Hydrogen storage in zeolite imidazolate frameworks. A multiscale theoretical investigation

Bassem Assfour, Stefano Leoni, Sergei Yurchenko, Gotthard Seifert*

Technische Universität Dresden, Institut für Physikalische Chemie und Elektrochemie, Bergstr. 66b, D-01062 Dresden, Germany

Abstract

A multiscale approach is used to investigate the hydrogen adsorption in nanoporous Zeolite Imidazolate Frameworks (ZIFs) on varying geometries and organic linkers. Ab initio calculations are performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF structures. Subsequently, classical grand canonical Monte-Carlo (GCMC) simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions of pressure and temperature.

Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the perspective of a rapid exhaustion of hydrocarbon resources, hydrogen has been indicated as sustainable ‘clean’ fuel, optimally suited for transportation applications. Besides sourcing, storage remains one of the principal limiting factor for an economy based on hydrogen. Porous materials are capable of storing practical amounts of hydrogen [1–9]. However, no material yet fully meets the recommendations of the U.S. Department of Energy for reversible hydrogen storage under near ambient conditions. Recently, zeolitic imidazolate frameworks (ZIFs) have appeared as a novel class of materials [10]. Their crystal structure is based on aluminosilicate zeolite nets, whereby the tetrahedral Si(Al) sites are replaced by transition metals M (M = Zn(II), Co(II), In(III)) tetrahedrally coordinated by imidazolate ligands (Fig. 1). Like metal-organic framework (MOF) materials, ZIFs exhibit high porosity and chemical functionality with the advantages of exceptional chemical stability and large structural diversity [11]. The combination of these features makes ZIFs promising candidates for hydrogen storage applications.

ZIF-8 (SOD topology) and ZIF-11 (RHO topology) contain only one cage type, and result from organic linkers 2-methylimidazolate (mIM) and benzimidazolate (bIM) [10] (for the description of topology symbols, see Database of Zeolite Structures, http://www.iza-structure.org/databases/). The more involved LTA topology of ZIF-20, which has two cage types, can be obtained by linker functionalization [12]. Yaghi et al. synthesized ZIF-95, with an unprecedented topology (denoted by poz) [13]. ZIF-95 features a tetragonal, neutral framework made of 128 Zn nodes tetrahedrally coordinated by chlorobenzimidazolate (cbIM). It has two types of cages (A and B) with remarkably large pore sizes of 25.1 × 14.3 Å and 30.1 × 20.0 Å, respectively.

Unlike MOFs, only few experimental studies concerning hydrogen storage in ZIFs have been reported so far [10,12,14,15]. Yildirim et al. measured the adsorption isotherm of ZIF-8 over a wide range of pressures and temperatures.

* Corresponding author. Tel.: +49 351 463 37637; fax: +49 351 463 35953.
E-mail address: Gotthard.Seifert@chemie.tu-dresden.de (G. Seifert).
0360-3199/$ – see front matter Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijhydene.2011.02.044
At low temperatures the maximum of H_2 adsorption capacity amounts to 4.4 wt% [15].

In coordination with experiments, some theoretical studies of H_2 adsorption on ZIFs have been reported. Wang et al. [16] used the refined OPLS-AA (Optimized Potentials for Liquid Simulations-All Atoms) force field model in grand canonical Monte Carlo (GCMC) simulations to investigate the adsorption sites using computer tomography (mCT) techniques. A combination of the Dreiding [17] and the all-atom OPLS (OPLS-AA) [18] force fields was adopted to describe the atomic interactions in the ZIF-8 framework. Fröba et al. [19] approached the adsorption of hydrogen in ZIF-8 with the Universal Force Field (UFF).

Recently, Han et al. [20] reported H_2 uptakes of 10 different ZIFs, based on GCMC simulations. The GCMC results show a good agreement with an experimental data set of ZIF-8. Therein, the force fields used to describe the interactions between H_2 and ZIF were based on ab initio calculations. However, the interaction terms between H_2 and Nitrogen in different imidazolate rings were developed from the interaction between H_2 and $C_3N_3H_3$, which is different from imidazolate rings.

The large numbers of GCMC moves requires a prompt calculation of intermolecular forces, made possible by versatile force field parameters. Although general potentials can describe the adsorption effects rather well, sometimes they may lead to unpredictable results for certain materials. On the other hand, tuning force field parameters for a particular compound may impair property prediction upon transferring these parameters to different systems.

To provide a fundamental understanding of adsorption mechanisms in ZIFs and to achieve a more accurate prediction of H_2 storage capacity we have constructed a force field from first-principles. This force field is employed to study H_2
storage in ZIF materials with different topologies and different organic linkers. We focus on four main topologies, SOD (ZIF-8), RHO (ZIF-11), LTA (ZIF-20) and POZ (ZIF-95) (see Fig. 2), which have shown promising hydrogen storage properties [10,12]. All structures have the same metal ion (Zn\(^{2+}\)) but differ in the imidazolate linkers. This selection allows us to closely investigate the effect of varying topology and organic linkers on the hydrogen adsorption properties of the ZIF materials.

We used second-order Møller-Plesset (MP2) [21] calculations to construct the force field towards an accurate description of the interactions between H\(_2\) and ZIF structures. This force field was then used in grand canonical Monte Carlo (GCMC) simulations to quantitatively predict the H\(_2\) isotherms under different thermodynamic conditions.

2. Computational methodology

2.1. First-principle calculations of interaction parameters

The interactions between H\(_2\) and ZIFs framework are dominated by long-range London dispersion terms, which are known to be problematic for Density Functional Theory (DFT) methods [22]. The MP2 ab initio method together with the cc-PVTZ [23] basis set were chosen to represent the interactions between ZIF frameworks and an H\(_2\) molecule. This level of theory is known to provide appropriate values for the interaction between H\(_2\) and aromatic systems [24–26].

At the MP2 level the full periodic ZIF systems tend to be prohibitively expensive due to the large size of ZIFs. A viable compromise between computational costs and accuracy can be achieved by using a smaller, computationally tractable cluster, representative for the system.

Experimental and theoretical studies of hydrogen adsorption in ZIF-8 indicate that the imidazolate linker is the primary adsorption site for hydrogen [14,16,27], while no adsorption takes place around the Zn-N\(_4\) cluster. Along this line, in MP2 calculations we consider only the interaction between hydrogen and ligands, as shown in Fig. 3(a). For each ZIF the corresponding organic linkers, saturated with hydrogen atoms, were used as reduced clusters (see Fig. 1).

All geometries were first optimized at the B3LYP/6-311G** level and then used in the MP2 calculations. The calculated binding energies were corrected for the basis-set superposition error (BSSE) by the full counterpoise procedure. The calculations were carried out with the Gaussian-03 program package [28].

2.2. Parametrization of the force field

The H\(_2\)-ZIF interactions were represented by the 12-6 Lennard-Jones (LJ) potential:

\[
V(r_{ij}) = 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right],
\]

constructed through a least-square fitting to the MP2 energies. Here \(i\) and \(j\) run over all atoms of the guest (hydrogen molecules) and of the host (ZIF structure), \(r_{ij}\) is an atom–atom
distance, and σ_i and ϵ_i are the Lennard–Jones parameters. A similar approach has been successfully used in the literature to fit van der Waals interactions for MOF systems [3,29].

The MP2 energies for ZIF-8 sensibly depends on the H_2 relative orientation with respect to the structure (Fig. 4). In order to take these effects into account, two H_2 limiting orientations were considered, vertical and parallel with respect to the ligands, as shown in Fig. 3(a).

For ZIF-11, -20 and -95, three different H_2 placements were evaluated, at the center of the imidazolate (IM) ring, at the center of the benzene ring and on the top of the C–C bond between IM and benzene rings, respectively [see Fig. 3(b)].

The potential energy profile used in the fitting of the force field parameters corresponded to the most ‘favorable’ (i.e. with lowest energy) orientations. This choice of the potential profile ensures a good description of the strongest adsorption sites. As a representative, Fig. 5 shows the potential energies derived from the MP2 calculations together with the fitted force fields of H_2 on cbIM.

The H_2–H_2 potential was taken from Ref. [30], where each H atom in an H_2 molecule is represented separately in the LJ potential ($\sigma = 2.72 \text{ Å}, \epsilon = 10.0 \text{ K}$). These parameters were shown to provide a reasonably good reproduction of the experimental data of the hydrogen gas. They have been also utilized to simulate the hydrogen adsorption in MOFs [31,34] and COFs [8].

2.3. Simulated adsorption isotherms of H_2

The hydrogen adsorption in the ZIF structures was simulated with GCMC using the multipurpose simulation code Music [32]. The sorbents (ZIFs) were described by a periodic $2 \times 2 \times 2$ supercell to eliminate boundary effects. ZIFs were treated as rigid structures at all temperatures, using coordinates obtained by X-ray scattering experiments [10,12,13]. A cut-off of 13.0 Å was applied to the Lennard–Jones interactions. The calculations of adsorption isotherms were carried out at two different temperatures, $T = 77 \text{ K}$ and 300 K, throughout a wide range of pressure, from low pressure ($P = 10^{-2} \text{ bar}$) up to high pressure ($P = 100 \text{ bar}$) to get a complete picture of the adsorption properties. For each point on the isotherm, the

![Fig. 5 — Potential energies derived from the MP2 calculations of H_2 on cbIM ring together with the fitted force fields. The distance R is defined as the distance between the center of mass of the cluster and the center of the H_2 molecule.](image)

![Fig. 6 — Simulated and experimental adsorption isotherm of ZIF-8: a) $P = 0–1$ bar; b) $P = 0–80$ bar. The experimental data are taken from Yaghi et al. [10] (squares) and Yildirim et al. [15] (circles).](image)
simulations were equilibrated for five million steps, and further five million steps were used to sample the data. Each Monte Carlo step consisted of (i) insertion of a new molecule, (ii) deletion of an existing molecule, (iii) translation, or (iv) rotation of an existing molecule, with equal probabilities.

The isosteric heat of adsorption Q_{st} was evaluated through the fluctuations over the number of particles in the system and fluctuations of the internal energy U [33,34]:

$$Q_{st} = RT \frac{\langle UN \rangle - \langle U \rangle \langle N \rangle}{\langle N^2 \rangle - \langle N \rangle^2}$$

(2)

where R is the gas constant, T is the temperature, U is the internal energy, N is the number of molecules adsorbed, and the brackets $\langle \rangle$ represent a configuration average.

The available free volume was calculated using a non-adsorbing species (helium) as a probe, while the surface area was obtained by ‘rolling’ a probe molecule with a diameter equal to the Lennard–Jones parameter for H$_2$ or N$_2$ (2.72, 3.68 Å) over the framework surface as described in Ref. [35].

3. Results and discussion

3.1. Comparison of simulations with experiments for H$_2$ adsorption

To our knowledge, in the literature there are only two experimental data of the adsorption isotherms for ZIF-8 by Yaghi et al. [10] and by Yildirim et al. [15]. These isotherms, however, display striking differences, with respect to the maximal H$_2$ uptake as well as the shape of the isotherms (see Fig. 6).

The simulation approach taken in this work consists of evaluating isotherms based on interaction energies obtained from accurate MP2 calculations. This provides a theoretical parameter-free reference, which can be contrasted with available experimental data. Based on this approach, H$_2$ adsorption isotherms were evaluated for ZIF-8, ZIF-11 and ZIF-20 at $T = 77$ K. The calculated and experimental adsorption isotherms for ZIF-8 are compared in Fig. 6.

The calculated H$_2$ isotherm curve (blue triangles) displays a cusp around 20 bar. This feature is also present in the measurements of Yildirim et al. [15], but not in the experimental curve of Yaghi et al. [10], which saturates around 50 bar. This feature, as well as the different curve shape most probably reflects material artifacts, like the presence of solvent molecules and contaminants in pores.

In Fig. 6 a second calculated isotherm for ZIF-8 (grey triangles, Fig. 6) is included. This was obtained from parameters fitted to MP2 energies of the less favorable, parallel orientation of H$_2$ on the substrate (black potential energy curve in Fig. 4). The two isotherms enclose the experimental region at full range of pressure. The use of the parallel hydrogen orientation leads to an underestimation of the amount of H$_2$ adsorbed, and an overall bad description of the complex adsorption process. Instead, using the profile of the lowest energy leads to a superior description of the experimental curve, especially for the low pressures, at the highest pressure, and with respect to the maximum placement. Given the difference between the two potential curves (Fig. 4) for ZIF-8, considering only the vertical orientation may in principle add an extra contribution, but only to the weakly adsorbed molecules in the intermediate pressure range.

Nonetheless, since the features of the experimental curve are closely reproduced and the adsorption energy is accurately calculated (see below), we consider our parametrization approach reasonable.

Discrepancies between the theoretical and experimental adsorption in porous materials are frequently encountered in the literature (see for example Refs. [7,33,36,37]). Simulation of H$_2$ uptake on ZIF-8 using the universal force field (UFF) cannot satisfactorily reproduce the experiments [19]. Only upon adjustment of the OPLS-AA force field parameters a better agreement was obtained [16]. Experiments on H$_2$ adsorption are often affected by the presence of solvent or other guest molecules in pores, which results in an incomplete volume activation of the material causing an inferior H$_2$ uptake performance. Since we intend to capture the adsorption process in detail based on the first-principles, we understand the calculated curves as benchmark at which the material can nominally perform.
The calculated adsorption isotherm of ZIF-11 and ZIF-20 are shown in Fig. 7 and Fig. 8, respectively, where they are compared to the corresponding experimental isotherms [10], available for the lower pressure region only. The theoretical isotherms are in fairly good agreement with the experiments and are approaching the experimental curves at higher pressure. Similarly to ZIF-8, the MP2 curves lie above the experimental one and represent the maximal uptake when the whole pore volume is accessible. In case of ZIF-20 the experimental free volume is smaller than the theoretical one calculated from a perfect crystal structure (Table 1, third column), which results in a lower placement of the experimental isotherm. We would like to mention that ZIF-11 provides a very small surface area for N2 compared to H2. This is consistent with the experimental observation of Yaghi et al. [10], in which ZIF-11 was found not porous to N2 because its aperture size (3.0 Å) was smaller than the kinetic diameter of nitrogen (3.6 Å); nonetheless, it was able to adsorb hydrogen.

To complement our hydrogen adsorption analysis we have also performed a comparison of hydrogen adsorption in different ZIFs detailed in the next section.

Table 1 - Structural characteristics of ZIF materials calculated from single crystal X-ray analysis. The experimental values are given in parenthesis.

<table>
<thead>
<tr>
<th>Material</th>
<th>Void fraction (%)</th>
<th>Free volume (cm³/g)</th>
<th>Accessible Surface area for H₂ (m²/g)</th>
<th>Accessible Surface area for N₂ (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIF-8</td>
<td>55.8</td>
<td>0.568 (0.636 [10])</td>
<td>1679</td>
<td>1263 (1630 [10])</td>
</tr>
<tr>
<td>ZIF-11</td>
<td>53.7</td>
<td>0.496</td>
<td>1452</td>
<td>610</td>
</tr>
<tr>
<td>ZIF-20</td>
<td>53.3</td>
<td>0.479 (0.27 [12])</td>
<td>1430</td>
<td>941 (800 [12])</td>
</tr>
<tr>
<td>ZIF-95</td>
<td>60.0</td>
<td>0.628 (0.43 [13])</td>
<td>1635</td>
<td>1251 (1240 [13])</td>
</tr>
</tbody>
</table>

3.2. Comparison between different ZIFs

In order to examine the performance of ZIFs for hydrogen storage, the adsorption isotherms were calculated both at the cryogenic (77 K) and ambient (300 K) temperatures. Fig. 9 shows the predicted total gravimetric H₂ uptakes at 77 K for the ZIFs under consideration at low and high pressure. The total hydrogen uptake of ZIF-8 at moderate and high pressure (>10 bar) is the highest with ~5 wt% at 100 bar (Fig. 9(a)). This can be attributed to the larger surface area and higher free volume of the system (see Table 1). At low pressure (<0.5 bar) ZIF-20 exhibits the highest uptake, while the isotherms of ZIF-11 and ZIF-95 are very close. The initial hydrogen uptake (at very low pressure) for ZIF-20 is much higher than that of ZIF-8 and comparable to that of ZIF-11. This can be attributed to the higher heat of adsorption of ZIF-20 (see Fig. 12). This finding is in agreement with the experimental observation of Yaghi et al. [10,12], who also showed that the initial uptake of ZIF-20 is significantly higher than that of ZIF-8. The adsorption capacities of all ZIFs at 77 K are smaller than that reported for some of MOF type materials, such as MOF-177 (10 wt.%) [1], and COF materials [3].

![Fig. 9 - Theoretical hydrogen adsorption isotherms at 77 K and a) high pressure, b) low pressure from 0 to 1 bar.](image-url)
The volumetric storage capacities are shown in Fig. 10. Here ZIF-8 exhibits the highest uptake values too. The volumetric uptake of ZIFs, MOFs and COFs are of the same order of magnitude [38].

At room temperature all ZIF materials show similar gravimetric (less than 1.0 wt%) and volumetric uptakes of H₂ (see Fig. 11), comparable to that reported for some MOF type materials [30] and much smaller than that reported for COFs [3,38,39]. It is known that COFs can offer higher surface area and larger pore volume. Thus, towards a better adsorption capacity both at 77 and 300 K, new ZIF materials with higher surface and pore volume must be designed. This probably can be achieved either by investigating new topologies with lower density [40] or by substituting the metal atom in the structure by lighter elements (e.g. B or Li) [9,41–43].

Fig. 12 presents the calculated isosteric heats of adsorption Qₘ for H₂ at 77 K in ZIFs. ZIF-95 has the highest heat of adsorption comparable to that of ZIF-11 and ZIF-20. This higher adsorption energy is responsible for the higher H₂ storage at low pressure. The maximum heat of adsorption for ZIFs varies between 12.0 kJ/mol (ZIF-95), 10.5 kJ/mol (ZIF-20), 9.8 kJ/mol ZIF-11 and 5.9 kJ/mol for ZIF-8. The heats of adsorption of ZIF-95, −20 and ZIF-11 are relatively high compared with other porous materials [44], such as, MOFs with small pores [45]. We note that the calculated isosteric heat of adsorption of ZIF-8 and ZIF-20 are in good agreement with those determined from the experiment (4.5 kJ/mol for ZIF-8 [15] and 8.5 kJ/mol for ZIF-20 [12]). Moreover, the calculated heat of adsorption of ZIF-8 and ZIF-11 agree well with those reported in our previous work using DC-DFTB (6.9 kJ/mol for ZIF-8 and 10.23 kJ/mol for ZIF-11) [27]. The presence of bIM in ZIF-11, Pur in ZIF-20 and cbIM in ZIF-95 leads to enhanced adsorption energy comparing to ZIF-8. Moreover, the presence of Cl in cbIM leads to limited increase of the adsorption energy compared to bIM and Pur. However, the Cl atom is much heavier than H which leads to a decrease in the hydrogen capacity of ZIF-95 compared to ZIF-20. On the other hand the presence of N in Pur linker leads to an increase of the adsorption energy compared to bIM linker (Fig. 12). This is consistent with previous theoretical investigations indicating that nitrogen heterocycles (e.g. pyrazine) can enhance the adsorption energy of H₂ [46]. The presented analysis also suggests to utilize purinate as a preferred linker when designing new ZIF type materials for hydrogen storage applications.
4. Summary and conclusions

In this work hydrogen adsorption in nanoporous ZIFs was investigated as a function of network geometry and organic linker exchange. To achieve a modeling free from any reference to specific ZIFs, accurate interaction energies were calculated based on the MP2 level. These energies were coarse-grained into a force field and then employed in classical GCMM calculations to obtain accurate H₂ uptake curves under different thermodynamic conditions. The calculated curves provide a benchmark for a nominal H₂ uptake, useful for reliability contrasting experimental results, which are often affected by material artifacts or experimental setup casualties.

The total hydrogen uptake of ZIF-8 at moderate and high pressure (>10 bar) was found to amount ~5 wt.%, higher than other ZIF materials. This is due to higher surface area and larger free volume. At lower pressures ZIF-20 was found to overperform other ZIF materials due to its higher heat of adsorption.

The positive effect of nitrogen heterocycle ligands on the hydrogen uptake was attributed to an enhanced adsorption energy, which is larger for ZIF-20 (Purinate ligand) than for ZIF-11 (bIM ligand). Hydrogen substitution by chlorine in the organic rings has only moderate impact on adsorption energy at the cost of a lower hydrogen capacity.

All in all, benchmark H₂ uptake values and adsorption energy based on MP2 have been presented for a class of ZIF compounds, with different topologies and ligands. We understand our computational scheme as a transferable approach for the evaluation and screening of material properties, and for improved material design.

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft via the priority program ‘Metal-Organic Framework’. We thank ZIH Dresden for the computational support.

References

