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a b s t r a c t 

This paper presents an extension to our knowledge of �v = 1 and �v = 2 bands of carbon monoxide in 

the ground state, measured by Fourier transform infrared spectroscopy of glow discharge of formamide- 

nitrogen mixture. Lines in declared bands are measured up to v = 30 for �v = 1 and up to v = 24 for 

�v = 2 band, by use of both InSb and MCT detectors, which have not been measured in the laboratory 

before. Dunham parameters obtained by fitting our lines are presented as well as comparison to other au- 

thors. The paper also demonstrates the interesting impossibility of sufficient population of �v = 2 band 

of CO when only pure CO is used in the glow discharge, instead of formamide-based mixture. Addition- 

ally, we present a non-LTE model to describe the intensity pattern of the �v = 1 and the �v = 2 bands 

of 12 C 16 O experimental spectra by simulating the corresponding non-LTE vibrational populations of CO. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

There have been attempts to measure the full range of funda- 

ental ( �v = 1) and the first overtone ( �v = 2) bands of CO since

he very beginning of Fourier spectroscopy [1–3] . CO, as an impor- 

ant molecule, can be found not only on Earth but also in inter- 

tellar space [4] . Here the spectroscopy can serve as a tool for de-

ermining the isotopic ratios of C and O [5,6] , thus providing more 

nformation about the evolution of stars etc. CO is the most sta- 

le diatomic molecule and is the second most abundant specie (af- 

er hydrogen) in cool interstellar sources [7] . In the Earth’s atmo- 

phere, carbon monoxide is a spatially variable molecule (about 80 

pb) and a short-lived specie (about 3 months in the troposphere), 

aving a role in the formation of ground level ozone. This chem- 

cal compound is an important component of the exhaust from 

he incomplete combustion of fuels containing carbon and its com- 

ounds under various conditions. Beyond this planet, CO has been 

etected in the solar photosphere, atmospheres of planets, in the 

pectra of stars and interstellar clouds [8] . Its first spectral detec- 
∗ Corresponding author. 
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ion in absorption regime in the mid-infrared region took place in 

889, when CO became the first diatomic compound measured in 

he gaseous phase for which such observations were made [9] . 

The rotation-vibration lines of the carbon monoxide molecule 

re commonly used in the laboratory as a wavelength standard for 

alibration of infrared instruments [10,11] . Spectral measurements 

layed a dominant role in monitoring CO presence under different 

onditions. While the detection of CO in several isotopic variants in 

he microwave spectral region is preferable for distant astronomi- 

al objects, the infrared observation becomes more favourable for 

onitoring of exhaust fumes from stationary or mobile burners, or 

adiation from lasers or comparable gaseous plasma systems. Accu- 

ate knowledge of frequencies and intensity of spectral transitions 

s essential for all such monitoring. 

One of the first multi-isotopic determinations of the mass- 

ndependent Dunham coefficients (U mj and �mj ) of the CO 

olecule was made by George et al. [12] They used highly accurate 

icrowave and infrared heterodyne frequency measurements. Ob- 

ained fitted values allow the reproduction of almost all measured 

requencies within the measured uncertainties. Previously, Farrenq 

t al. [13] used the most extensive set of measured frequencies to 

etermine the precise set of Dunham coefficients. The dataset in- 

https://doi.org/10.1016/j.jqsrt.2021.107521
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2021.107521&domain=pdf
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H

t  
luded transition frequencies coming from both laboratory and so- 

ar Fourier spectra of seven isotopes of CO up to J max = 133 and

 max = 41. 

Alongside the aforementioned publications, other experimen- 

al or theoretical high precision data for various CO isotopes [14–

8] or CO-related research have been published [29–35] . 

Critical evaluation of measured pure-rotation and rotation- 

ibration line positions and an experimental dataset of energy lev- 

ls of 12 C 

16 O in X 

1 �+ state was carried out by Tashkun [36] and

y T.I. Velichko [37] . All available transitions from microwave to 

isible region (3.8–10 440 cm 

−1 ) of the 12 C 

16 O molecule were col- 

ected from the literature and tested using the RITZ computer code. 

hese data have been critically analysed and used to obtain the 

ost complete and precise set of 2247 experimental energy levels 

f this molecule covering 0–67 0 0 0 cm 

−1 interval. 

The numerous 12 C 

16 O transitions of overtone bands have been 

eported by A.P. Mishra [38] , Malathy Devi [39] , ( �v = 2 sequence)

nd also Picqué [40] and Swann [41] , who published new data for 

he �v = 3 band. The results of Ogilvie et al. [9] are related to the

dentification of the �v = 4 band and Chung’s et al. [42] data for

he �v = 5 band are also available now. 

There is still a small gap for the high resolution infrared mea- 

urement of weak rovibrational spectral lines, especially for the 

ighly vibrationally excited spectral bands concerning �v = 1 and 

v = 2 bands. The turning point here is the application of time re-

olved high resolution infrared Fourier transform formamide emis- 

ion discharge measurement, followed by detailed analysis of time 

esolved emission spectra containing mainly spectra of highly ex- 

ited molecules of CO and CN radical together. The method of time 

esolved measurement enables the distinguishing of weak emission 

or absorption) bands from strong bands appearing in the spec- 

rum inside of the time-profiles spectra. In the case of CN, weak 

ibronic bands in the 5 μm region were separated from strong long 

ived vibration–rotation bands [43] . 

Normally, experimental spectra of molecules are recorded at lo- 

al thermal equilibrium (LTE), i.e. ro-vibrational populations satisfy, 

nd are limited by, the Boltzmann distribution at the correspond- 

ng well temperatures. The so-called non-LTE spectroscopy allows 

ne to decouple the rotational and vibrational degrees of freedom 

rom each other and, most importantly, from the lab temperature 

e.g. Dudás et al. 2020) [44] . For example, reducing the rotational 

emperature leads to less crowded spectra and facilitates analy- 
Fig. 1. Scheme of experim

2 
is, while increasing the vibrational temperatures helps to involve 

ighly excited vibrational states, which are otherwise switched off

wing to the lack of the thermal populations [44] . The discharge 

xperimental techniques have proved to be efficient in providing 

pectra of hot, non-LTE excitations of vibrational states [45–47] . 

The modelling of the molecular non-LTE spectra is not trivial. A 

ypical non-LTE model is to represent the rovibrational population 

sing a two-temperature Boltzmann distribution with rotational 

nd vibrational states described by the corresponding LTE distri- 

utions (Treanor distribution) [48] . As was shown previously [48] , 

he Treanor distribution typically breaks for the spectra of prod- 

cts of complex discharged species, where their vibrational pop- 

lations do not satisfy the simple Boltzmann law (e.g. as shown 

or N 2 [49] ; CO [50,51] and CO 2 [52] ). Numerous models exist in

he literature for dissociative and recombination processes leading 

o the non-LTE spectral distributions, see e.g. Ferus et al. (2017) 

47] & references within [50,53] . 

In this paper we report a spectroscopic analysis of more than 

00 newly observed 

12 C 

16 O first overtone transitions located be- 

ween v = 18–24 (measured from discharge plasma emission of 

ormamide, compared to Mishra et al. [38] ), including a new fitted 

et of Dunham coefficients. The transitions involve J values up to 

0 and reaching v = 24. We also extend the experimentally ob- 

erved CO fundamental band to v = 30, which is more than e. g. 

arrenq et al. [13] reported in their measurement of solar spec- 

ra; it has to be noted, however, Farrenq reached extremely high 

 numbers, due to very hot spectral source (Sun). We also present 

 robust method for estimating non-LTE vibrational populations for 

escription of the CO intensities produced in the discharging of the 

ormamide molecule from the experimental study in Ferus et al. 

2014) [46] . Our model is based on 1D harmonic populations to 

escribe the CO fragment created from a dissociating formamide 

olecule and of the free CO molecule and on the usage of accu- 

ate synthetic line list for CO [54,55] . The methodology can be ap- 

lied for the description of non-LTE spectra of other products of 

ormamide and will be published elsewhere. 

. Experimental arrangement 

For the measurement of emission bands of CO, Bruker IFS 120 

R time-resolved spectrometer has been used (see Fig. 1 ). The en- 

ry window of the spectrometer was from CaF , as well as the in-
2 

ental arrangement. 
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Fig. 2. Scheme of time resolution (pairing with data acquisition) [57] . 
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Fig. 3. Upper (red) – The O –C values for the CO overtone band; Lower (blue) – the 

O –C values for the CO fundamental band. 
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er beam-splitter and discharge cell window; when InSb liquid ni- 

rogen cooled semiconductor detector was used. In the case of MCT 

etector, KBr entry and cell windows together with KBr beam- 

plitter were used. Entry aperture of the spectrometer was 1.7 mm. 

he pre-discharge mixture was consisting of vapours of formamide 

CAS 75–12–7, Sigma-Aldrich) mixed with gaseous nitrogen and 

ater at 60 °C. The mixture was continuously injected in the dis- 

harge of pure helium at 1.8 torr of pressure. The pressure of the 

esulting mixture in the discharge cell was peaking ~ 2 torr and 

he whole system was in a continuous flow maintained by vacuum 

otary pump to ensure a proper exhaust discharge. The voltage of 

he glow discharge was 1 kV and the electric current was 0.1 A. 

he spectrometer was evacuated to 10 −3 mbar. The spectra were 

ecorded in a 0.02 cm 

−1 resolution, with averaging over 200 scans. 

ata were processed by Norton-Beer weak apodization algorithm. 

Because of the use of both MCT and InSb detectors, it was pos- 

ible to record spectra in the range of 700–7000 cm 

−1 . The spectra 

ere calibrated against precise line positions of fundamental and 

vertone CO bands in Guelachvili & Rao (1986) [56] . 

The time resolution played a role of adjusting the data output 

n accordance with the best possible signal-to-noise ratio in our 

xperiments. The pulse width used was 22 μs, offset (time off- 

et creates a dead time segment located before the data acquisi- 

ion, for which the data acquisition is omitted) was 0–3 μs, mirror 

peed during measurement was 10 kHz, number of AD (acquisition 

f data) points was 30 and the sampling took place at each 3 μs. 

In Fig. 2 it is possible to observe the data acquisition, paired 

ith discharge trigger and HeNe digital tracing signal. When the 

obile mirror speed is set to 10 kHz, one HeNe digital wave lasts 

00 μs. At the beginning of the HeNe wave, the discharge pulse is 

laced. The pulse lasts for some time (in our experiments 22 μs) 

nd with or without offset, data acquisition with defined param- 

ters is started. In our experiments, data acquisition started with 

–3 μs offset and because there were 30 AD (acquisition of data) 

oints at each 3 μs, the pulse was therefore observed in its be- 

inning, duration and after its end as well. Such time resolution 

llowed us to pick only the best spectra for further analysis and 

herefore increase the signal-to-noise ratio even more. 

. Results and discussion 

Table S1 in Supplementary Information file demonstrates the 

ine list of the measured fundamental CO lines ( �v = 1), contain- 

ng wavenumbers, line transition specifications ( J and v numbers, 

here the number marked with an apostrophe (‘) means an upper 

tate, while the number marked with a quotation mark (“) means 

 lower state) and observed-calculated parameter (O 

–C), which 

resents information about the deduction of line positions calcu- 

ated from Dunham fitting of all lines from experimental values. 

he data in Table S1 are sorted according to v number transitions 

rom lowest (1–0) to highest (30–29). Within each v -transition, the 

ata are also sorted by wavenumber. 
3 
Table S2 in Supplementary Information file presents a line list 

f CO’s first overtone ( �v = 2). The table copies the format style 

f Table S1. 

Table 1 below demonstrates the Dunham coefficients that were 

btained by Dunham fitting of all our experimental lines of funda- 

ental and overtone CO bands. The total number of transitions in- 

olved in the fitting procedure was 2318. The table also shows the 

omparison of our data with data of other authors, sorted chrono- 

ogically. The fitting procedure was performed according to well- 

nown Eq. (1) , describing the vibrational-rotational energy level of 

 diatomic molecule in the ground electronic state. 

 vJ = 

∑ 

mj 

Y mj 

(
v + 

1 

2 

)m 

[ J ( J + 1 ) ] 
j (1) 

here E stands for energy, v and J are vibrational and rotational 

uantum numbers and Y is Dunham parameter. 3 iteration cycles 

ere used for the fitting procedure and an average deviation of 

.00187 cm 

−1 was achieved. 
∗In Table 1 , column Deviation, fixed values represent Dunham 

oefficients, which were fixed at a constant value during fitting 

rocedure. The values of such constants were always taken from 

arrenq et al. (1991) [13] . The table also does not contain all Dun- 

am parameters found in selected literature, since not every pa- 

ameter was used in the fitting procedure (see publications high- 

ighted in Table 1 for the complete information). 

Fig. 3 presents the dependence of observed-calculated values 

O 

–C, see Tables S1 and S2), obtained during Dunham fitting, for 

ll lines of the fundamental and overtone CO bands on increasing 

avenumber. 

In an ideal case, Fig. 3 should demonstrate a random distribu- 

ion of the O—C values, which should not deviate from zero ex- 

remely. From Fig. 3 , it is obvious that the C—O distributions of 

vertone and fundamental lines are almost ideally random. How- 

ver, it can be noticed that deviations of CO overtone contain some 

esiduals mainly in 420 0–440 0 cm 

−1 region. 

Fig. 4 demonstrates the overall composition of the whole funda- 

ental and overtone CO bands at 33rd μs of the data acquisition. 

t was obtained by selecting only the most intense spectra from 

he matrix of time-resolved spectral set. A brief overview of such 

ime-dependant spectral dataset can be observed in Fig. 5 . 

It can be seen from panel B of Fig. 5 that CO reaches the highest

mission intensity at approximately 33 μs, which is 11 μs after the 

ischarge pulse. 
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Table 1 

Dunham parameters obtained from line fitting. 

Parameter Our value Deviation Guelachvili 19,83 2 Farrenq 199,1 13 George 199,4 12 Voitsekhovskaya 201,0 21 Velichko 201,2 37 

Y 10 2.16981435058E + 03 2.60346E-04 2.169813079E + 03 2.169812670E + 03 2.1698127220761E + 03 2.16981260189138E + 03 2.16981271269893E + 03 

Y 20 −1.32880451734E + 01 6.90001E-05 −1.328790597E + 01 −1.328787634E + 01 −1.3287915708423E + 01 −1.32880390472301E + 01 −1.32879077503162E + 01 

Y 30 1.04196903414E-02 8.31465E-06 1.041444739E-02 1.041106647E-02 1.0423331951946E-02 1.04297230421766E-02 1.04200107689629E-02 

Y 40 6.92027520078E-05 4.61776E-07 6.921598529E-05 6.936640756E-05 6.7462405343680E-05 6.91624678098570E-05 6.80377742384337E-05 

Y 50 1.68790806557E-07 1.02696E-08 1.657890319E-07 1.679352306E-07 3.2986711937998E-07 – 2.78361050612498E-07 

Y 60 2.05925160000E-09 fixed ∗ 2.466226718E-09 2.059251576E-09 −5.8493637376180E-09 – −3.19724526593943E-09 

Y 70 −8.48735465211E-10 2.05532E-12 −8.630071431E-10 −8.488145707E-10 −6.2715847364920E-10 – −7.06823058539760E-10 

Y 80 1.23977200000E-11 fixed ∗ 1.261536024E-11 1.239772013E-11 9.0775889392701E-12 – 1.03749356544423E-11 

Y 90 −8.23373730000E-14 fixed ∗ −8.363842545E-14 −8.233737278E-14 −6.1705367158987E-14 – −7.05404492531844E-14 

Y 01 1.93128382294E + 00 3.06305E-06 1.931280862E + 00 1.931280985E + 00 1.9312809033958E + 00 1.93128401690855E + 00 1.93128087327140E + 00 

Y 11 −1.75043277315E-02 3.18138E-07 −1.750410155E-02 −1.750439229E-02 −1.7504193371413E-02 −1.75116889793261E-02 −1.75041235527725E-02 

Y 21 7.41356432756E-07 2.75631E-08 5.422101371E-07 7.173917007E-07 6.2379766846640E-07 1.92588311032083E-06 5.70532184909572E-07 

Y 31 −2.26621471569E-08 6.82024E-10 1.311844382E-08 −2.146354586E-08 −7.0546494085138E-09 −1.40220011143880E-07 9.69857903930996E-09 

Y 41 4.43540390000E-09 fixed ∗ 1.401093703E-09 4.435403909E-09 3.4920931173138E-09 4.34781878468765E-09 1.35483542867397E-09 

Y 51 −1.36106950000E-10 fixed ∗ −5.829907475E-12 −1.361069450E-10 −1.0881270072104E-10 – 2.25449888217700E-11 

Y 61 1.24578570000E-12 fixed ∗ −1.434127145E-12 1.245785715E-12 9.5370204560962E-13 – −3.19275246504171E-12 

Y 71 −2.12512340000E-14 fixed ∗ – −2.125123415E-14 −2.1251311385081E-14 – 4.32011471696302E-14 

Y 02 −6.12311794934E-06 2.43250E-09 −6.120747566E-06 −6.121615183E-06 −6.1215848016203E-06 6.13285831240000E-06 −6.12158560096097E-06 

Y 12 1.03492300000E-09 fixed ∗ 9.449843095E-10 1.034922952E-09 1.0188484060611E-09 −1.01342795667900E-08 1.02459633331244E-09 

Y 22 −1.84976700000E-10 fixed ∗ −1.450768382E-10 −1.849766981E-10 −1.8203310242138E-10 1.91114139748080E-09 −1.80717504333141E-10 

Y 32 2.43111090000E-12 fixed ∗ −2.927592559E-12 2.431110877E-12 1.7737257777330E-12 −1.55862557242420E-10 1.22972770958921E-12 

Y 42 −1.04348860000E-13 fixed ∗ 1.660533203E-13 −1.043488564E-13 −1.0434878309722E-13 1.23163810413664E-12 −4.92314710035746E-15 

Y 03 5.88490500000E-12 fixed ∗ 5.555386989E-12 5.884905033E-12 5.8860382897684E-12 7.49718003847800E-12 5.88575750614083E-12 

Y 13 −1.42865330000E-13 fixed ∗ −1.512463732E-13 −1.428653277E-13 −1.4336331475578E-13 4.39367271266751E-13 −1.43834090220217E-13 

Y 23 −1.22532850000E-15 fixed ∗ −1.471295100E-15 −1.225328499E-15 −1.0421817812590E-15 −4.13264102453580E-13 −7.89546451928477E-16 

Y 04 −3.61578570000E-17 fixed ∗ – −3.615785745E-17 −3.6175232747399E-17 – −3.61692680681491E-17 

Y 14 −7.40580130000E-19 fixed ∗ – −7.405801298E-19 −7.2671020958070E-19 – −7.18415798732584E-19 

Y 24 −5.05437660000E-21 fixed ∗ – −5.054376594E-21 −5.0546748483490E-21 – −9.48909588925019E-21 

Y 05 −4.55529850000E-23 fixed ∗ – −4.555298526E-23 −4.5798771172546E-23 – −4.60743885881130E-23 

Y 15 −5.92225750000E-24 fixed ∗ – −5.922257515E-24 −5.9223569597228E-24 – −4.99321091850083E-24 

Y 06 −1.51964150000E-27 fixed ∗ – −1.519641502E-27 −1.5196377524508E-27 – −7.78104388574249E-28 

4
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Fig. 4. Upper – fundamental CO band, Lower – first overtone CO band (at 33 μs). 
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When a pure CO glow discharge is realised, almost no over- 

one band can be observed, which is an opposite situation to 

ormamide-mixture discharge. This effect can be observed in Fig. 6 . 

easurements summarized by Fig. 5 were performed under the 

ame stable conditions (1.8 torr of helium buffer gas, 0.2 torr 

f formamide-nitrogen-water mixture or 0.2 torr of pure carbon 

onoxide). The experimental setup of the IFS 120 HR spectrome- 

er also remained the same. 

As can be observed in Fig. 6 , formamide-mixture (helium, for- 

amide vapour, water vapour, nitrogen) glow discharge produces 

oth fundamental and overtone CO bands. On the other hand, pure 

O mixed with helium as a buffer gas almost does not populate 

he first overtone band of CO at all. This phenomenon is related to 

he accessible excitation energy available in the discharge system. 

hile performing the glow discharge in the formamide-mixture 

ystem, a large amount of energy is emitted and transferred via 

any short or long living radicals and other species, which leads to 

igh population of other energy mediators like CN and CO radicals 

n various energy levels, including highly excited ones. Therefore, 

t is possible to observe the CO overtone band very easily. Also, 

rom Figs. 4 and 6 it may be observed that the CO overtone resem-

les itself in inverted population, very similar to lasers involving 

O. In the formamide-mixture system, the CO overtone thus has 

igher intensity of some higher vibrational transitions than lower 
Fig. 5. Panel A – a 3D model of time-resolved CO overtone spectr

5 
nes (e.g. the 6–4 transitions are much more intense than the 2–0 

ransitions). 

. Non-LTE spectrum of CO 

The inversely populated discharge spectrum of CO shown in 

ig. 4 exhibits strong non-LTE character (see also Ferus et al. (2011, 

017)) [45,47] . Although the rotational populations are found to 

atisfy the Boltzmann equilibrium at slightly under the experimen- 

al temperature (the best fit was found to be with T = 400 K), due

o its small relaxation time the vibrational excitations are domi- 

ated by highly excited vibrational populations which cannot be 

ssociated with the Boltzmann distribution. Indeed, the strongest 

v = 2 bands in Fig. 4 correspond to �v = 6 - 4 (see Fig. 7 ), while

oltzmann always assumes v ’’ = 0 to be the most populated. The 

ntensities of the hot transitions are much higher than that of the 

undamental (1 → 0) or the overtone (2 → 0), which otherwise 

ould be dominating an LTE spectrum. 

In our description of the dissociation processes leading to non- 

TE vibrational population of the product is based on the struc- 

ural differences between reactant and product assuming no sig- 

ificant change in nuclear configuration of the molecule following 

he polyatomic Franck-Condon type model by Band & Freed (1974) 

58] and Berry (1974) [59] . We also assume the following common 

pproximations: (i) the dissociation processes that lead to the for- 

ation of the non-LTE CO gas happen instantaneously; (ii) only 

he vibrational ground state of the fragment is populated; (iii) that 

he modes for both the original molecule and the final fragment 

re completely separable, i.e. the internal vibration of the CO bond 

n formamide is decoupled from other modes; and (iv) the corre- 

ponding vibration of the CO-fragment and CO-product (diatomic) 

an be approximated by 1D harmonic oscillators. As such, the frag- 

ents bear the structural information of the molecule in the ini- 

ial (or intermediate) system owing to the relatively slow vibra- 

ional relaxation of the molecule [44] . For example, there are many 

outes of dissociation for formamide [46,60,61] , one of the routes 

eading to CO is via the structural configuration NH 2 –C-O 

–H (struc- 

ure INT-2b in Fig. 7 in Nguyen et al. (2011)) [60] with the cor-

esponding equilibrium constants r e = 1.335 Å and the harmonic 

onstant ω e = 1156 cm 

−1 [60] . 

Following these assumptions, the corresponding CO vibrational 

avefunctions (both fragment and product) are then approximated 

y a 1D Harmonic oscillator: 

v = C v H v ( x ) e 
−x 2 

2 (2) 
a; panel B – a selected time profile of any CO overtone line. 
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Fig. 6. Comparison of formamide-mixture and pure CO discharge (33rd μs): panel A – helium + formamide-mixture discharge; panel B – helium + pure CO discharge. 

Fig. 7. Comparison of the experimental (top) and theoretical (bottom) spectra for the 

�v = 2 band of 12 C 16 O, from 3500 cm 

−1 to 4500 cm 

−1 . 
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Fig. 8. Comparison of the experimental (red) and theoretical (blue) spectra for the �v = 1 band of 12 C 16 O, from 1800 cm 

−1 to 2300 cm 

−1 . 
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 = 

r − r e √ 

α
, (3) 

= 

√ 

h 

4 π2 cμω e 
(4) 

μ is the reduced mass: 

1 

μ
= 

1 

m C 

+ 

1 

m O 

, (5) 

h is the Planck constant, c is the speed of light, m c is the nu-

lear mass of a carbon atom = 12.0 0 0 0 Da, and m o is the nuclear

ass of an oxygen atom = 15.9949 Da. 

The equilibrium parameters r e and ω e required for the descrip- 

ion of the vibrational states of the free (gas phase) CO molecule 

re taken as the corresponding experimental values of 1.1283 Å 

nd 2169.81358 cm 

−1 [62] , respectively. Since the dissociative 

athway to form CO from formamide is not well known, the cor- 

esponding equilibrium parameters r e and ω e of the CO fragment 

re treated as adjustable parameters. Their values are determined 

y adjusting the shape of the �v = 1 and �v = 2 bands of CO.

he best values corresponding to the simulated spectrum shown 

n Figs. 6–8 and are r e = 1.218 Å and ω e = 10 0 0 cm 

−1 , which,

nder the assumption of the instantaneous dissociation process, 

an be considered as an indication of the dissociation pathway. 

he corresponding parameters of the main isomer of formamide 

re r e = 1.219 Å [63] and ω e = 1618 cm 

−1 [60] . 

The vibrational populations of the product CO 

re then estimated from the Franck-Condon factors 

 v ′ ′ = 0(fragment)| v ′ (gas phase) 〉 i.e. overlap integrals between 

he fragment wavefunction | v ′ ′ 〉 (which is assumed to be in its 

round vibrational state) and the gas phase CO wavefunctions | v ′ 〉 
7 
 v ′ = 0 ≤ x ≤ 30): 

 

vib 
v = 〈 0 ( fragment ) | v ( g . ph . ) 〉 2 , (6) 

here N 

vib 
v are the population densities for each vibrational energy 

evel of the gas phase of CO. The calculated populations N 

vib 
v were 

hen combined with the ExoMol line list to give a weighting for all 

ransitions in the CO line list calculated by Li et al. in 2015 [54] .

his is done by incorporating the non-LTE vibrational densities into 

he ExoMol States file (the ExoMol file formats are discussed ex- 

ensively elsewhere) [55] . The non-LTE spectrum of CO for a given 

 and P are then calculated using the Einstein-A coefficients by Li 

t al. (2015) [54] as provided by ExoMol ( www.exomol.com ) with 

he ExoCross program [64] . The rotational populations are assumed 

o be in LTE. The final ro-vibrational population is thus given by 

 rv = N 

vib 
v ( 2 J + 1 ) e 

−c 2 
˜ E rot 
J 

T . (7) 

Here c 2 is the second radiation constant and 

˜ E rot 
J 

is the rotation 

ontribution to ˜ E J, v (ro-vibrational energy term value) for a given 

ibrational state defined as 

˜ 
 

rot 
J = 

˜ E J, v − ˜ E vib 
v . (8) 

Here we apply our 1D model to simulate the CO non-LTE fea- 

ures of the discharged formamide shown in Fig. 4 . The details of 

he model will be presented elsewhere. 

The comparison between the calculated non-LTE spectra of CO 

nd the experimental spectra for both the fundamental and first 

vertone CO band are shown in Figs. 7 and 8 , where we used 

 e = 1.218 Å and ω e = 10 0 0 cm 

−1 , and calculate an absorption

pectrum using the ExoCross program [64] with a rotational tem- 

erature of 400 K. 

In Fig. 7 , the vibrational quantum numbers are labelled for both 

he experimental and theoretical spectra, with the theoretical spec- 

rum containing transitions from �v = 2–0 up to and including 

http://www.exomol.com
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v = 17–15. Here and in Fig. 8 , we used the grid spacing of 0.03

m 

−1 , a Voigt line profile of γ = 0.007 cm 

−1 and pressure of 

.0 bar. 

It is clear to see that both the position and shape profile of 

he experimental and calculated peaks are in good agreement with 

ach other, and the intensity profiles also agree, albeit the 40 0 0 

m 

−1 peak is slightly weaker than experimental. The ‘tails’ of the 

urves also match well for both the �v = 1 and �v = 2 bands,

ith both spectra having the same non-Boltzmann, asymmetric 

istribution. Despite the good overall agreement, there are a few 

otable differences. The intensity of the experimental spectrum 

ecreases suddenly at around 1850 cm 

−1 in the �v = 1 peak 

hich our calculated spectrum does not emulate, indicating that 

ur model is less accurate in this region. We also see some dif- 

erences in the fine structure, such as the intense experimental 

eatures in the �v = 1 band at 1982.77 cm 

−1 and the �v = 2

and at 3762.94 cm 

−1 which are not well reproduced by the- 

ry. However, similar strong experimental features in the �v = 1 

and at 2025.87 cm 

−1 and the �v = 2 band at 3995.73 cm 

−1 

re well described. The inability of our model to describe some 

f the fine structure can be attributed to the simplified broaden- 

ng model (Voigt with a fixed HWHM) used here. The additional 

ub-shoulders to the far right of both the 20 0 0 cm 

−1 and the

0 0 0 cm 

−1 peaks in the experimental spectra, which do not ap- 

ear in the theoretical spectra, correspond to different species such 

s CO 2 [45] . 

. Conclusion 

In this publication we present an extension of carbon monox- 

de line list up to v = 30 for the fundamental CO band and up

o v = 24 for the first CO overtone band, where all the data are

ithin maximal J number equal to 30. Lines in the higher vibra- 

ional number transitions have not been experimentally measured 

efore, but it has to be noted that others, especially Farrenq et al. 

13] , have measured CO under high-temperature and therefore ex- 

ended the available CO line list to higher J values (up to J = 110). 

We also performed the Dunham fitting of both fundamental 

nd overtone CO bands simultaneously and obtained Dunham pa- 

ameters relevant to this fitting procedure. 

Furthermore, we present a comparison between the glow dis- 

harge realized in formamide-nitrogen-water mixture and the glow 

ischarge realized in pure CO under the same experimental condi- 

ions. It is possible to observe the CO first overtone is almost not 

opulated in the pure CO discharge, which is caused by inacces- 

ibility of suitable excitation energy in the discharge system. On 

he other hand, formamide-mixture discharge creates an inversely 

opulated CO first overtone, which is a sign of abundance of en- 

rgy mediators like CN and CO radicals in the system. 

Lastly, we calculated the non-LTE spectrum for the fundamental 

nd first overtone band of 12 C 

16 O using a 1D harmonic approx- 

mation and the CO ExoMol line list. Our comparison of the ex- 

erimental and calculated spectra shows good agreement. We are 

lanning to apply the non-LTE to simulate the complete non-LTE 

pectrum of the discharged formamide system along with a more 

etailed analysis of our non-LTE model. In case of three-atomic 

olecules, the 1D population model can be relatively straightfor- 

ardly extended to a full 3D treatment, which we have imple- 

ented in the variational program TROVE [65] . The description of 

he extended 3D non-LTE model and applications to the descrip- 

ion of other discharged fragments of formamide will be published 

lsewhere. 
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