for Qzz(Re), but the coupled-cluster meth-
ods systematically overestimate the strength relative to experimen-
tal measurements. Importantly, when averaged over the vibrational
ZPE, the MRCI results obtained in the present work give good agree-
ment with the experimental MBERS measurement of de Leeuw and
Dymanus.94 They obtain ⟨v = 0∣Qzz(r)∣v = 0⟩ = 1.75(2) a.u., while
DUO calculates a value of 1.747 a.u., which is within the range of
experimental uncertainties.

For the PEC, Coxon and Hajigeorgiou99 provided a very accu-
rate Rydberg–Klein–Rees (RKR)-style analytical expression for the
potential energy and Born–Oppenheimer breakdown functions of
the X1Σ+ ground electronic state of various hydrogen halide iso-
topologues, including 1H19F. They devise a novel analytical form
(MLR3) of the diatomic electronic potential and perform a nonlinear
least-squares fit to experimental energies.

FIG. 5. Comparison of the quadrupole moment curves in a.u. (ea2
0) for HF

obtained via various ab initio methods. MRCI calculations presented in this work,
CCSD(T) calculations of Maroulis,96 and CCSD and full CI calculations of Piecuch
et al.95

TABLE VIII. Comparison of various ab initio electric quadrupole moment values for
HF in a.u. (ea2

0). All values are given in the molecular center of the mass reference
frame and at the equilibrium nuclear geometry.

Qzz (a.u.) Method References

1.706 MRCI This work
1.72 CCSD 95
1.72 CCSD(T) 96
1.66 CI 95

Their analytical representation of the MLR3 potential has been
newly implemented in DUO, and for the present calculations, the
HF MLR3 parameters obtained by Coxon and Hajigeorgiou99 are
employed, as well as their Born–Oppenheimer breakdown (BOB)
function that is obtained from the Fortran source code provided in
the supplementary material of Coxon and Hajigeorgiou.99

FIG. 6. Comparison of the potential energy curves for the X1Σ+ ground state of HF.
MRCI calculations are from this work, empirically fitted MLR3 potential of Coxon
and Hajigeorgiou,99 and the CCSD calculations of Piecuch et al.95

FIG. 7. Comparison of the electric quadrupole absorption spectrum for H19F
obtained via spectroscopic models using the CCSD and MRCI quadrupole moment
curves illustrated in Fig. 5.
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FIG. 8. Central finite difference gradients of the HF quadrupole moment obtained
via MRCI and CCSD methods with respect to internuclear distance.

Figure 6 shows a comparison of the potential energy curves
obtained from our MRCI calculations, the CCSD calculations
of Piecuch et al.,95 and the MLR3 potential of Coxon and
Hajigeorgiou.99 All three methods give similar results at short and
intermediate bond lengths. The CCSD calculations overestimate
the dissociation energy, relative to the empirical MLR3 potential,
and the MRCI results predict a slightly lower dissociation energy.
Figure 7 illustrates the results of calculations from two spectroscopic
models. In each case, the potential energies are the same, the MLR3
and BOB curves of Coxon and Hajigeorgiou,99 but one model uses
the MRCI quadrupole moment presented in this work, and the other
uses Piecuch’s CCSD quadrupole moment. In both cases, nuclear
motion calculations are performed for rotational states 0 ≤ J ≤ 41,
the vibrational grid is defined for 501 equally spaced points in the
range of 0.76–4.40 a0, and the first 20 vibrational states are chosen
for the contracted basis.

For the first three vibrational bands, the absorption intensi-
ties predicted by both spectroscopic models are nearly identical.

Higher order vibrational bands, however, exhibit significant discrep-
ancies. The CCSD intensities begin to plateau above 20 000 cm−1,
and we propose that this intensity plateau arises as a result of the
same effect encountered in Sec. III B and detailed by Medvedev
et al.90 Comparatively, the MRCI spectrum shows no such inten-
sity plateau; indeed, the MRCI quadrupole moment is obtained
on a considerably finer grid spacing, which aids in smoothing the
interpolation.

A second possible cause proposed by Medvedev et al.90 is the
asymptotic behavior of the quadrupole moment curves at longer
internuclear distances. Here, the magnitude of the coupling becomes
exponentially smaller, and significant relative variations in the gradi-
ent of Qzz are observed between the two methods. The gradient of the
CCSD quadrupole moment curve at distances R > 3 a0 decays con-
siderably slower than that obtained via MRCI calculations. Figure 8
shows the gradient of the two quadrupole moment functions com-
puted using a central finite difference scheme on the DUO integration
grid.

The MRCI spectrum exhibits a local minimum in intensity
for the v = 5← 0 band. A similar abnormal intensity was observed
by Medvedev et al.90 for the same vibrational band of the electric
dipole spectrum. Regardless, the expected E2 absorption intensities
for the v = 5← 0 band are extremely weak, far weaker than typical
spectroscopic cutoff intensity (10−30 cm/molecule at T = 296 K).

Intensities obtained using the MRCI quadrupole moment are
chosen for the final 1H19F spectroscopic model and line list. This is
combined with the ExoMol E1 line list Coxon–Hajigeorgiou in the
form of an E2 transition file. Figure 9 compares the E2 intensities
obtained for room temperature calculations to the E1 intensities of
Coxon and Hajigeorgiou.99 It consists of 2716 electric quadrupole
transitions between rotational states up to J = 18 and vibrational
states up to v = 9 with a cutoff intensity of 10−35 cm molecule−1

(T = 296 K) and is included into the supplementary material of this
work.

D. Oxygen Noxon band
Owing to its molecular symmetry, the homonuclear

O2 molecule possesses no permanent dipole moment. Additionally,

FIG. 9. Vibrational bands (left) and rotational v = 0–1 transitions (right) of the E1 and E2 rovibrational spectra in the ground X1Σ+ state of the H19F molecule as line
intensities (cm/molecule). The E1 spectrum is that of Coxon and Hajigeorgiou,99 via the ExoMol database.

J. Chem. Phys. 155, 214303 (2021); doi: 10.1063/5.0063256 155, 214303-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0063256


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 10. Potential energy curves for the three lowest lying electronic states of O2,
obtained via MRCI calculations with an aug-cc-pV6Z basis set.

FIG. 11. Diagonal quadrupole moment curves in a.u. (ea2
0) for the a1Δg and b1Σ+g

electronic states of O2 obtained via MRCI calculations with an aug-cc-pV6Z basis
set.

the three lowest lying electronic states, X3Σ−g , a1Δg , and b1Σ+g all
have gerade symmetry. The Σ spin–orbit mixing results in electric
quadrupole transitions in the a1Δg–X3Σ−g system, which borrow
strength from the direct a1Δg–b1Σ+g transitions of the so-called

Noxon band,27,100

⟨a1Δg ∣Q(2)±2 ∣X
3Σ−g ⟩∝ ⟨a

1Δg ∣Q(2)±2 ∣b
1Σ+g ⟩. (34)

Although weak, with the Einstein A coefficients on the order of
10−3 s−1, rotational lines in both the (1–0) and (0–0) Noxon bands
have been measured experimentally.101,102 This electronic band is
forbidden by the magnetic dipole ΔΛ = 0,±1 selection rule, and
consequently, the Noxon band is purely quadrupolar in nature.
This makes the Noxon band ideal for validations of the electric
quadrupole methodology applied to open-shell molecules.

The emission spectrum of the fundamental Noxon band was
measured at 313(10) K by Fink et al.102 with an estimated preci-
sion of 0.010–0.020 cm−1. This measurement is replicated compu-
tationally with DUO calculated Einstein coefficients and the EXOCROSS

program. The ab initio data for the DUO calculations were produced
using MOLPRO103 with the MRCI program and an aug-cc-pV6Z basis
set. The calculation includes PECs for the three lowest lying elec-
tronic states X3Σ−g , a1Δg , and b1Σ+g (Fig. 10), as well as diagonal
quadrupole moment curves Q(2)0 (r) = 3Qzz(r)/

√
6 for the a1Δg and

b1Σ+g electronic states, and the off-diagonal a1Δg–b1Σ+g quadrupole
Q(2)
±2 (r) =

√
2Qxx(r) (Fig. 11). The calculations are performed on a

grid of 116 internuclear distances in the range of 1.5–7.5 a0. The
contracted vibrational basis set consists of the first 25 vibrational
states for each electronic state, and the calculations are performed
for rotational states 0 ≤ J ≤ 50.

Figure 12 shows an overlay of the experimental spectrum by
Fink et al.102 with the calculated emission cross section for the funda-
mental Noxon band, obtained via EXOCROSS using the DUO calculated
Einstein coefficients at 313 K with a Voigt line profile (HWHM
= 0.15 cm−1). The intensities have been scaled relative to the most
intense Q(8) transition. There is a systematic error in the line posi-
tions calculated by DUO ∼7 cm−1, which is attributed primarily to the
fact that the calculations do not include the strongly coupled excited
C3Πg state.30 Due to the number of couplings required for a com-
plete treatment of the open-shell O2 molecule, the full rovibronic
spectrum including such highly excited states will be the focus of a
future publication. Consequently, and for the sake of simplicity, no
empirical refinement of the PECs is performed in the present work.
Nonetheless, the relative line positions and intensities are in good
agreement with those measured by Fink et al.102 and demonstrate the
validity of the approach for open-shell diatomic systems and excited
electronic states.

FIG. 12. Overlay of the DUO calcu-
lated O2 Noxon emission cross sec-
tions with the measured spectrum from
Fink et al.,102 scaled relative to the
peak intensity of the Q(8) transition.
The cross sections are calculated at
T = 313 K with a Voigt profile (HWHM
= 0.15 cm−1).
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IV. CONCLUSIONS
Generic expressions for the electric quadrupole Einstein coef-

ficients and matrix elements between arbitrary electronic states
of (open-shell) diatomic molecules have been derived and imple-
mented in the DUO spectroscopic code. The implementation is
general and allows for the creation of highly accurate ab initio
and empirical spectroscopic models and line lists for an array of
astrophysically important molecules. This work has been validated
by reproducing highly accurate literature data for the homonuclear
H2 molecule as well as by comparison to the electronic emission
spectrum of the O2 Noxon band, and further demonstrated by the
calculation of novel electric quadrupole spectra for the heteronu-
clear CO and HF molecules. The line lists for CO and HF have been
included in the ExoMol database.

Through this calculation, we have shown that even for
electric dipole-allowed systems, electric quadrupole line intensities
can often lie above the typically cutoff intensities used in spec-
troscopic databases, atmospheric retrievals, and remote-sensing
applications. For many homonuclear systems where rovibrational,
and many electronic, transitions are forbidden in the electric dipole
approximation, the calculation of the quadrupole intensities is
crucial for producing accurate rovibronic line lists. Our goal is to
provide accurate E2 and M1 line lists for electronic transitions of
(open-shell) diatomic molecules such as O2, N2, S2, and SO.

SUPPLEMENTARY MATERIAL

See the supplementary material for the spectroscopic models
for H2, HF, CO, and O2 in the form of DUO input files; E2 line lists
for H2, HF, CO, and O2 using the ExoMol format; and examples of
E2 room temperature spectra of these molecules with the upper and
lower states fully assigned.
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APPENDIX: CORRELATION OF MOLPRO
ENUMERATION TO TERM SYMBOLS

Tables XI and XII are versions of Tables IX and X with the
addition of MOLPRO enumerations for the irreducible representations,
which can be used to simplify the conversion of MOLPRO output data
into DUO input.

TABLE IX. Irreducible representations for homonuclear symmetry groups and corre-
sponding components of electronic states. The Appendix gives the same table with
the addition of the MOLPRO enumerations.

Symmetry Components

Ag Σ+g , (Δg)xx
B1g Σ−g , (Δg)xy
B2g (Πg)x
B3g (Πg)y
Au Σ−u , (Δu)xy
B1u Σ+u , (Δu)xx
B2u (Πu)y
B3u (Πu)x

TABLE X. Irreducible representations for heteronuclear symmetry groups and corre-
sponding components of electronic states. The Appendix gives the same table with
the addition of the MOLPRO enumerations.

Symmetry Components

A1 Σ+, Δxx
A2 Σ−, Δxy
B1 Πx
B2 Πy

TABLE XI. Irreducible representations for homonuclear symmetry groups, the func-
tions that transform according to the irreducible representations, their MOLPRO enu-
meration, and corresponding components of electronic states.

Symmetry Function MOLPRO No. Components

Ag s 1 Σ+g , (Δg)xx
B1g xy 4 Σ−g , (Δg)xy
B2g xz 6 (Πg)x
B3g yz 7 (Πg)y
Au xyz 8 Σ−u , (Δu)xy
B1u z 5 Σ+u , (Δu)xx
B2u y 3 (Πu)y
B3u x 2 (Πu)x

TABLE XII. Irreducible representations for heteronuclear symmetry groups, the
functions that transform according to the irreducible representations, their MOLPRO

enumeration, and corresponding components of electronic states.

Symmetry Function(s) MOLPRO No. Components

A1 s, z 1 Σ+, Δxx
A2 xy 4 Σ−, Δxy
B1 x, xz 2 Πx
B2 y, yz 3 Πy
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8P. Čermák, S. Vasilchenko, D. Mondelain, S. Kassi, and A. Campargue, Chem.
Phys. Lett. 668, 90 (2017).
9G. Herzberg, Nature 163, 170 (1949).
10L. Wolniewicz, I. Simbotin, and A. Dalgarno, Astrophys. J., Suppl. Ser. 115, 293
(1998).
11S.-M. Hu, H. Pan, C.-F. Cheng, Y. R. Sun, X.-F. Li, J. Wang, A. Campargue, and
A.-W. Liu, Astrophys. J. 749, 76 (2012).
12E. Roueff, H. Abgrall, P. Czachorowski, K. Pachucki, M. Puchalski, and
J. Komasa, Astron. Astrophys. 630, A58 (2019).
13K. D. Setzer, M. Kalb, and E. H. Fink, J. Mol. Spectrosc. 221, 127 (2003).
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50H. Kreckel, H. Bruhns, M. Čížek, S. C. O. Glover, K. A. Miller, X. Urbain, and
D. W. Savin, Science 329, 69 (2010).
51B. Nisini, T. Giannini, D. A. Neufeld, Y. Yuan, S. Antoniucci, E. A. Bergin, and
G. J. Melnick, Astrophys. J. 724, 69 (2010).
52F. Islam, C. Cecchi-Pestellini, S. Viti, and S. Casu, Astrophys. J. 725, 1111
(2010).
53D. J. Hollenbach and A. G. G. M. Tielens, Rev. Mod. Phys. 71, 173 (1999).
54A. Dalgarno, in Molecular Hydrogen in Space, Cambridge Contemporary
Astrophysics, edited by F. Combes and G. DesForets (PCMI-CNRS; Collabo-
rat Computat Project 7; Observ Paris; Minist Affaires Etrangeres; Univ Cergy
Pontoise; Univ Paris XI; Inst Astrophys Paris, 2000), pp. 3–11.
55B. P. Bowler, M. C. Liu, T. J. Dupuy, and M. C. Cushing, Astrophys. J. 723, 850
(2010).
56C. M. Huitson, D. K. Sing, A. Vidal-Madjar, G. E. Ballester, A. L. des Etangs,
J.-M. Désert, and F. Pont, Mon. Not. R. Astron. Soc. 422, 2477 (2012).
57K. B. Stevenson, J. L. Bean, A. Seifahrt, J.-M. Désert, N. Madhusudhan,
M. Bergmann, L. Kreidberg, and D. Homeier, Astrophys. J. 147, 161 (2014).
58A. Ardaseva, P. B. Rimmer, I. Waldmann, M. Rocchetto, S. N. Yurchenko,
C. Helling, and J. Tennyson, Mon. Not. R. Astron. Soc. 470, 187 (2017).
59W. Ubachs, J. C. J. Koelemeij, K. S. E. Eikema, and E. J. Salumbides, J. Mol.
Spectrosc. 320, 1 (2016).
60W. Ubachs, J. Bagdonaite, E. J. Salumbides, M. T. Murphy, and L. Kaper, Rev.
Mod. Phys. 88, 021003 (2016).
61W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963).

J. Chem. Phys. 155, 214303 (2021); doi: 10.1063/5.0063256 155, 214303-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/physreva.24.1944
https://doi.org/10.1016/0022-2852(80)90149-6
https://doi.org/10.1029/gl008i001p00077
https://doi.org/10.1364/ao.20.002182
https://doi.org/10.1016/j.jqsrt.2010.01.008
https://doi.org/10.1016/j.jqsrt.2010.01.008
https://doi.org/10.1016/j.jqsrt.2011.01.014
https://doi.org/10.1016/j.jqsrt.2011.01.014
https://doi.org/10.1016/0022-2852(86)90048-2
https://doi.org/10.1016/j.cplett.2016.11.002
https://doi.org/10.1016/j.cplett.2016.11.002
https://doi.org/10.1038/163170a0
https://doi.org/10.1086/313091
https://doi.org/10.1088/0004-637x/749/1/76
https://doi.org/10.1051/0004-6361/201936249
https://doi.org/10.1016/s0022-2852(03)00174-7
https://doi.org/10.1093/mnras/stu2317
https://doi.org/10.1093/mnras/stu2317
https://doi.org/10.1016/j.saa.2014.01.003
https://doi.org/10.1063/1.4719170
https://doi.org/10.1063/1.1726596
https://doi.org/10.1063/1.3253097
https://doi.org/10.1103/physrevresearch.2.023091
https://doi.org/10.1039/d0cp01667e
https://doi.org/10.1086/310205
https://doi.org/10.1016/0022-4073(95)00114-z
https://doi.org/10.1016/0022-4073(95)00114-z
https://doi.org/10.1016/j.jqsrt.2015.10.019
https://doi.org/10.1016/j.jqsrt.2017.06.038
https://doi.org/10.1016/j.jqsrt.2011.05.013
https://doi.org/10.1016/j.jqsrt.2011.05.013
https://doi.org/10.1063/1.1703221
https://doi.org/10.1016/0022-2852(90)90224-e
https://doi.org/10.1007/bf03156406
https://doi.org/10.1016/j.jqsrt.2020.107228
https://doi.org/10.1016/j.jqsrt.2020.107228
https://doi.org/10.1089/ast.2018.1914
https://doi.org/10.1089/ast.2017.1727
https://doi.org/10.1126/science.aax3901
https://doi.org/10.3847/0004-637x/829/2/63
https://doi.org/10.3847/2041-8213/abe7dc
https://doi.org/10.3847/2041-8213/ab9b91
https://doi.org/10.1016/j.cpc.2015.12.021
https://doi.org/10.1016/j.cpc.2015.12.021
https://doi.org/10.1246/bcsj.66.3203
https://doi.org/10.1039/qr9591300183
https://doi.org/10.1002/wcms.82
https://doi.org/10.1002/wcms.82
https://doi.org/10.1002/qua.560060515
https://doi.org/10.1063/1.5133837
https://doi.org/10.1063/5.0005081
http://www.cfour.de
https://doi.org/10.1086/184071
https://doi.org/10.1046/j.1468-4004.2002.43210.x
https://doi.org/10.1126/science.1187191
https://doi.org/10.1088/0004-637x/724/1/69
https://doi.org/10.1088/0004-637x/725/1/1111
https://doi.org/10.1103/revmodphys.71.173
https://doi.org/10.1088/0004-637x/723/1/850
https://doi.org/10.1111/j.1365-2966.2012.20805.x
https://doi.org/10.1088/0004-6256/147/6/161
https://doi.org/10.1093/mnras/stx1012
https://doi.org/10.1016/j.jms.2015.12.003
https://doi.org/10.1016/j.jms.2015.12.003
https://doi.org/10.1103/revmodphys.88.021003
https://doi.org/10.1103/revmodphys.88.021003
https://doi.org/10.1103/revmodphys.35.473


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

62W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
63R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. 49, 4312 (1968).
64A. DalGarno, A. C. Allison, and J. C. Browne, J. Atmos. Sci. 26, 946 (1969).
65G. Karl and J. D. Poll, J. Chem. Phys. 46, 2944–2950 (1967).
66J. Turner, K. Kirby-Docken, and A. Dalgarno, Astrophys. J., Suppl. Ser. 35, 281
(1977).
67J. Komasa, M. Puchalski, P. Czachorowski, G. Łach, and K. Pachucki,
Phys. Rev. A 100, 032519 (2019).
68K. Pachucki, Phys. Rev. A 82, 032509 (2010).
69K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009).
70K. Pachucki and J. Komasa, J. Chem. Phys. 141, 224103 (2014).
71K. Pachucki and J. Komasa, J. Chem. Phys. 143, 034111 (2015).
72K. Pachucki, Phys. Rev. A 86, 052514 (2012).
73M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 95, 052506 (2017).
74S. L. Bragg, J. W. Brault, and W. H. Smith, Astrophys. J. 263, 999 (1982).
75A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, Phys. Chem. Chem. Phys.
14, 802 (2012).
76J. Komasa, K. Piszczatowski, G. Łach, M. Przybytek, B. Jeziorski, and K.
Pachucki, J. Chem. Theory Comput. 7, 3105 (2011).
77N. Chetty and V. W. Couling, J. Chem. Phys. 134, 164307 (2011).
78G. Li, I. E. Gordon, L. S. Rothman, Y. Tan, S.-M. Hu, S. Kassi, A. Campargue,
and E. S. Medvedev, Astrophys. J., Suppl. Ser. 216, 15 (2015).
79D. Goorvitch, Astrophys. J., Suppl. Ser. 95, 535 (1994).
80J. M. Huré and E. Roueff, Astron. Astrophys., Suppl. Ser. 117, 561 (1996).
81C. Chackerian, Jr., R. Farrenq, G. Guelachvili, C. Rossetti, and W. Urban, Can.
J. Phys. 62, 1579 (1984).
82S. R. Langhoff and C. W. Bauschlicher, J. Chem. Phys. 102, 5220 (1995).
83J. A. Coxon and P. G. Hajigeorgiou, J. Chem. Phys. 121, 2992 (2004).
84S. Coriani, A. Halkier, D. Jonsson, J. Gauss, A. Rizzo, and O. Christiansen,
J. Chem. Phys. 118, 7329 (2003).
85W. L. Meerts, F. H. D. Leeuw, and A. Dymanus, Chem. Phys. 22, 319 (1977).
86P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016).
87C. Graham, D. A. Imrie, and R. E. Raab, Mol. Phys. 93, 49 (1998).

88A. D. Buckingham, R. L. Disch, and D. A. Dunmur, J. Am. Chem. Soc. 90, 3104
(1968).
89V. V. Meshkov, A. V. Stolyarov, A. Y. Ermilov, E. S. Medvedev, V. G. Ushakov,
and I. E. Gordon, J. Quant. Spectrosc. Radiat. Transfer 217, 262 (2018).
90E. S. Medvedev, V. V. Meshkov, A. V. Stolyarov, and I. E. Gordon, J. Chem.
Phys. 143, 154301 (2015).
91S. N. Yurchenko, A. F. Al-Refaie, and J. Tennyson, Astron. Astrophys. 614, A131
(2018).
92J. M. Brown, J. T. Hougen, K.-P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-
Brion, A. J. Merer, D. A. Ramsay, J. Rostas, and R. N. Zare, J. Mol. Spectrosc. 55,
500 (1975).
93R. Weiss, Phys. Rev. 131, 659 (1963).
94F. H. de Leeuw and A. Dymanus, J. Mol. Spectrosc. 48, 427 (1973).
95P. Piecuch, A. E. Kondo, V. Špirko, and J. Paldus, J. Chem. Phys. 104, 4699
(1996).
96G. Maroulis, J. Mol. Struct.: THEOCHEM 633, 177 (2003).
97J. F. Harrison, J. Chem. Phys. 128, 114320 (2008).
98A. J. Sadlej, Collect. Czech. Chem. Commun. 53, 1995 (1988).
99J. A. Coxon and P. G. Hajigeorgiou, J. Quant. Spectrosc. Radiat. Transfer 151,
133 (2015).
100J. F. Noxon, Can. J. Phys. 39, 1110 (1961).
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